An Automatic Offset Calibration Method for Differential Charge-Based Capacitance Measurement
Abstract
:1. Introduction
2. Analysis of the Differential CBCM
2.1. Working Principle
2.2. Simulation Results
3. The Proposed Auto-Compensated CBCM Circuit
3.1. Working Principle
3.2. Simulation Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Conflicts of Interest
References
- Ferlito, U.; Grasso, A.D.; Pennisi, S.; Vaiana, M.; Bruno, G. Sub-Femto-Farad Resolution Electronic Interfaces for Integrated Capacitive Sensors: A Review. IEEE Access 2020, 8, 153969–153980. [Google Scholar] [CrossRef]
- Valente, V.; Demosthenous, A. A 32-by-32 CMOS microelectrode array for capacitive biosensing and impedance spectroscopy. In Proceedings of the 2017 IEEE International Symposium on Circuits and Systems (ISCAS), Baltimore, MD, USA, 28–31 May 2017; pp. 1–4. [Google Scholar] [CrossRef] [Green Version]
- Couniot, N.; Francis, L.A.; Flandre, D. A 16 x 16 CMOS Capacitive Biosensor Array Towards Detection of Single Bacterial Cell. IEEE Trans. Biomed. Circuits Syst. 2016, 10, 364–374. [Google Scholar] [CrossRef] [PubMed]
- Carminati, M.; Ferrari, G.; Vahey, M.D.; Voldman, J.; Sampietro, M. Miniaturized Impedance Flow Cytometer: Design Rules and Integrated Readout. IEEE Trans. Biomed. Circuits Syst. 2017, 11, 1438–1449. [Google Scholar] [CrossRef] [PubMed]
- Senevirathna, B.P.; Lu, S.; Dandin, M.P.; Basile, J.; Smela, E.; Abshire, P.A. Real-Time Measurements of Cell Proliferation Using a Lab-on-CMOS Capacitance Sensor Array. IEEE Trans. Biomed. Circuits Syst. 2018, 12, 510–520. [Google Scholar] [CrossRef] [PubMed]
- Laborde, C.; Pittino, F.; Verhoeven, H.A.; Lemay, S.J.G.; Selmi, L.; Jongsma, M.A.; Widdershoven, F.P. Real-time imaging of microparticles and living cells with CMOS nanocapacitor arrays. Nat. Nanotechnol. 2015, 10, 791–795. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.; Fu, Q.; Zhang, Y.; Zhang, W.; Chen, D.; Yin, L.; Liu, X. A Digital Closed-Loop Sense MEMS Disk Resonator Gyroscope Circuit Design Based on Integrated Analog Front-end. Sensors 2020, 20, 687. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aaltonen, L.; Kalanti, A.; Pulkkinen, M.; Paavola, M.; Kamarainen, M.; Halonen, K.A.I. A 2.2 mA 4.3 mm2 ASIC for a 1000°/s 2-Axis Capacitive Micro-Gyroscope. IEEE J. Solid State Circuits 2011, 46, 1682–1692. [Google Scholar] [CrossRef]
- Ferlito, U.; Grasso, A.D.; Vaiana, M.; Bruno, G. Sub-fF Resolution Capacitive Amplifier for Particulate Matter Airborne Detection. In Proceedings of the 2020 International Conference on Electrical, Communication, and Computer Engineering (ICECCE), Istanbul, Turkey, 13 June 2020; pp. 1–4. [Google Scholar] [CrossRef]
- Ciccarella, P.; Carminati, M.; Sampietro, M.; Ferrari, G. Multichannel 65 zF rms Resolution CMOS Monolithic Capacitive Sensor for Counting Single Micrometer-Sized Airborne Particles on Chip. IEEE J. Solid State Circuits 2016, 51, 2545–2553. [Google Scholar] [CrossRef]
- Evans, I.; York, T. Microelectronic Capacitance Transducer for Particle Detection. IEEE Sens. J. 2004, 4, 364–372. [Google Scholar] [CrossRef]
- Ferlito, U.; Grasso, A.D.; Vaiana, M. Bruno, Integrated Airborne Particle Matter Detector. In Proceedings of the 2019 26th IEEE International Conference on Electronics, Circuits and Systems (ICECS), Genoa, Italy, 27 November 2019; pp. 95–96. [Google Scholar] [CrossRef]
- Chen, J.C.; McGaughy, B.W.; Sylvester, D.; Hu, C. An on-chip, attofarad interconnect charge-based capacitance measurement (CBCM) technique. In Proceedings of the International Electron Devices Meeting, Technical Digest, San Francisco, CA, USA, 8–11 December 1996; pp. 69–72. [Google Scholar] [CrossRef]
- Sylvester, D.; Chen, J.C.; Hu, C. Investigation of interconnect capacitance characterization using charge-based capacitance measurement (CBCM) technique and three-dimensional simulation. IEEE J. Solid State Circuits 1998, 33, 449–453. [Google Scholar] [CrossRef]
- Vendrame, L.; Bortesi, L.; Cattane, F.; Bogliolo, A. Crosstalk-Based Capacitance Measurements: Theory and Applications. IEEE Trans. Semicond. Manufact. 2006, 19, 67–77. [Google Scholar] [CrossRef]
- Forouhi, S.; Dehghani, R.; Ghafar-Zadeh, E. Toward High Throughput Core-CBCM CMOS Capacitive Sensors for Life Science Applications: A Novel Current-Mode for High Dynamic Range Circuitry. Sensors 2018, 18, 3370. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghafar-Zadeh, E.; Sawan, M. A Hybrid Microfluidic/CMOS Capacitive Sensor Dedicated to Lab-on-Chip Applications. IEEE Trans. Biomed. Circuits Syst. 2007, 1, 270–277. [Google Scholar] [CrossRef] [PubMed]
- Prakash, S.B.; Abshire, P. A Fully Differential Rail-to-Rail Capacitance Measurement Circuit for Integrated Cell Sensing. In Proceedings of the 2007 IEEE Sensors, Atlanta, GA, USA, 28–31 October 2007; pp. 1444–1447. [Google Scholar] [CrossRef]
- Prakash, S.B.; Abshire, P. A Fully Differential Rail-to-Rail CMOS Capacitance Sensor with Floating-Gate Trimming for Mismatch Compensation. IEEE Trans. Circuits Syst. I 2009, 56, 975–986. [Google Scholar] [CrossRef]
- Ghafar-Zadeh, E.; Sawan, M.; Chodavarapu, V.P.; Hosseini-Nia, T. Bacteria Growth Monitoring Through a Differential CMOS Capacitive Sensor. IEEE Trans. Biomed. Circuits Syst. 2010, 4, 232–238. [Google Scholar] [CrossRef] [PubMed]
- York, T.A.; Evans, I.G.; Pokusevski, Z.; Dyakowski, T. Particle detection using an integrated capacitance sensor. Sens. Actuators A Phys. 2001, 92, 74–79. [Google Scholar] [CrossRef]
- Ferlito, U.; Grasso, A.D.; Vaiana, M.; Bruno, G. A Time-Based Electronic Front-End for a Capacitive Particle Matter Detector. Sensors 2021, 21, 1840. [Google Scholar] [CrossRef] [PubMed]
- Croon, J.A.; Rosmeulen, M.; Decoutere, S.; Sansen, W.; Maes, H.E. An easy-to-use mismatch model for the MOS transistor. IEEE J. Solid State Circuits 2002, 37, 1056–1064. [Google Scholar] [CrossRef]
- Enz, C.C.; Temes, G.C. Circuit techniques for reducing the effects of op-amp imperfections: Autozeroing, corelated double sampling and chopper stabilization. Proc. IEEE 1996, 84, 1584–1614. [Google Scholar] [CrossRef] [Green Version]
- Grasso, A.D.; Vaiana, M.G.G.; Bruno, G. Area-optimized sub-fF offset trimming circuit for capacitive MEMS interfaces. In Proceedings of the ECCTD 2017, Catania, Italy, 4–6 September 2017; pp. 1–4. [Google Scholar] [CrossRef]
- Van de Plassche, R.J. Dynamic element matching for high-accuracy monolithic D/A converters. IEEE J. Solid State Circuits 1976, 11, 795–800. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
M1, M2 | 1 µm/0.5 µm |
M3, M4 | 3 µm/0.5 µm |
M5, M6, M7, M8, M11, M13 | 2 µm/2 µm |
M9, M10, M12, M14 | 5 µm/10 µm |
K | 2 |
Cint1,2 | 5 pF |
Cs,r | 1 fF |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ferlito, U.; Grasso, A.D.; Vaiana, M.; Bruno, G. An Automatic Offset Calibration Method for Differential Charge-Based Capacitance Measurement. J. Low Power Electron. Appl. 2021, 11, 22. https://doi.org/10.3390/jlpea11020022
Ferlito U, Grasso AD, Vaiana M, Bruno G. An Automatic Offset Calibration Method for Differential Charge-Based Capacitance Measurement. Journal of Low Power Electronics and Applications. 2021; 11(2):22. https://doi.org/10.3390/jlpea11020022
Chicago/Turabian StyleFerlito, Umberto, Alfio Dario Grasso, Michele Vaiana, and Giuseppe Bruno. 2021. "An Automatic Offset Calibration Method for Differential Charge-Based Capacitance Measurement" Journal of Low Power Electronics and Applications 11, no. 2: 22. https://doi.org/10.3390/jlpea11020022
APA StyleFerlito, U., Grasso, A. D., Vaiana, M., & Bruno, G. (2021). An Automatic Offset Calibration Method for Differential Charge-Based Capacitance Measurement. Journal of Low Power Electronics and Applications, 11(2), 22. https://doi.org/10.3390/jlpea11020022