Multichannel Sensor Array Design for Minimizing Detector Complexity and Power Consumption in Ionoacoustic Proton Beam Tomography
Abstract
:1. Introduction
- ▪
- The number of analog front-ends needed to interface with the sensor and amplify the signal, with typical specifications of 60 dB of gain, MHz of bandwidth, and a noise power spectral density of a few nV/sqrt(Hz). The acquisition must be parallel (one front-end per channel) since the information of each sensor must be acquired for each pulse of the particle beam.
- ▪
- The number of analog-to-digital converters, with typical resolution specifications of 8–10 bits and oversampling 20–40 times the signal bandwidth (25 MS/s).
- ▪
- The number of DSP denoising and equalization stages used to reject out-of-band noise and preserve the shape of the signal in the time domain, which is necessary to accurately reconstruct the dose deposition.
- ▪
- The number of signals that the acoustic imaging algorithm must process to reconstruct the dose deposition.
2. Materials and Methods
2.1. Ionoacoustic Experimental Setup Model
2.2. Acoustic Sensor Modeling
2.3. Imaging and Gamma Index
3. Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Knoll, G.F. Radiation Sources. In Radiation Detection and Measurement; John Wiley & Sons: Hoboken, NJ, USA, 2000; ch. 1; pp. 1–28. [Google Scholar]
- Parodi, K.; Polf, J.C. In vivo range verification in particle therapy. Med. Phys. 2018, 45, e1036–e1050. [Google Scholar] [CrossRef] [PubMed]
- Min, C.H.; Kim, C.H.; Youn, M.Y.; Kim, J.W. Prompt gamma measurements for locating the dose falloff region in the proton therapy. Appl. Phys. Lett. 2006, 89, 1–3. [Google Scholar] [CrossRef]
- Hueso-González, F.; Rabe, M.; Ruggieri, T.A.; Bortfeld, T.; Verburg, J.M. A full-scale clinical prototype for proton range verification using prompt gamma-ray spectroscopy. Phys. Med. Biol. 2018, 63, 185019. [Google Scholar] [CrossRef] [PubMed]
- Mirandola, A.; Molinelli, S.; Vilches Freixas, G.; Mairani, A.; Gallio, E.; Panizza, D.; Russo, S.; Ciocca, M.; Donetti, M.; Magro, G.; et al. Dosimetric commissioning and quality assurance of scanned ion beams at the Italian National Center for Oncological Hadrontherapy. Radiat. Meas. Phys. 2015, 42, 5287–5300. [Google Scholar] [CrossRef]
- Sulak, L.; Armstrong, T.; Baranger, H.; Bregman, M.; Levi, M.; Mael, D.; Strait, J.; Bowen, T.; Pifer, A.E.; Polakos, P.A.; et al. Experimental studies of the acoustic signature of proton beams traversing fluid media. Nucl. Instrum. Methods 1979, 161, 203–217. [Google Scholar] [CrossRef]
- Hayakawa, Y.; Tada, J.; Arai, N.; Hosono, K.; Sato, M.; Wagai, T.; Tsuji, H.; Tsujii, H. Acoustic pulse generated in a patient during treatment by pulsed proton radiation beam. Radiat. Oncol. Investig. 1995, 3, 42–45. [Google Scholar] [CrossRef]
- Assmann, W.; Kellnberger, S.; Reinhardt, S.; Lehrack, S.; Edlich, A.; Thirolf, P.G.; Moser, M.; Dollinger, G.; Omar, M.; Ntziachristos, V.; et al. Ionoacoustic characterization of the proton Bragg peak with sub-millimeter accuracy. Med. Phys. 2015, 42, 567–574. [Google Scholar] [CrossRef]
- Lehrack, S.; Assmann, W.; Bender, M.; Severin, D.; Trautmann, C.; Schreiber, J.; Parodi, K. Ionoacoustic detection of swift heavy ions. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2020, 950, 162935. [Google Scholar] [CrossRef]
- Vallicelli, E.A.; Baschirotto, A.; Lehrack, S.; Assmann, W.; Parodi, K.; Viola, S.; Riccobene, G.; De Matteis, M. 22 dB signal-to-noise ratio real-time proton sound detector for experimental beam range verification. IEEE Trans. Circuits Syst. I Regul. Pap. 2020, 68, 3–13. [Google Scholar] [CrossRef]
- Wang, S.; Gonzalez, G.; Sun, L.; Xu, Y.; Pandey, P.; Chen, Y.; Xiang, S. Real-time tracking of the Bragg peak during proton therapy via 3D protoacoustic Imaging in a clinical scenario. NPJ Imaging 2024, 2, 34. [Google Scholar] [CrossRef]
- Samant, P.; Trevisi, L.M.; Chen, Y.; Zwart, T.; Xiang, L. 3-D Protoacoustic imaging through a planar ultrasound array: A simulation Workflow. IEEE Trans. Radiat. Plasma Med. Sci. 2022, 7, 83–95. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Li, Z.; Zhang, D.; Xing, L.; Peng, H. Simulation studies of time reversal-based protoacoustic reconstruction for range and dose verification in proton therapy. Med. Phys. 2019, 46, 3649–3662. [Google Scholar] [CrossRef] [PubMed]
- Schauer, J.; Wieser, H.P.; Huang, Y.; Ruser, H.; Lascaud, J.; Würl, M.; Chmyrov, A.; Vidal, M.; Herault, J.; Ntziachristos, V.; et al. Proton beam range verification by means of ionoacoustic measurements at clinically relevant doses using a correlation-based evaluation. Front. Oncol. 2022, 12, 925542. [Google Scholar] [CrossRef] [PubMed]
- Lascaud, J.; Dash, P.; Wieser, H.P.; Kalunga, R.; Würl, M.; Assmann, W.; Parodi, K. Investigating the accuracy of co-registered ionoacoustic and ultrasound images in pulsed proton beams. Phys. Med. Biol. 2021, 66, 185007. [Google Scholar] [CrossRef] [PubMed]
- Patch, S.K.; Hoff, D.E.; Webb, T.B.; Sobotka, L.G.; Zhao, T. Two-stage ionoacoustic range verification leveraging Monte Carlo and acoustic simulations to stably account for tissue inhomogeneity and accelerator–specific time structure—A simulation study. Med. Phys. 2018, 45, 783–793. [Google Scholar] [CrossRef]
- Takayanagi, T.; Uesaka, T.; Nakamura, Y.; Unlu, M.B.; Kuriyama, Y.; Uesugi, T.; Ishi, Y.; Kudo, N.; Kobayashi, M.; Umegaki, K.; et al. On-line range verification for proton beam therapy using spherical ionoacoustic waves with resonant frequency. Sci. Rep. 2020, 10, 20385. [Google Scholar] [CrossRef]
- Lascaud, J.; Dash, P.; Würl, M.; Wieser, H.P.; Wollant, B.; Kalunga, R.; Assmann, W.; Clevert, D.A.; Ferrari, A.; Sala, P.; et al. Enhancement of the ionoacoustic effect through ultrasound and photoacoustic contrast agents. Sci. Rep. 2021, 11, 2725. [Google Scholar] [CrossRef]
- Lehrack, S.; Assmann, W.; Bertrand, D.; Henrotin, S.; Herault, J.; Heymans, V.; Vander Stappen, F.; Thirolf, P.G.; Vidal, M.; Van de Walle, J.; et al. Submillimeter ionoacoustic range determination for protons in water at a clinical synchrocyclotron. Phys. Med. Biol. 2017, 62, L20. [Google Scholar] [CrossRef]
- Ketterling, J.A.; Aristizabal, O.; Turnbull, D.H.; Lizzi, F.L. Design and fabrication of a 40-MHz annular array transducer. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2005, 52, 672–681. [Google Scholar] [CrossRef]
- Ambrosy, A.; Holdik, K. Piezoelectric PVDF films as ultrasonic transducers. J. Phys. E Sci. Instrum. 1984, 17, 856. [Google Scholar] [CrossRef]
- Hussein, M.; Clark, C.; Nisbet, A. Challenges in calculation of the gamma index in radiotherapy—Towards good practice. Phys. Medica 2017, 36, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Vallicelli, E.A.; De Matteis, M. Analog filters design for improving precision in proton sound detectors. J. Low Power Electron. Appl. 2021, 11, 12. [Google Scholar] [CrossRef]
- De Matteis, M.; Baschirotto, A.; Vallicelli, E.; Zanini, E. Proton-Induced Thermoacoustic Process as Linear-Time-Invariant System. IEEE Trans. Radiat. Plasma Med. Sci. 2021, 6, 336–344. [Google Scholar] [CrossRef]
- Riva, M.; Vallicelli, E.A.; Baschirotto, A.; De Matteis, M. Acoustic analog front end for proton range detection in hadron therapy. IEEE Trans. Biomed. Circuits Syst. 2018, 12, 954–962. [Google Scholar] [CrossRef]
- De Matteis, M.; Galante, N.; Fary, F.; Vallicelli, E.; Baschirotto, A. 64 dB dynamic-range 810 μW 90 MHz fully-differential flipped-source-follower analog filter in 28 nm-CMOS. IEEE Trans. Circuits Syst. II Express Briefs 2021, 68, 3068–3072. [Google Scholar]
- Vallicelli, E.A.; Turossi, D.; Gelmi, L.; Baù, A.; Bertoni, R.; Fulgione, W.; Quintino, A.; Corcione, M.; Baschirotto, A.; De Matteis, M. A 0.3 nV/√ Hz input-referred-noise analog front-end for radiation-induced thermo-acoustic pulses. Integration 2020, 74, 11–18. [Google Scholar] [CrossRef]
Parameter for unit area | PVDF w.r.t. PZT |
---|---|
Relative noise power | +20 dB |
Relative Sensitivity | +17 dB |
Relative SNR (Sensor only) | −3 dB |
Relative SNR (Sensor + AFE) | +2 dB |
Parameter | Symbol | Value |
---|---|---|
Frequency coefficient | Nf | 1125 Hz·m |
Resonant frequency | fr | 800 kHz |
Piezoelectric voltage coefficient | g33 | 400 mV/(Pa·m) |
Piezoelectric relative dielectric constant | εr | 8 |
Channel width | W | 3 mm |
Channel length | L | 30 mm |
PVDF thickness | TH | 1.2 mm |
Water acoustic impedance | Zw | 1.5 MRayl |
PVDF acoustic impedance | ZPVDF | 3.3 MRayl |
Sensitivity | S | 480 μV/Pa |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vallicelli, E.A.; Ferrara, A.M.; Marrale, M.; Tambaro, M.; De Matteis, M. Multichannel Sensor Array Design for Minimizing Detector Complexity and Power Consumption in Ionoacoustic Proton Beam Tomography. J. Low Power Electron. Appl. 2024, 14, 51. https://doi.org/10.3390/jlpea14040051
Vallicelli EA, Ferrara AM, Marrale M, Tambaro M, De Matteis M. Multichannel Sensor Array Design for Minimizing Detector Complexity and Power Consumption in Ionoacoustic Proton Beam Tomography. Journal of Low Power Electronics and Applications. 2024; 14(4):51. https://doi.org/10.3390/jlpea14040051
Chicago/Turabian StyleVallicelli, Elia Arturo, Alessandro Michele Ferrara, Maurizio Marrale, Mattia Tambaro, and Marcello De Matteis. 2024. "Multichannel Sensor Array Design for Minimizing Detector Complexity and Power Consumption in Ionoacoustic Proton Beam Tomography" Journal of Low Power Electronics and Applications 14, no. 4: 51. https://doi.org/10.3390/jlpea14040051
APA StyleVallicelli, E. A., Ferrara, A. M., Marrale, M., Tambaro, M., & De Matteis, M. (2024). Multichannel Sensor Array Design for Minimizing Detector Complexity and Power Consumption in Ionoacoustic Proton Beam Tomography. Journal of Low Power Electronics and Applications, 14(4), 51. https://doi.org/10.3390/jlpea14040051