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Abstract: We investigate emergent conductive phenomena triggered by collinear antiferromagnetic
orderings. We show that an up-down-zero spin configuration in a triangle cluster leads to linear
and nonlinear spin conductivities even without the relativistic spin–orbit coupling; the linear spin
conductivity is Drude-type, while the nonlinear spin conductivity has Hall-type characterization. We
demonstrate the emergence of both spin conductivities in a breathing kagome system consisting of a
triangle cluster. The nonlinear spin conductivity becomes larger than the linear one when the Fermi
level lies near the region where a small partial band gap opens. Our results indicate that collinear
antiferromagnets with triangular geometry give rise to rich spin conductive phenomena.

Keywords: nonlinear spin Hall effect; triangular lattice; magnetic toroidal moment; spin–orbit
coupling; multipole; tight-binding model

1. Introduction

Antiferromagnetic orderings and their related physical phenomena have been long
studied in condensed matter physics [1–4]. Depending on spin patterns under lattice struc-
tures, a variety of symmetry lowerings are caused by antiferromagnetic phase transition.
Based on Neumann’s principle that connects symmetry and the appearance of physical
phenomena, functional materials have been discovered. One of the examples of this is
a multiferroic property produced as a consequence of both spatial inversion and time-
reversal symmetry breakings, which results in a linear magnetoelectric effect caused by the
coupling between electric and magnetic degrees of freedom [5–11]. Another example is the
anomalous Hall effect without net magnetization when the time-reversal symmetry and
other crystal symmetries are broken, meaning that the antiferromagnetic structure belongs
to the same irreducible representation as the ferromagnetic state [12–21]. Complicated
noncollinear/noncoplanar antiferromagnetic structures have often been studied as the
origin of these physical phenomena, since they lead to a lowering of crystal symmetry.

Meanwhile, collinear antiferromagnetic structures can also lead to the same physical
phenomena through a consideration of the lattice structures with multiple sublattices.
For example, the multiferroic property can be engineered by staggered collinear anti-
ferromagnetic orderings on the one-dimensional zigzag chain [22–29], two-dimensional
honeycomb structure [30–34], and three-dimensional diamond structure [35–40]. In addi-
tion, the anomalous Hall effect is also induced in collinear antiferromagnets [41–49]. Since
the amount of material with collinear antiferromagnetic structures is larger than that with
noncollinear/noncoplanar ones, it is desirable to further explore functionalities in collinear
antiferromagnets from a fundamental viewpoint.

In this context, emergent spin–orbit coupling (SOC) in antiferromagnets has recently
attracted growing interest in both theory and experiments [50–72], and is sometimes re-
ferred to as “altermagnetism” [73,74]. Here, collinear antiferromagnets exhibit a symmetric
momentum-dependent spin-split band structure even without the relativistic SOC. Owing
to the momentum dependence of the spin splitting, a directional-dependent spin current
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generated by an external electric field can be expected [53,75–78]. As the SOC is not neces-
sary to generate such a spin current, this type of collinear antiferromagnet can be a potential
candidate for highly efficient spintronics devices that are not limited to heavy-element
materials.

In the present study, we investigate the spin current generation in SOC-free collinear
antiferromagnets by focusing on the effect of cluster geometry. We show that the collinear
antiferromagnetic structure in a triangle cluster gives rise to both linear and nonlinear spin
conductivities owing to the lack of spatial inversion symmetry in the triangle unit, which
differs from the square cluster case. We discuss their emergence from the viewpoint of group
theory and cluster multipole theory. We also study the behavior of both conductivities by
analyzing the tight-binding model in the breathing kagome structure formed by triangle
clusters. Our results indicate that the cluster structure plays an important role in discussing
the spin current generation in SOC-free antiferromagnets.

The rest of this paper is organized as follows. In Section 2, we show the relationship
between collinear antiferromagnetic structures and magnetic toroidal multipoles in the
square and triangle clusters. We also introduce the tight-binding model in a breathing
kagome system. Then, we show the linear and nonlinear spin conductivities under the
collinear antiferromagnetic ordering in Section 3. We compare the linear and nonlinear
spin conductivities in Section 4. Section 5 concludes with the results of the present paper.

2. Model
2.1. Magnetic Toroidal Multipoles in a Cluster

First, let us discuss the physical properties of antiferromagnetic structures by intro-
ducing the magnetic toroidal multipole Tlm [79–81], which is defined as

Tlm = ∑
j

{ rj

l + 1
×

(
2lj

l + 2
+ σj

)}
·∇Olm(rj), (1)

where lj and σj/2 are the dimensionless orbital and spin angular-momentum operators
of an electron at rj. l and m represent the azimuthal and magnetic quantum numbers,
respectively. Olm(r) is proportional to the spherical harmonics Ylm(r̂) as a function of angle
r̂ = r/|r|, Ylm(r̂), which is given by

Olm(r) =

√
4π

2l + 1
rlY∗

lm(r̂). (2)

The magnetic toroidal multipole Tlm is characterized by time-reversal-odd polar tensor;
even(odd)-rank Tlm has even(odd) parity for spatial inversion. When Equation (1) applies
to the antiferromagnetic structure, one needs to read rj with the position of the jth atom Rj
in a magnetic unit cell [19,82].

The l = 1 component of Tlm corresponds to the magnetic toroidal dipole, which
appears when both the spatial inversion and time-reversal symmetries are broken. The
expression of T1m, i.e., T = (Tx, Ty, Tz), is proportional to (R × σ)j when the orbital angu-
lar momentum operator is neglected. Thus, the magnetic toroidal dipole T exists in the
vortex-type antiferromagnetic structure; it is noted that T is also induced in the collinear
antiferromagnetic structure, as shown later. When the antiferromagnetic structure induces
such a magnetic toroidal dipole, the system exhibits parity-violating physical phenomena,
such as the linear magnetoelectric effect [83–86] and nonreciprocal transport [27,87–90]. In
particular, in the case of collinear antiferromagnets without the relativistic SOC, the nonlin-
ear spin Hall effect can be expected in the presence of the magnetic toroidal dipole [91].
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The l = 2 component of Tlm corresponds to the magnetic toroidal quadrupole, whose
spatial inversion parity is +1, while the time-reversal parity is −1. There are five compo-
nents of the magnetic toroidal quadrupole, whose expressions are given by [81]

Tu = 3(ZXσx − YZσy), (3)

Tv = −
√

3(ZXσy + YZσx − XYσz), (4)

Tyz =
√

3[−(Y2 − Z2)σx + XYσy − ZXσz], (5)

Tzx =
√

3[−XYσx − (Z2 − X2)σy + YZσz], (6)

Txy =
√

3[ZXσx − YZσy − (X2 − Y2)σz], (7)

where we omit the numerical coefficient and the contribution from the orbital angular
momentum for simplicity; we also omit the subscript j, where Rj = (Xj, Yj, Zj). When
the antiferromagnetic structure has a magnetic toroidal quadrupole, the system exhibits
symmetric spin splitting in the electronic band structure. The functional form of symmet-
ric spin splitting in momentum space is obtained by replacing Rj with the wave vector
k = (kx, ky, kz), which is given by [92]

Tu(k) = 3(kxkxσx − kykzσy), (8)

Tv(k) = −
√

3(kzkxσy + kykzσx − kxkyσz), (9)

Tyz(k) =
√

3[−(k2
y − k2

z)σx + kxkyσy − kzkxσz], (10)

Tzx(k) =
√

3[−kxkyσx − (k2
z − k2

x)σy + kykzσz], (11)

Txy(k) =
√

3[kzkxσx − kykzσy − (k2
x − k2

y)σz], (12)

where the subscripts u and v correspond to 3z2 − r2 and x2 − y2, respectively. Such sym-
metric spin splitting becomes the origin of linear spin current generation when the electric
field or thermal gradient is applied [53,77]. This spin-split band structure and resultant
linear spin current generation occur even without the SOC.

The magnetic toroidal dipole and quadrupole appear in a simple collinear antifer-
romagnetic structure. To show this, we consider the collinear antiferromagnetic spin
configurations in the square and triangle clusters, as shown in Figure 1, where we sup-
pose that the antiferromagnetic spin moments point along the ±z direction. By using the
expression in Equation (4) and setting RA = (−1,−1, 0), RB = (1, 1, 0), RC = (1,−1, 0),
and RD = (−1, 1, 0), one finds that the antiferromagnetic structure in Figure 1a induces
Tv. Meanwhile, T = 0, owing to the presence of the spatial inversion symmetry. Such an
emergence of Tv is intuitively understood from the distribution of the magnetic toroidal
dipole on the bond. When calculating the magnetic toroidal dipole on the ij bond defined
by Ri × σi + Rj × σj, one can obtain the x2 − y2-type distribution of the magnetic toroidal
dipole, i.e., Tv, as shown by the purple arrows in Figure 1a. Thus, the antiferromagnetic
ordering in Figure 1a leads to the symmetric spin splitting in the form of kxkyσz for kz = 0
when the lattice structure is formed by the square clusters, which results in the linear spin
current generation [54].

Meanwhile, when the spin polarizations for sublattices A and C are reversed in
Figure 1b, the magnetic toroidal dipole Ty becomes nonzero, whereas Tv = 0. Then, this
type of antiferromagnetic structure does not show symmetric spin splitting in the band
structure. On the other hand, this magnetic structure gives rise to the nonlinear spin Hall
effect, owing to a nonzero dipole component, which is irrespective of the SOC [91].
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Figure 1. Schematic configurations of the spins and magnetic toroidal dipoles in (a,b) the square
cluster and (c) the triangle cluster. The red and blue spheres represent the collinear spin moments
along the z direction. The white sphere represents the zero-spin moment. The purple arrows on
the bond represent the magnetic toroidal dipoles. In (b,c), the uniform component of the magnetic
toroidal dipole is present.

In contrast to the square cluster, the collinear up-down-zero spin configuration in the
triangle cluster induces both the magnetic toroidal dipole Ty and the magnetic toroidal
quadrupole Tv, and the distribution of the magnetic toroidal dipole on the bond is shown
in Figure 1c. Although the magnetic toroidal quadrupole Tu also belongs to the totally
symmetric irreducible representation [93], it is not activated within the two-dimensional
system. Thus, the antiferromagnetic ordering consisting of the triangle cluster exhibits both
linear and nonlinear spin current generation even without the SOC. In the following, we
focus on such a situation by exemplifying the breathing kagome model. We summarize the
correspondence between magnetic toroidal multipoles and antiferromagnetic structures in
square and triangle clusters in Table 1.

Table 1. The correspondence among the magnetic point group (MPG), induced rank-1 and rank-2
magnetic toroidal (MT) multipoles, and the emergence of the spin-split band structure (SS) and
nonlinear spin Hall conductivity (NSHC) in the collinear antiferromagnets without spin–orbit cou-
pling. ✓ in SS and NSHC stands for the presence of the spin splitting and the nonlinear spin Hall
conductivity, respectively. The antiferromagnetic patterns correspond to those in Figures 1a–c from
the top row. The parent point group (PG) and the irreducible representation (Irrep.) are also shown;
the superscript − in the Irrep. represents the odd parity with respect to the time-reversal operation.

PG Irrep. MPG MT Multipole SS NSHC

square D4h B−
1g 4′/mmm′ Tv ✓ –

square D4h E−
u mm′m Ty – ✓

triangle D3h E′− m2m Ty, Tv ✓ ✓

2.2. Breathing Kagome Model

To investigate the spin current generation in the collinear antiferromagnetic sys-
tems with triangle clusters, we adopt the two-dimensional breathing kagome structure,
whose point group symmetry is the same as the triangle cluster D3h. The breathing
kagome structure consists of three sublattices A–C at RA = (0, 0, 0), RB = a(1, 0, 0), and
RC = a(1/2,

√
3/2, 0); we set the lattice constant a + b as unity. The tight-binding Hamilto-

nian is given by

H = −
(

t
∈△

∑
σ,⟨ij⟩

+t′
∈▽

∑
σ,⟨ij⟩

)
c†

iσcjσ − ∑
i

hi(c†
i↑ci↑′ − c†

i↓ci↓′), (13)

where c†
iσ (ciσ) is the creation (annihilation) operator at site i and spin σ =↑, ↓. The first term

represents the hoppings within upward triangles t and downward triangles t′. We set t = 1
and t′ = 0.5 in the following calculations. The second term represents the antiferromagnetic
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mean-field term to induce the up-down-zero spin order: hA = −h, hB = h, and hC = 0. The
schematic spin configurations in the presence of h are shown in Figure 2.

A B

C

Figure 2. Two-dimensional breathing kagome structure with the lattice constant a + b. The red and
blue spheres represent the collinear spin moments along the z direction. The white spheres represent
the zero-spin moment. t and t′ stand for the intra- and inter-sublattice hoppings, respectively.

3. Results
3.1. Linear Spin Conductivity

We investigate the linear spin conductivity Js
ν = ∑µ σs

µ;νEµ in the model in Equation (13)
by using the linear response theory; Js

ν = Jνσz represents the ν-directional spin current
with the z-spin component and Eµ represents the electric field for the µ = x, y direction.

We evaluate σs
µ;ν from the Jη(s)

ν –Jµ correlation function within the Kubo formula following
Refs. [77,94] with a scattering rate τ−1 = 10−2 and a temperature T = 10−2. The number of
grid points in the Brillouin zone is Nk = 24002. Nonzero tensor components in the collinear
antiferromagnetic structure in Figure 2 are given by σs

x;y = σs
y;x.

Figure 3a shows σs
y;x, while the electron filling per site ne and h are varied, where

ne = ∑klσ⟨c†
klσcklσ⟩/(3Nk); c†

klσ is the momentum–space representation of c†
iσ at the wave

vector k and the sublattice l. We also show the data at h = 0.5 in Figure 3b for reference.
In all the regions except for ne = 0 and 2 or h = 0, σs

y;x becomes nonzero. For σs
y;x, the

intraband process is dominant, which means that σs
y;x is proportional to τ. This indicates

that the symmetric spin splitting at the Fermi level plays an important role; σs
y;x tends to

be enhanced for large spin splitting. We show the band structures in Figure 4a, which are
plotted along the high-symmetry lines in the Brillouin zone in Figure 4b; the color map in
Figure 4a represents the z-spin polarization at each wave vector. As shown in Figure 4a,
the symmetric spin-split band dispersion appears in the M2–Γ–M3 line, while it does not
in the M1–Γ and Γ–K lines; this spin-split tendency is consistent with the functional form
of kxkyσz. For h = 0.5, σs

y;x becomes larger when the Fermi level lies in the middle or top
two bands in Figure 4a, where the symmetric spin splitting becomes larger than that in the
bottom two bands.
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Figure 3. (a) Contour plot of the linear spin conductivity σs
y;x in the plane of the electron filling ne

and the molecular field h at t = 1 and t′ = 0.5. (b) ne dependence of σs
y;x at h = 0.5.
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Figure 4. (a) Electronic band structure in the breathing kagome system under the collinear AFM
structure at t = 1, t′ = 0.5, and h = 0.5. The contour represents the spin polarization in terms of the z
component, σz. The upper (lower) horizontal line stands for the chemical potential that maximizes
(minimizes) σs

y;xy in Figure 5b. (b) The Brillouin zone in the breathing kagome system.
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Figure 5. (a) Contour plot of the nonlinear spin Hall conductivity σs
y;xy in the plane of the electron

filling ne and the molecular field h at t = 1 and t′ = 0.5. (b) ne dependence of σs
y;xy at h = 0.5.

3.2. Nonlinear Spin Hall Conductivity

We calculate the nonlinear spin Hall conductivity Js
γ = ∑µν σs

γ;µνEµEν by using the
second-order Kubo formula with the relaxation time approximation. The specific expression
is given by [91,95]

σs
γ;µν =

e3τ

2h̄2Nk
∑
k,n

fnkϵγµλDνλ(s)
n (k) + (µ ↔ ν), (14)
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where ϵηµλ represents the Levi–Civita tensor. We take the electric charge e, the reduced
Planck constant h̄, and the relaxation time τ as unity, i.e., e = h̄ = τ = 1. fnk is the Fermi
distribution function with the band index n, and Dµν(s)

n (k) denotes the spin-dependent
Berry curvature dipole, which is related to the spin-dependent Berry curvature Ων(s)

n (k) as
Dµν(s)

n (k) = ∂µΩν(s)
n (k) [95,96]. In the case of the collinear antiferromagnetic structure in

Figure 2, the nonzero tensor components of σs
γ;µν are given by σ

z(s)
x;yy = −2σ

z(s)
y;xy. In contrast to

the noncentrosymmetric systems with the relativistic SOC [97–101], the present mechanism
is driven by magnetic order, which does not require the SOC.

Figure 5a shows the behavior of σs
y;xy in the plane of ne and h. Similar to the linear

spin conductivity σs
y;x, σs

y;xy becomes nonzero except for ne = 0 and 2 or h = 0, although
almost all of the regions except around the area with 1.3 ≲ ne ≲ 1.5 and 0 < h ≲ 1 take
small values. We show the ne dependence of σs

y;xy at h = 0.5 in Figure 5b, where σs
y;xy takes

the minimum and maximum values at ne ≃ 1.28 and 1.38, respectively.
The enhancement of σs

y;xy in the specific region is understood from the fact that both
intraband and interband processes contribute to σs

y;xy. Since the interband process also
contributes to σs

y;xy, the small band gap leading to the small energy denominator included
in the spin-dependent Berry curvature dipole is important. Indeed, one finds that the small
band gap appears close to the Fermi level, as shown by the band structure in Figure 4a; the
upper (lower) horizontal line represents the chemical potential that gives the maximum
(minimum) of σs

y;xy.

4. Discussion

Finally, let us compare the behavior of the linear spin conductivity σs
y;x and nonlinear

spin Hall conductivity σs
y;xy in the collinear antiferromagnets with triangle clusters. Al-

though their relaxation time dependence proportional to τ is the same, their symmetry
and microscopic conditions are different from each other; the linear spin conductivity
appears when the magnetic toroidal quadrupole is activated, while the nonlinear spin Hall
conductivity appears when the magnetic toroidal dipole is activated. Reflecting such a
difference, the linear spin conductivity is dominated by the intraband process originating
from the symmetric spin-split band structure, while the nonlinear spin conductivity is
relevant to both intraband and interband processes and is not relevant to the symmetric
spin splitting. Accordingly, the model parameter dependence is different, as shown in
Figures 3a and 5a, where the linear spin conductivity tends to be larger than the nonlinear
spin conductivity.

Meanwhile, the nonlinear spin conductivity becomes larger than the linear spin con-
ductivity when the Fermi level is located near the band gap. Figure 6a shows the ratio
of two spin conductivities, R = σs

y;xy/σs
y;x, in the plane of ne and h, where τ−1 = 10−2 is

taken for both conductivities. We also show the absolute value |R| for different contour
ranges in Figure 6b for reference. In the region where the nonlinear spin conductivity is
enhanced for 1.3 ≲ ne ≲ 1.5 and 0 < h ≲ 1, the nonlinear spin conductivity can have a
comparable contribution to the linear one. In other words, the contribution from nonlinear
spin conductivity is non-negligible depending on the chemical potential.
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Figure 6. (a) ne and h dependence of the ratio R = σs
y;xy/σs

y;x at t = 1, t′ = 0.5, and τ−1 = 0.01.
(b) Enlarged figure of (a) for 0 ≤ |R| ≤ 1.

5. Conclusions

In conclusion, we investigated the spin current generation in collinear antiferromag-
nets without the relativistic SOC. By focusing on the difference in the cluster geometry,
we have shown that the collinear antiferromagnetic spin configuration in the triangle
cluster gives rise to qualitatively different transport phenomena from those in the square
cluster. In the case of the square cluster, either linear spin conductivity or nonlinear spin
conductivity is induced depending on the type of antiferromagnetic spin configuration,
while both spin conductivities occur in the up-down-zero spin configuration in the case
of the triangle cluster. We have demonstrated the emergence of linear and nonlinear spin
conductivities by examining the two-dimensional breathing kagome structure consisting of
the triangle clusters. When the Fermi level lies near the band gap, the contribution from the
nonlinear spin conductivity is comparable to that from the linear spin conductivity. Our
results indicate that the different cluster geometry gives rise to different behaviors of spin
conductivity in SOC-free antiferromagnets, whose difference would be utilized for future
spintronics applications.

Funding: This research was supported by JSPS KAKENHI Grant Numbers JP21H01037, JP22H00101,
JP22H01183, JP23H04869, JP23K03288, JP23K20827, and by JST CREST (JPMJCR23O4).

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Conflicts of Interest: The author declares no conflicts of interest.

References
1. Diep, H.T. Frustrated Spin Systems; World Scientific: Singapore, 2004.
2. Lacroix, C.; Mendels, P.; Mila, F., Eds. Introduction to Frustrated Magnetism: Materials, Experiments, Theory; Springer Series in

Solid-State Sciences; Springer: Berlin/Heidelberg, Germany, 2011.
3. Bulaevskii, L.N.; Batista, C.D.; Mostovoy, M.V.; Khomskii, D.I. Electronic orbital currents and polarization in Mott insulators.

Phys. Rev. B 2008, 78, 024402. [CrossRef]
4. Hayami, S.; Kusunose, H. Unified Description of Electronic Orderings and Cross Correlations by Complete Multipole Representa-

tion. J. Phys. Soc. Jpn. 2024, 93, 072001. [CrossRef]
5. Kimura, T.; Goto, T.; Shintani, H.; Ishizaka, K.; Arima, T.; Tokura, Y. Magnetic control of ferroelectric polarization. Nature 2003,

426, 55–58. [CrossRef] [PubMed]
6. Fiebig, M. Revival of the magnetoelectric effect. J. Phys. D Appl. Phys. 2005, 38, R123. [CrossRef]
7. Spaldin, N.A.; Fiebig, M. The renaissance of magnetoelectric multiferroics. Science 2005, 309, 391–392. [CrossRef] [PubMed]
8. Ramesh, R.; Spaldin, N.A. Multiferroics: Progress and prospects in thin films. Nat. Mater. 2007, 6, 21. [CrossRef]
9. Khomskii, D. Classifying multiferroics: Mechanisms and effects. Physics 2009, 2, 20. [CrossRef]
10. Tokura, Y.; Seki, S.; Nagaosa, N. Multiferroics of spin origin. Rep. Prog. Phys. 2014, 77, 076501. [CrossRef]
11. Fiebig, M.; Lottermoser, T.; Meier, D.; Trassin, M. The evolution of multiferroics. Nat. Rev. Mater. 2016, 1, 16046. [CrossRef]

http://doi.org/10.1103/PhysRevB.78.024402
http://dx.doi.org/10.7566/JPSJ.93.072001
http://dx.doi.org/10.1038/nature02018
http://www.ncbi.nlm.nih.gov/pubmed/14603314
http://dx.doi.org/10.1088/0022-3727/38/8/R01
http://dx.doi.org/10.1126/science.1113357
http://www.ncbi.nlm.nih.gov/pubmed/16020720
http://dx.doi.org/10.1038/nmat1805
http://dx.doi.org/10.1103/Physics.2.20
http://dx.doi.org/10.1088/0034-4885/77/7/076501
http://dx.doi.org/10.1038/natrevmats.2016.46


J. Low Power Electron. Appl. 2024, 14, 35 9 of 12

12. Ohgushi, K.; Murakami, S.; Nagaosa, N. Spin anisotropy and quantum Hall effect in the kagomé lattice: Chiral spin state based on
a ferromagnet. Phys. Rev. B 2000, 62, R6065–R6068. [CrossRef]

13. Shindou, R.; Nagaosa, N. Orbital Ferromagnetism and Anomalous Hall Effect in Antiferromagnets on the Distorted fcc Lattice.
Phys. Rev. Lett. 2001, 87, 116801. [CrossRef] [PubMed]

14. Neubauer, A.; Pfleiderer, C.; Binz, B.; Rosch, A.; Ritz, R.; Niklowitz, P.G.; Böni, P. Topological Hall Effect in the A Phase of MnSi.
Phys. Rev. Lett. 2009, 102, 186602. [CrossRef] [PubMed]

15. Nagaosa, N.; Sinova, J.; Onoda, S.; MacDonald, A.H.; Ong, N.P. Anomalous Hall effect. Rev. Mod. Phys. 2010, 82, 1539–1592.
[CrossRef]

16. Xiao, D.; Chang, M.C.; Niu, Q. Berry phase effects on electronic properties. Rev. Mod. Phys. 2010, 82, 1959–2007. [CrossRef]
17. Chen, H.; Niu, Q.; MacDonald, A.H. Anomalous Hall Effect Arising from Noncollinear Antiferromagnetism. Phys. Rev. Lett.

2014, 112, 017205. [CrossRef]
18. Nakatsuji, S.; Kiyohara, N.; Higo, T. Large anomalous Hall effect in a non-collinear antiferromagnet at room temperature. Nature

2015, 527, 212. [CrossRef] [PubMed]
19. Suzuki, M.T.; Koretsune, T.; Ochi, M.; Arita, R. Cluster multipole theory for anomalous Hall effect in antiferromagnets. Phys. Rev.

B 2017, 95, 094406. [CrossRef]
20. Chen, H.; Wang, T.C.; Xiao, D.; Guo, G.Y.; Niu, Q.; MacDonald, A.H. Manipulating anomalous Hall antiferromagnets with

magnetic fields. Phys. Rev. B 2020, 101, 104418. [CrossRef]
21. Feng, W.; Hanke, J.P.; Zhou, X.; Guo, G.Y.; Blügel, S.; Mokrousov, Y.; Yao, Y. Topological magneto-optical effects and their

quantization in noncoplanar antiferromagnets. Nat. Commun. 2020, 11, 118. [CrossRef]
22. Yanase, Y. Magneto-Electric Effect in Three-Dimensional Coupled Zigzag Chains. J. Phys. Soc. Jpn. 2014, 83, 014703. [CrossRef]
23. Hayami, S.; Kusunose, H.; Motome, Y. Spontaneous Multipole Ordering by Local Parity Mixing. J. Phys. Soc. Jpn. 2015, 84, 064717.

[CrossRef]
24. Sumita, S.; Yanase, Y. Superconductivity in magnetic multipole states. Phys. Rev. B 2016, 93, 224507. [CrossRef]
25. Matsumura, T.; Yamamoto, T.; Tanida, H.; Sera, M. Temperature-Dependent Cycloidal Magnetic Structure in GdRu2Al10 Studied

by Resonant X-ray Diffraction. J. Phys. Soc. Jpn. 2017, 86, 094709. [CrossRef]
26. Cysne, T.P.; Guimarães, F.S.M.; Canonico, L.M.; Rappoport, T.G.; Muniz, R.B. Orbital magnetoelectric effect in zigzag nanoribbons

of p-band systems. Phys. Rev. B 2021, 104, 165403. [CrossRef]
27. Yatsushiro, M.; Oiwa, R.; Kusunose, H.; Hayami, S. Analysis of model-parameter dependences on the second-order nonlinear

conductivity in PT -symmetric collinear antiferromagnetic metals with magnetic toroidal moment on zigzag chains. Phys. Rev. B
2022, 105, 155157. [CrossRef]

28. Suzuki, Y. Tunneling spin current in systems with spin degeneracy. Phys. Rev. B 2022, 105, 075201. [CrossRef]
29. Li, D.X.; Honda, F.; Miyake, A.; Homma, Y.; Haga, Y.; Nakamura, A.; Shimizu, Y.; Maurya, A.; Sato, Y.J.; Tokunaga, M.; et al.

Magnetic and electrical properties of the ternary compound U2Ir3Si5 with one-dimensional uranium zigzag chains. Phys. Rev. B
2019, 99, 054408. [CrossRef]

30. Li, X.; Cao, T.; Niu, Q.; Shi, J.; Feng, J. Coupling the valley degree of freedom to antiferromagnetic order. Proc. Natl. Acad. Sci.
USA 2013, 110, 3738–3742. [CrossRef]

31. Hayami, S.; Kusunose, H.; Motome, Y. Spontaneous parity breaking in spin-orbital coupled systems. Phys. Rev. B 2014, 90, 081115.
[CrossRef]

32. Hayami, S.; Kusunose, H.; Motome, Y. Emergent spin-valley-orbital physics by spontaneous parity breaking. J. Phys. Condens.
Matter 2016, 28, 395601. [CrossRef]

33. Yanagi, Y.; Kusunose, H. Optical Selection Rules in Spin–Orbit Coupled Systems on Honeycomb Lattice. J. Phys. Soc. Jpn. 2017,
86, 083703. [CrossRef]

34. Oishi, R.; Umeo, K.; Shimura, Y.; Onimaru, T.; Strydom, A.M.; Takabatake, T. Antiferromagnetic order in the honeycomb Kondo
lattice CePt6Al3 induced by Pd substitution. Phys. Rev. B 2021, 104, 104411. [CrossRef]

35. Hayami, S.; Kusunose, H.; Motome, Y. Emergent odd-parity multipoles and magnetoelectric effects on a diamond structure:
Implication for the 5d transition metal oxides AOsO4 (A = K, Rb, and Cs). Phys. Rev. B 2018, 97, 024414. [CrossRef]

36. Ishitobi, T.; Hattori, K. Magnetoelectric Effects and Charge-Imbalanced Solenoids: Antiferro Quadrupole Orders in a Diamond
Structure. J. Phys. Soc. Jpn. 2019, 88, 063708. [CrossRef]

37. Yamaura, J.i.; Hiroi, Z. Crystal structure and magnetic properties of the 5d transition metal oxides AOsO4(A = K, Rb, Cs). Phys.
Rev. B 2019, 99, 155113. [CrossRef]

38. Paramekanti, A.; Maharaj, D.D.; Gaulin, B.D. Octupolar order in d-orbital Mott insulators. Phys. Rev. B 2020, 101, 054439.
[CrossRef]

39. Maharaj, D.D.; Sala, G.; Stone, M.B.; Kermarrec, E.; Ritter, C.; Fauth, F.; Marjerrison, C.A.; Greedan, J.E.; Paramekanti, A.; Gaulin,
B.D. Octupolar versus Néel Order in Cubic 5d2 Double Perovskites. Phys. Rev. Lett. 2020, 124, 087206. [CrossRef]

40. Winkler, R.; Zülicke, U. Theory of electric, magnetic, and toroidal polarizations in crystalline solids with applications to hexagonal
lonsdaleite and cubic diamond. Phys. Rev. B 2023, 107, 155201. [CrossRef]

41. Solovyev, I.V. Magneto-optical effect in the weak ferromagnets LaMO3 (M= Cr, Mn, and Fe). Phys. Rev. B 1997, 55, 8060–8063.
[CrossRef]

http://dx.doi.org/10.1103/PhysRevB.62.R6065
http://dx.doi.org/10.1103/PhysRevLett.87.116801
http://www.ncbi.nlm.nih.gov/pubmed/11531542
http://dx.doi.org/10.1103/PhysRevLett.102.186602
http://www.ncbi.nlm.nih.gov/pubmed/19518895
http://dx.doi.org/10.1103/RevModPhys.82.1539
http://dx.doi.org/10.1103/RevModPhys.82.1959
http://dx.doi.org/10.1103/PhysRevLett.112.017205
http://dx.doi.org/10.1038/nature15723
http://www.ncbi.nlm.nih.gov/pubmed/26524519
http://dx.doi.org/10.1103/PhysRevB.95.094406
http://dx.doi.org/10.1103/PhysRevB.101.104418
http://dx.doi.org/10.1038/s41467-019-13968-8
http://dx.doi.org/10.7566/JPSJ.83.014703
http://dx.doi.org/10.7566/JPSJ.84.064717
http://dx.doi.org/10.1103/PhysRevB.93.224507
http://dx.doi.org/10.7566/JPSJ.86.094709
http://dx.doi.org/10.1103/PhysRevB.104.165403
http://dx.doi.org/10.1103/PhysRevB.105.155157
http://dx.doi.org/10.1103/PhysRevB.105.075201
http://dx.doi.org/10.1103/PhysRevB.99.054408
http://dx.doi.org/10.1073/pnas.1219420110
http://dx.doi.org/10.1103/PhysRevB.90.081115
http://dx.doi.org/10.1088/0953-8984/28/39/395601
http://dx.doi.org/10.7566/JPSJ.86.083703
http://dx.doi.org/10.1103/PhysRevB.104.104411
http://dx.doi.org/10.1103/PhysRevB.97.024414
http://dx.doi.org/10.7566/JPSJ.88.063708
http://dx.doi.org/10.1103/PhysRevB.99.155113
http://dx.doi.org/10.1103/PhysRevB.101.054439
http://dx.doi.org/10.1103/PhysRevLett.124.087206
http://dx.doi.org/10.1103/PhysRevB.107.155201
http://dx.doi.org/10.1103/PhysRevB.55.8060


J. Low Power Electron. Appl. 2024, 14, 35 10 of 12

42. Sivadas, N.; Okamoto, S.; Xiao, D. Gate-Controllable Magneto-optic Kerr Effect in Layered Collinear Antiferromagnets. Phys. Rev.
Lett. 2016, 117, 267203. [CrossRef]

43. Yamasaki, Y.; Nakao, H.; Arima, T.h. Augmented Magnetic Octupole in Kagomé 120-degree Antiferromagnets Detectable via
X-ray Magnetic Circular Dichroism. J. Phys. Soc. Jpn. 2020, 89, 083703. [CrossRef]

44. Šmejkal, L.; González-Hernández, R.; Jungwirth, T.; Sinova, J. Crystal time-reversal symmetry breaking and spontaneous Hall
effect in collinear antiferromagnets. Sci. Adv. 2020, 6, eaaz8809. [CrossRef] [PubMed]

45. Naka, M.; Hayami, S.; Kusunose, H.; Yanagi, Y.; Motome, Y.; Seo, H. Anomalous Hall effect in κ-type organic antiferromagnets.
Phys. Rev. B 2020, 102, 075112. [CrossRef]

46. Hayami, S.; Kusunose, H. Essential role of the anisotropic magnetic dipole in the anomalous Hall effect. Phys. Rev. B 2021,
103, L180407. [CrossRef]

47. Kimata, M.; Sasabe, N.; Kurita, K.; Yamasaki, Y.; Tabata, C.; Yokoyama, Y.; Kotani, Y.; Ikhlas, M.; Tomita, T.; Amemiya, K.; et al.
X-ray study of ferroic octupole order producing anomalous Hall effect. Nat. Commun. 2021, 12, 5582. [CrossRef] [PubMed]

48. Chen, H. Electronic chiralization as an indicator of the anomalous Hall effect in unconventional magnetic systems. Phys. Rev. B
2022, 106, 024421. [CrossRef]

49. Sasabe, N.; Kimata, M.; Nakamura, T. Presence of X-Ray Magnetic Circular Dichroism Signal for Zero-Magnetization Antiferro-
magnetic State. Phys. Rev. Lett. 2021, 126, 157402. [CrossRef]

50. Noda, Y.; Ohno, K.; Nakamura, S. Momentum-dependent band spin splitting in semiconducting MnO 2: A density functional
calculation. Phys. Chem. Chem. Phys. 2016, 18, 13294–13303. [CrossRef] [PubMed]

51. Okugawa, T.; Ohno, K.; Noda, Y.; Nakamura, S. Weakly spin-dependent band structures of antiferromagnetic perovskite LaMO3
(M= Cr, Mn, Fe). J. Phys. Condens. Matter 2018, 30, 075502. [CrossRef]

52. Ahn, K.H.; Hariki, A.; Lee, K.W.; Kuneš, J. Antiferromagnetism in RuO2 as d-wave Pomeranchuk instability. Phys. Rev. B 2019,
99, 184432. [CrossRef]

53. Naka, M.; Hayami, S.; Kusunose, H.; Yanagi, Y.; Motome, Y.; Seo, H. Spin current generation in organic antiferromagnets. Nat.
Commun. 2019, 10, 4305. [CrossRef] [PubMed]

54. Hayami, S.; Yanagi, Y.; Kusunose, H. Momentum-Dependent Spin Splitting by Collinear Antiferromagnetic Ordering. J. Phys.
Soc. Jpn. 2019, 88, 123702. [CrossRef]

55. Hayami, S.; Yanagi, Y.; Kusunose, H. Spontaneous antisymmetric spin splitting in noncollinear antiferromagnets without
spin-orbit coupling. Phys. Rev. B 2020, 101, 220403(R). [CrossRef]

56. Hayami, S.; Yanagi, Y.; Kusunose, H. Bottom-up design of spin-split and reshaped electronic band structures in antiferromagnets
without spin-orbit coupling: Procedure on the basis of augmented multipoles. Phys. Rev. B 2020, 102, 144441. [CrossRef]

57. Yuan, L.D.; Wang, Z.; Luo, J.W.; Rashba, E.I.; Zunger, A. Giant momentum-dependent spin splitting in centrosymmetric low-Z
antiferromagnets. Phys. Rev. B 2020, 102, 014422. [CrossRef]

58. Egorov, S.A.; Evarestov, R.A. Colossal Spin Splitting in the Monolayer of the Collinear Antiferromagnet MnF2. J. Phys. Chem. Lett.
2021, 12, 2363–2369. [CrossRef]

59. Yuan, L.D.; Wang, Z.; Luo, J.W.; Zunger, A. Strong influence of nonmagnetic ligands on the momentum-dependent spin splitting
in antiferromagnets. Phys. Rev. B 2021, 103, 224410. [CrossRef]

60. Yuan, L.D.; Wang, Z.; Luo, J.W.; Zunger, A. Prediction of low-Z collinear and noncollinear antiferromagnetic compounds having
momentum-dependent spin splitting even without spin-orbit coupling. Phys. Rev. Mater. 2021, 5, 014409. [CrossRef]

61. Mazin, I.I. Altermagnetism in MnTe: Origin, predicted manifestations, and routes to detwinning. Phys. Rev. B 2023, 107, L100418.
[CrossRef]

62. Lovesey, S.W.; Khalyavin, D.D.; van der Laan, G. Templates for magnetic symmetry and altermagnetism in hexagonal MnTe.
Phys. Rev. B 2023, 108, 174437. [CrossRef]

63. Yuan, L.D.; Zunger, A. Degeneracy Removal of Spin Bands in Collinear Antiferromagnets with Non-Interconvertible Spin-
Structure Motif Pair. Adv. Mater. 2023, 35, 2211966. [CrossRef] [PubMed]

64. Yuan, L.D.; Zhang, X.; Acosta, C.M.; Zunger, A. Uncovering spin-orbit coupling-independent hidden spin polarization of energy
bands in antiferromagnets. Nat. Commun. 2023, 14, 5301. [CrossRef]

65. Gonzalez Betancourt, R.D.; Zubáč, J.; Gonzalez-Hernandez, R.; Geishendorf, K.; Šobáň, Z.; Springholz, G.; Olejník, K.; Šmejkal, L.;
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