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Abstract: Ionoacoustic tomography exploits the acoustic signal generated by the fast energy deposi-
tion along the path of pulsed particle beams to reconstruct with sub-mm precision the dose deposition,
with promising envisioned applications in hadron therapy treatment monitoring. State-of-the-art
ionoacoustic detectors mainly rely on single-channel sensors and time-of-flight measurements to
provide 1D localization of the maximum dose deposition at the so-called Bragg peak. This work
investigates the design challenges of multichannel sensors for ionoacoustic tomography in terms of
their ability to accurately reconstruct the dose deposition of a 200 MeV clinical proton beam, high-
lighting the impact of the number of channels in the array and their directivity. A complete acoustic
model of the sensors and environment has been developed and used to find an optimum tradeoff
between accuracy, evaluated numerically through the gamma index, and hardware complexity due
to higher channel numbers, thus minimizing the system-level power consumption of the detector.

Keywords: circuits and systems for biomedical applications; radiation therapy; ultrasound sensors

1. Introduction

Ionoacoustic imaging exploits the acoustic wave generated by the rapid energy deposi-
tion along the range of a particle beam to precisely map the dose distribution in space. The
rapid energy deposition generates a localized pressure increase proportional to the dose
deposited via the ionoacoustic effect. This pressure wave propagates in the energy absorber
(usually a water phantom) and can be acquired by an array of ultrasound sensors and
processed by dedicated acoustic imaging algorithms [1–19]. One of the most interesting
applications of ionoacoustic imaging is in beam monitoring in oncological hadron therapy,
where it promises imaging performances competitive or better than traditional nuclear
imaging techniques (e.g., PET) [19]. However, the literature has mainly focused on simple
single-sensor time-of-flight measurements, and a detailed analysis of the sizing of the
acoustic sensor array and its impact on the image reconstruction accuracy is lacking. For
this reason, this paper addresses the sizing of the ultrasound array, highlighting the effect
of the number of channels and their physical size.

This work aims to analyze the impact of the design of the multichannel acoustic sensor
(in terms of number of channels and channel directivity) on its ability to accurately recon-
struct the dose deposition. The cross-domain modeling of the system allowed us to find
the minimum number of channels to reach an acceptable accuracy threshold, represented
by the gamma index, a parameter commonly used in dosimetry. Minimizing the number of
sensor channels is of fundamental importance to reduce power consumption (both electrical
and computational) and the complexity of the final detector, since the number of channels
impacts the following:
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� The number of analog front-ends needed to interface with the sensor and amplify the
signal, with typical specifications of 60 dB of gain, MHz of bandwidth, and a noise
power spectral density of a few nV/sqrt(Hz). The acquisition must be parallel (one
front-end per channel) since the information of each sensor must be acquired for each
pulse of the particle beam.

� The number of analog-to-digital converters, with typical resolution specifications of
8–10 bits and oversampling 20–40 times the signal bandwidth (25 MS/s).

� The number of DSP denoising and equalization stages used to reject out-of-band
noise and preserve the shape of the signal in the time domain, which is necessary to
accurately reconstruct the dose deposition.

� The number of signals that the acoustic imaging algorithm must process to reconstruct
the dose deposition.

This work is organized as follows. Section 2 will present the typical ionoacoustic
setup, the characteristics of the acoustic signal, and the tradeoff between directivity and the
number of sensor channels. Section 3 will describe the effect of sensor sizing on imaging
performance. Finally, Section 4 will draw conclusions.

2. Materials and Methods
2.1. Ionoacoustic Experimental Setup Model

A typical ionoacoustic setup is shown in Figure 1. A 200 MeV proton beam penetrates
a water absorber (water phantom) for about 26 cm, where the maximum dose deposition,
called Bragg peak, occurs [1]. This study considers a circular array of sensors with a radius
of 18 cm positioned around the proton beam, as shown in Figure 1. Each sensor acquires
the signal from the particle beam under a different angle.
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Figure 1. Experimental setup scheme.

The spectrum of the acquired acoustic signal depends on the source cross −section in
the direction between the sensor and the source itself, where thinner sources will generate
higher frequency signals. In particular, as a first approximation, the source cross-section is
equal to half the wavelength of the generated acoustic signal. The typical acoustic signal
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generated in this scenario has approximately the shape of a single sinusoid period with a
main frequency of around 40 kHz. The amplitude depends on the dose deposited in the
single pulse and is about 1 Pa at the source and a few tens of mPa at the sensor surface.
Figure 2 shows the simulated time signal, acquired by a sensor placed in line with the
beam. The information acquired by each sensor is used by acoustic imaging algorithms
to reconstruct the image of the source. In this paper, this scenario has been simulated
using k-Wave for both the simulation of the physical phenomenon and the time-reversal
algorithm used for image reconstruction.
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proton beam.

2.2. Acoustic Sensor Modeling

Typical sensors used in ionoacoustic experiments are piezoelectric. Piezoelectrics are
transducers that convert a mechanical stimulus (such as a pressure wave) into an electrical
signal. They are characterized by an approximately flat bandwidth and a resonant frequency
where a peak is present, the height of which depends on the characteristics of the material
and the acoustic coupling between the material and the surrounding environment (water
or biological tissue). Most of the works in the literature use piezoceramic materials (Lead-
Zirconate-Titanate, PZT) [6–19]. However, these are characterized by a strong resonance
and a rather narrow bandwidth. The impulsive nature of ionoacoustic signals implies
that their bandwidth is relatively wide, and the use of narrow-band sensors leads to a
loss of information and distortion in the acquired signal, which ultimately appears as
a distortion in the acquired acoustic image if not compensated by digital equalization
stages. For this reason, this work considers piezo-polymer sensors (Polyvinyl difluoride,
PVDF) characterized by better acoustic coupling with the surrounding environment and
an intrinsically wider and flatter bandwidth. Furthermore, their plastic nature makes them
much easier to machine and form into arrays of the desired size [20,21]. Compared to
PZTs, their piezoelectric voltage constant is about an order of magnitude larger, while
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the relative dielectric constant is an order of magnitude lower. This implies that both
the transduced signal and its noise are an order of magnitude larger than those of PZTs,
while the signal-to-noise ratio is comparable or slightly lower. Table 1 shows a comparison
between the main parameters of PZTs and PVDFs, whereas Table 2 summarizes the main
PVDF parameters.

Table 1. Comparison between PVDF and PZT piezoelectric materials’ performance.

Parameter for unit area PVDF w.r.t. PZT

Relative noise power +20 dB

Relative Sensitivity +17 dB

Relative SNR (Sensor only) −3 dB

Relative SNR (Sensor + AFE) +2 dB

Table 2. Typical PVDF parameters.

Parameter Symbol Value

Frequency coefficient Nf 1125 Hz·m
Resonant frequency fr 800 kHz

Piezoelectric voltage coefficient g33 400 mV/(Pa·m)

Piezoelectric relative dielectric constant εr 8

Channel width W 3 mm

Channel length L 30 mm

PVDF thickness TH 1.2 mm

Water acoustic impedance Zw 1.5 MRayl

PVDF acoustic impedance ZPVDF 3.3 MRayl

Sensitivity S 480 µV/Pa

The behavior of piezoelectrics depends not only on their material but also on their
physical size. The thickness determines the resonant frequency and therefore the bandwidth
of the sensor, according to Equation (1), where N is a constant that depends on the material
and Th is the thickness of the sensor.

fR =
N
Th

(1)

The sensitivity of the sensor depends in turn on the thickness Th and piezoelectric
voltage constant g33, as in Equation (2).

S = g33·TH (2)

The total area of the sensor determines its capacitance according to the formula for
parallel plane-face capacitors, as shown in Equation (3).

C = ε0εr
A
Th

(3)

In turn, the capacitance of the sensor determines in the first approximation its noise
according to Equation (4).

ORN =

√
kT
C

=

√
k T Th
ε0εr A

(4)
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Its input-referred noise can be thus obtained with Equation (5).

IRNAS =
ORNAS

S
=

1
g33

√
kT

ε0εr·A·Th
(5)

Therefore, thicker sensors will have a lower bandwidth, a higher sensitivity, and a
higher noise.

If a sensor array is considered, each channel will be a piezoelectric with a noise
dependent on its area and uncorrelated with respect to that of other channels. Instead, the
signal acquired by each channel will be deterministic and these signals will be used by
acoustic imaging algorithms to generate the image of the source. The noise will instead be
decreased according to Equation (6).

SNRNch = SNR1Ch + 10log10 Nch (6)

Therefore, a sensor with Nch channels will have a noise equal to that of a single-channel
sensor with an area Nch times larger.

Piezoelectric arrays therefore have a noise that depends on the total area of the array,
while the performance of the single channel depends on its width. In fact, ideally, a sensor
in an array must be able to acquire signals coming from any direction (omnidirectional).
However, real sensors of finite dimensions are characterized by a certain directivity that
depends on the ratio between their physical size and the wavelength of the signal.

In fact, if the wavelength is comparable or smaller than the sensor width, wavefronts
reaching the sensor with a non-perpendicular arrival angle will touch different points of
the sensor at different times. Therefore, each point of the sensor will transduce a signal
that is not in phase with the adjacent points, causing destructive interference and a loss
of sensitivity. The directivity of a sensor with regard to the angle of arrival θ, defined as
the direction of arrival of the acoustic wavefront measured from the normal to the surface,
follows Equation (7), while in Figure 3 the antenna patterns on the sensor plane for different
channel sizes (from 75 mm to 4.5 mm) at 50 and 150 kHz can be observed.

S(θ)
S

= dir(θ) = sinc
(

π f Lsin(θ)
cw

)
(7)
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In this context, a sensor with a constant total area, fixed according to the system noise
requirements, is considered, as shown in Figure 4. This total area is divided into a variable
number of channels, and how the final acoustic image was affected by the number of
channels and the size of the single channel has been studied. Larger sensors will be more
directive and will therefore only observe the area in front of them while attenuating signals
coming from large angles of arrival. However, if a greater number of smaller channels leads
to a more accurate image, it also requires an additional hardware effort to process a greater
number of channels in parallel.
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2.3. Imaging and Gamma Index

To find the optimal sizing of the array, we used the gamma index as an objective tool
to measure the quality of the reconstructed image as the number and size of the channels
varied. In medical physics, the γ-index is a widely used metric to compare a calculated
dose distribution with a reference dose distribution [22]. The γ-index combines both dose
difference and distance-to-agreement criteria into a single metric. For each point in the
dose distribution, γ is calculated as follows [22]:

γ(r) =
min

r′ ∈ ν

√(
D(r)− D′(r′)

∆D

)2
+

(
r − r′

∆d

)2
(8)

where D(r) is the dose at position r in the evaluated distribution, D′(r′) is the dose at
position r′ in the reference distribution, V is the total volume (or area for 2D distributions)
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around r, and ∆D and ∆d are, respectively, the dose difference and distance-to-agreement
criteria. A γ-index value of γ ≤ 1 indicates that the reconstructed dose at point r is within
the acceptable range of the reference dose [23], considering both dose and spatial criteria,
set as 3%/3 mm in this work.

3. Results

Figure 5 shows the imaging result for different numbers of sensors, from 16 to 256.
As can be seen, for a low number of sensors, the image is very distorted and gradually
improves as the number of sensors increases. It can be noted that the quality of each image
is not homogeneous. In fact, the central area of the circle has less distortion than the more
peripheral regions. This effect is due to the directivity of the sensors, which receive signals
perfectly in phase from the center of the circle (0◦ angle of arrival) and increasingly out
of phase at larger angles (outer portions of the circle). This effect is clearly visible for
16 and 32 channels, with the difference in the diameter of the reconstructed beam changing
radically between the center of the circumference and the outer regions.
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As the number of channels increases, the region in which the beam is reconstructed
with greater accuracy becomes larger and larger, and from 64 channels onwards, the Bragg
peak is clearly distinguishable. In each image, the initial part of the range is the one that is
most difficult to reconstruct, both because it is the most external and because of the absence
of channels in the input window region, which causes a loss of information since a part of
the wavefront is not acquired. It can also be noted that due to the destructive interference
that occurs with very directive sensors, the amplitude of the images reconstructed with a
low number of channels is lower than that with a higher number of channels. Since the total
array noise is by design the same in each scenario (as it depends on the total area being held
constant), there is a loss of signal-to-noise ratio for low channel numbers, with a consequent
further decrease in precision in the reconstructed image due to random noise fluctuations.

Figure 6 shows the gamma index map as the number of sensors varies, computed
along the beam range.
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As expected from the acoustic images, for 16 and 32 channels, most of the voxels have
a gamma index higher than 1. As the number of channels increases, the number of voxels
with a gamma index lower than 1 also increases, starting from the central regions of the
circumference and gradually covering both the Bragg peak region and the beginning of
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the proton range, which is confirmed to be the area most subject to error both due to its
proximity to the edge of the circumference and the presence of the beam entrance window.

Figure 7 shows the trend of the percentage of pixels with a gamma index lower than
one as the number of channels varies. It can be seen that for a number of channels lower
than 100, most of the pixels have a gamma value higher than 1, while when exceeding 200,
most of the pixels have an acceptable error. In particular, the commonly accepted threshold
of 90% is reached with a number of channels approximately equal to 256, representing a
tradeoff between acceptable accuracy and hardware complexity. Finally, Figure 8 shows a
detailed view of the reconstructed acoustic image and the gamma index map compared
with the original dose deposition.
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4. Conclusions

In this work, it has been highlighted how the array design impacts its ability to recon-
struct the dose deposition accurately and sufficiently for the clinical standards represented
by the gamma index. What emerges is that in order to operate in clinical contexts, a leap
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forward in the technology of ionoacoustic detectors is necessary so they can process in
parallel the hundreds of channels necessary to obtain an accuracy sufficient to compete
with other nuclear imaging techniques. The natural direction of this technology is to exploit
dedicated integrated circuits as the only possible solution to manage such a large number
of channels in parallel while maintaining acceptable performance and limited size [23–27].
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