Assessment of the Accumulation Ability of Festuca rubra L. and Alyssum saxatile L. Tested on Soils Contaminated with Zn, Cd, Ni, Pb, Cr, and Cu
Abstract
:1. Introduction
2. Materials and Methods
2.1. Characteristic of Soils
2.2. Characteristics of the Pot Experiment
2.3. Methods
2.4. Statistical Analysis
3. Results
3.1. Total Content of Metals in Soil
3.2. Metal Forms Extracted with 1 M HCl
3.3. Metal Forms Extracted with DTPA and 1 M NH4NO3
3.4. Yield and Metal Content in the Plants
3.5. Bioconcentration Factors (BCFs)
3.6. Transfer Factors (TFs)
4. Discussion
5. Conclusions
- The results of the content of individual metals in the tested plants indicate that Alyssum saxatile L. has the selective ability to accumulate cadmium in its shoots without being defined as an accumulating plant. The contents of Cd in its biomass were significantly higher compared to Festuca rubra L. For the remaining metals, the differences were less significant. This confirms the opinion that each plant has different characteristic mechanisms reacting to metals: exclusion, indication, and accumulation. However, their reactions differ depending on the content of a given metal in the soil.
- The wide range of plant tolerances to environmental factors is a very important aspect for the phytoremediation process; however, in heavily contaminated soils, a high metal content may be a problem even for plants accumulating given metals. This was observed in the studies with Alyssum saxatile L., where the high concentration of metals in the soil exceeded the toxicity threshold, contributing to the disappearance of the plant’s life processes.
- The calculated results for Alyssum saxatile L. for the BCF are below one for all tested metals, which allow us to state that Alyssum saxatile L. is not an accumulator. The obtained values for the TF are above one for all tested metals except Pb, which means that this plant does not stabilize metals either.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mahar, A.; Wang, P.; Ali, A.; Awasthi, M.K.; Lahori, A.H.; Wang, Q.; Li, R.; Zhang, Z. Challenges and Opportunities in the Phytoremediation of Heavy Metals Contaminated Soils: A Review. Ecotoxicol. Environ. Saf. 2016, 126, 111–121. [Google Scholar] [CrossRef]
- Cunningham, S.D.; Ow, D.W. Promises and Prospects for Phytoremediation. Plant Physiol. 1996, 110, 715–719. [Google Scholar] [CrossRef] [PubMed]
- Chaney, R.L.; Malik, M.; Li, Y.M.; Brown, S.L.; Angle, J.S.; Baker, A.J.M. Phytoremediation of Soil Metals. Curr. Opin. Biotechnol. 1997, 8, 279–284. [Google Scholar] [CrossRef]
- Berti, W.R.; Cunningham, S.D. Phytostabilization of Metals. In Phytoremediation of Toxic Metals: Using Plants to Clean Up the Environment; Raskin, I., Ensley, B.D., Eds.; John Wiley & Sons: New York, NY, USA, 2000; pp. 71–88. [Google Scholar]
- Ensley, B.D. Rationale for Use of Phytoremediation. In Phytoremediation of Toxic Metals: Using Plants to Clean Up the Environment; Raskin, I., Ensley, B.D., Eds.; John Wiley & Sons: New York, NY, USA, 2000; pp. 3–12. [Google Scholar]
- Meagher, R.B. Phytoremediation of Toxic Elemental and Organic Pollutants. Curr. Opin. Plant Biol. 2000, 3, 153–162. [Google Scholar] [CrossRef]
- Terry, N.; Banuelos, G. Phytoremediation of Contaminated Soil and Water; Lewis Publishers: Boca Raton, FL, USA, 2000. [Google Scholar]
- Fitz, W.J.; Wenzel, W.W. Arsenic Transformations in the Soil–Rhizosphere–Plant System: Fundamentals and Potential Application to Phytoremediation. J. Biotechnol. 2002, 99, 259–278. [Google Scholar] [CrossRef]
- Ghoril, Z.; Iftikhar, H.; Bhatti, M.F.; Nasar–um–Minullah; Sharma, I.; Kazil, A.G.; Ahmad, P. Phytoextraction: The Use of Plants to Remove Heavy Metals from Soil. Plant Metal Interastion. Emerg. Remediat. Tech. 2016, 15, 385–409. [Google Scholar]
- Awa, S.H.; Hadibarata, T. Removal of Haevy Metals in Contaminated Soil by Phytoremediation Mechanism: A Review. Water Air Soil Pollut. 2020, 231, 1–15. [Google Scholar] [CrossRef]
- Maciejewska, A.; Pusz, A. Reclamation of Soils Contaminated with Heavy Metals Issues in the Light of Publications. Obieg Pierwiastków Przyr. 2003, 539–550. [Google Scholar]
- Hou, D.; Al-Tabbaa, A. Sustainability: A New Imperative in Contaminated Land Remediation. Environ. Sci. Policy 2014, 39, 25–34. [Google Scholar] [CrossRef]
- Pusz, A.; Wiśniewska, M. Phytotoxicity assessment of soils from industrial areas in varying degrees of contamination with metals. In Proceedings of the Conference Materials, 15th International Conference on Environmental Science and Technology, CEST2017, Rhodes, Greece, 31 August–2 September 2017. [Google Scholar]
- Antoniadis, V.; Levizou, E.; Shaheen, S.M.; Ok, Y.S.; Sebastian, A.; Baum, C.; Prasad, M.N.V.; Wenzel, W.W.; Rinklebe, J. Trace Elements in the Soil-plant Interface: Phytoavailability, Translocation—A Review. Earth Sci. Rev. 2017, 171, 621–645. [Google Scholar] [CrossRef]
- Pusz, A. Use of Carbonaceous Materials to Immobilize Metals in Soils from Industrial Areas. Przem. Chem. 2017, 96, 2116–2120. [Google Scholar] [CrossRef]
- Pusz, A.; Rogalski, D.; Trawińska, A. Chemical Degradation and Processes of Erosion of Post-mine Territories after Mining Exploration of Iron Ore. J. Ecol. Eng. 2017, 18, 71–79. [Google Scholar] [CrossRef]
- Pusz, A. Influence of Brown Coal on Limit of Phytotoxicity of Soils Contaminated with Heavy Metals. J. Hazard. Mater. 2007, 149, 590–597. [Google Scholar] [CrossRef] [PubMed]
- Sheoran, A.; Sheoran, S. Phytoremediation of Heavy Metals Contaminated Soils. J. Plant Dev. Sci. 2017, 9, 905–915. [Google Scholar]
- Kamiński, A.; Pusz, A.; Wiśniewska, M. Phytotoxicity Assessment of Soils Contaminated with Petroleum Components. Przem. Chem. 2019, 98, 857–862. [Google Scholar]
- Pusz, A.; Wiśniewska, M.; Kamiński, A. Remediation of Metals-contaminated Soils. Przem. Chem. 2019, 98, 863–868. [Google Scholar] [CrossRef]
- Wiśniewska, M.; Kamiński, A.; Pusz, A. Phytotoxicity of Metal-contaminated Soils. Przem. Chem. 2019, 98, 852–856. [Google Scholar] [CrossRef]
- Hou, D.; O’Connor, D. Green and Sustainable Remediation: Concepts, Principles and Pertaining Research. In Sustainable Remediation of Contaminated Soil and Groundwater. Materials, Processes and Assessment; Hou, D., Ed.; Butterworth-Heinemann/Elsevier: Oxford, UK, 2020. [Google Scholar]
- Tack, F.M.G.; Bardos, P. Overview of Soil and Groundwater Remediation. In Soil and Groundwater Remediation Technologies; Ok, Y.S., Rinklebe, J., Hou, D., Tsang, D.C.W., Tack, F.M.G., Eds.; Taylor & Francis: Oxfordshire, UK, 2020. [Google Scholar]
- Lone, M.I.; He, Z.; Stoffella, P.J.; Yang, X. Phytoremediation of Heavy Metal Polluted Soils and Water: Progresses and Perspectives. J. Zhejiang Univ. Sci. 2008, 9, 210–220. [Google Scholar] [CrossRef] [Green Version]
- He, S.; He, Z.; Yang, X.; Baligar, V.C. Mechanisms of Nickel Uptake and Hyperaccumulation by Plants and Implications for Soil Remediation. Adv. Agron. 2012, 117, 117–189. [Google Scholar]
- Yao, Z.; Li, J.; Xie, H.; Yu, C. Review on Remediation Technologies of Soil Contaminated by Heavy Metals. Procesia Environ. Sci. 2012, 16, 722–729. [Google Scholar] [CrossRef] [Green Version]
- Adams, N.; Carroll, D.; Madalinski, K.; Rock, S.; Wilson, T.; Bruce, P.; Anderson, T.; Chappell, J.; Huling, S.; Palmiotti, J.; et al. Introduction to Phytoremediation; National Risk Management Research Laboratory Office of Research and Development, U.S. Environmental Protection Agency: Cincinnati, OH, USA, 2000. [Google Scholar]
- Chaturvedi, R.; Varun, M.; Paul, M.S. Phytoremediation: Uptake and Role of Metal Transporters in Some Members of Brassicaceae. In Phytoremediation; Ansari, A.A., Ed.; Springer: New York, NY, USA, 2016; pp. 453–468. [Google Scholar] [CrossRef]
- Burges, A.; Epelde, L.; Blanco, F.; Becerril, J.M.; Garbisu, C. Ecosystem Services and Plant Physiological Status during Endophyte-assisted Phytoremediation of Metal Contaminated Soil. Sci. Total. Environ. 2017, 584, 329–338. [Google Scholar] [CrossRef]
- Cunningham, S.D.; Berti, W.R.; Huang, J.W. Phytoremediation of Contaminated Soils. Trends Biotechnol. 1995, 13, 393–397. [Google Scholar] [CrossRef]
- Bhargava, A.; Carmona, F.F.; Bhargava, M.; Srivastava, S. Approaches for Enhanced Phytoextraction of Heavy Metals. J. Environ. Manag. 2012, 105, 103–120. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.; Lai, H.; Juang, K. Model Evaluation of Plant Metal Content and Biomass Yield for the Phytoextraction of Heavy Metals by Switchgrass. Ecotoxicol. Environ. Saf. 2012, 80, 393–400. [Google Scholar] [CrossRef] [PubMed]
- Chmielowska-Bąk, J.; Deckert, J. Plant Recovery after Metal Stress—A Review. Plants 2021, 10, 450. [Google Scholar] [CrossRef] [PubMed]
- Dobrikova, A.G.; Apostolova, E.L.; Hanć, A.; Yotsova, E.; Borisova, P.; Sperdouli, I.; Adamakis, J.-D.S.; Moustakas, M. Cadmium Toxicity in Salvia Sclarea L.: An Integrative Response of Element Uptake, Oxidative Stress Markers, Leaf Structure and Photosynthesis. Ecotoxicol. Environ. Saf. 2021, 209, 111851. [Google Scholar] [CrossRef]
- Sharma, S.; Singh, A.K.; Tiwari, M.K.; Uttam, K.N. Prompt Screening of the Alterations in Biochemical and Mineral Profile of Wheat Plants Treated with Chromium Using Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy and X-ray Fluorescence Excited by Synchrotron Radiation. Ann. Lett. 2020, 53, 482–508. [Google Scholar] [CrossRef]
- Rezvani, M.; Zaefarian, F.; Miransari, M.; Nematzadeh, G.A. Uptake and Translocation of Cadmium and Nutrients by Aeluropus Littoralis. Arch. Agron. Soil Sci. 2011, 58, 1413–1425. [Google Scholar] [CrossRef]
- Skrebsky, E.C.; Tabaldi, L.A.; Pereira, L.B.; Rauber, R.; Maldaner, J.; Cargnelutti, D.; Gonçalves, J.F.; Castro, G.Y.; Shetinger, M.R.; Nicoloso, F.T. Effect of Cadmium on Growth, Micronutrient Concentration, and δ-Aminolevulinic Acid Dehydratase and Acid Phosphatase Activities in Plants of Pfaffia Glomerata. Braz. J. Plant Physiol. 2008, 20, 285–294. [Google Scholar] [CrossRef]
- Pollard, A.J.; Powell, K.D.; Harper, F.A.; Smith, J.A.C. The Genetic Basis of Metal Hyperaccumulation in Plants. Crit. Rev. Plant Sci. 2002, 21, 539–566. [Google Scholar] [CrossRef]
- Macnair, M. The Hyperaccumulation of Metals by Plants. Adv. Bot. Res. 2003, 40, 63–105. [Google Scholar]
- Baker, A.J.M.; Whiting, S.N. In Search of the Holy Grail—A Further Step in Understanding Metal Hyperaccumulation. New Phytol. 2002, 155, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Ent, A.; Baker, A.J.M.; Reeves, R.D.; Pollard, A.J.; Schat, H. Hyperaccumulators of Metal and Metalloid Trace Elements: Facts and Fiction. Plant Soil 2013, 362, 319–334. [Google Scholar] [CrossRef]
- Regulation of the Minister of the Environment of 1 September 2016 on the Method of Assessing the Pollution of the Earth’s Surface. J. Laws 2016, item 1395. Available online: https://isap.sejm.gov.pl/ (accessed on 15 January 2021).
- ISO. ISO 10390: 2005: Soil Quality–Determination of pH; ISO: Geneva, Switzerland, 2005. [Google Scholar]
- PN-ISO. PN-ISO 14235: 2003P. Soil Quality–Determination of Organic Carbon Content by Oxidation with Dichromate (VI) in a Sulfuric Acid (VI) Environment; ISO: Geneva, Switzerland, 2002. [Google Scholar]
- PN-ISO. PN-ISO 11261: 2002P. Soil Quality–Determination of Total Nitrogen–Modified Kjeldahl Method; ISO: Geneva, Switzerland, 2002. [Google Scholar]
- PN-ISO. PN-ISO 10693: 2002P. Soil Quality–Determination of Carbonate Content–Volumetric Method; ISO: Geneva, Switzerland, 2002. [Google Scholar]
- Ostrowska, A.; Gawliński, S.; Szczubiałka, Z. Metody Analizy i Oceny Właściwości Gleb i Roślin, Katalog; Instytut Ochrony Środowiska: Warsaw, Poland, 1991. [Google Scholar]
- Zeien, H.; Brümmer, G.W. Chemische Extraktionen zur Bestimmung von Schwermetallbindungsformen in Boden. Mitt. Dtsch. Bodenk. Gesell. 1989, 59, 505–510. [Google Scholar]
- Schwarz, A.; Wilcke, W.; Styk, J.; Zech, W. Heavy Metal Release from Soils in Batch pH-stat Experiments. Soil Sci. Soc. Am. J. 1999, 63, 290–296. [Google Scholar] [CrossRef] [Green Version]
- DIN ISO. DIN ISO 19730:2008. Soil Quality-Extraction of Trace Elements from Soil Using Ammonium Nitrate Solution; ISO: Geneva, Switzerland, 2008; Available online: https://www.iso.org/ (accessed on 15 January 2021).
- PN-ISO. PN-ISO 14870: 2007P. Soil Quality-Extraction of Trace Elements with a Buffered DTPA Solution; ISO: Geneva, Switzerland, 2007. [Google Scholar]
- Mądry, W. Doświadczalnictwo rolnicze. Plan. Doświadczeń Czynnikowych Anal. Wyn. SGGW Wars. Pol. 1996, 1, 1–116. [Google Scholar]
- Nelder, J.A. Discussion on Papers by Wynn, Bloomfield, O’Neill and Wetherill. J. R. Stat. Soc. B 1971, 33, 244–246. [Google Scholar]
- Finney, D.J. Was This in Your Statistics Textbook? III. Design and Analysis. Exp. Agric. 1988, 24, 421–432. [Google Scholar] [CrossRef]
- Webster, R. Analysis of Variance, Inference, Multiple Comparisons and Sampling Effects in Soil Research. Eur. J. Soil Sci. 2007, 58, 74–82. [Google Scholar] [CrossRef]
- Karami, N.; Clemente, R.; Moreno-Jiménez, E.; Lepp, N.W.; Beesley, L. Efficiency of Green Waste Compost and Biochar Soil Amendments for Reducing Lead and Copper Mobility and Uptake to Ryegrass. J. Hazard. Mater. 2011, 191, 41–48. [Google Scholar] [CrossRef] [PubMed]
- Ure, A.M.; Quevauviller, P.H.; Muntau, H.; Gripink, B. Speciation of Heavy Metals in Soils and Sediments. An Account of the Improvement and Harmonization of Extraction Techniques Undertaken under Auspices of the BCR of the Commission of the European Communities. Int. J. Environ. Anal. Chem. 1993, 51, 135–151. [Google Scholar] [CrossRef]
- Morabito, R. Extraction Techniques in Speciation Analysis of Environmental Samples. J. Anal. Chem. 1995, 351, 378–385. [Google Scholar] [CrossRef]
- Kennedy, V.H.; Sanchez, A.L.; Oughton, D.H.; Rowland, A.P. Use of Single and Sequential Chemical Extractants to Assess Radionuclide and Heavy Metal Availability from Soils for Root Uptake. Analyst 1997, 122, 89–100. [Google Scholar] [CrossRef]
- Rauret, G. Extraction Procedures for the Determination of Heavy Metals in Contaminated Soil and Sediment. Talanta 1998, 46, 449–455. [Google Scholar] [CrossRef]
- Alloway, B.J.; Morgan, H. The Behavior and Availability of Cd, Ni and Pb in Polluted Soils. In Contaminated Soils; Assink, J.W., van den Brink, W.J., Eds.; Springer: Dordrecht, The Netherlands, 1986; pp. 101–113. [Google Scholar]
- Davies, B.E. Inter-relationship between Soil Properties and the Uptake of Cadmium, Copper, Lead and Zinc from Contaminated Soil by Radish (Raphanus sativus L.). Water Air Soil Pollut. 1992, 63, 331–342. [Google Scholar] [CrossRef]
- Prüeß, A. Action Values for Mobile (NH4NO3-Extractable) Trace Elements in Soils Based on the German National Standard DIN 19730; ICOBTE: Orlando, FL, USA, 1997; pp. 415–423. [Google Scholar]
- Chardonnes, A.N.; Bookum, W.N.T.; Kuijper, I.D.J.; Verkleij, J.A.C.; Ernst, W.H.O. Distribution of Cadmium in Leaves of Cadmium Tolerant and Sensitive Ecotypes of Silene Vulgaris. Physiol. Plant 1998, 104, 75–80. [Google Scholar] [CrossRef]
- Foy, C.D.; Chaney, R.L.; White, M.C. The Physiology of Metal Toxicity in Plants. Annu. Rev. Plant Physiol. 1978, 29, 511–566. [Google Scholar] [CrossRef]
- Kuboi, T.; Noguchi, A.; Mazak, J. Family Dependent Cadmium Accumulation Characteristics in Higher Plants. Plant Soil 1986, 92, 405–415. [Google Scholar] [CrossRef]
- Balestrini, R.; Chitarra, W.; Fotopoulos, V.; Ruocco, M. Potential Role of Beneficial Soil Microorganisms in Plant Tolerance to Abiotic Stress Factors. Soil Biol. Communities Ecosyst. Resil. Sustain. Plant Crop. Prot. 2017, 191–207. [Google Scholar] [CrossRef]
- An, Y.J. Soil Ecotoxicity Assessment Using Cadmium Sensitivity Plants. Environ. Pollut. 2004, 127, 21–26. [Google Scholar] [CrossRef]
- Raviv, M.; Lieth, J.H. Soilless Culture: Theory and Practice; Elsevier: Amsterdam, The Netherlands, 2008. [Google Scholar]
- Kabata-Pendias, A.; Motowicka-Terelak, T.; Krakowiak, A. Heavy Metal and Sulphur Status in Soils from Selected Regions of Poland. Ved. Pr. Vysk. Ustav Podnej Urodnosti Bratisl. 1995, 19, 291–293. [Google Scholar]
- Radziemska, M.; Vaverková, M.D.; Baryła, A. Phytostabilization—Management Strategy for Stabilizing Trace Elements in Contaminated Soils. Int. J. Environ. Res. Public Health 2017, 14, 958. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, X.; Luo, D.; Chen, X.; Wei, L.; Liu, Y.; Wu, Q.; Xiao, T.; Mai, X.; Liu, G.; Liu, L. Insights into Heavy Metals Leakage in Chelator-Induced Phytoextraction of Pb and Tl-Contaminated Soil. Int. J. Environ. Res. Public Health 2019, 16, 1328. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suman, J.; Uhlik, O.; Viktorova, J.; Macek, T. Phytoextraction of Heavy Metals: A Promising Tool for Clean-Up of Polluted Environment? Front. Plant. Sci. 2018, 9, 1476. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roongtanakiat, N. Vetiver Phytoremediation for Heavy Metal Decontamination. PRVN Tech. Bull. 2009, 1, 1–20. [Google Scholar]
- Alia, S.Y.; Chaudhury, S. EDTA–Enhanced Phytoextraction by Tagetes sp. and Effect on Bioconcentration and Translocation of Heavy Metals. Environ. Process. 2016, 3, 735–746. [Google Scholar] [CrossRef]
- Cosentino, S.L.; Riggi, E.; Mantineo, M. Sweet Sorghum Performance in Relation to Soil Water Deficit in South Italy. In Proceedings of the First International Sweet Sorghum Conference, Institute of Botany, Chinese Academy of Sciences, Beijing, China, 14–19 September 1997; pp. 430–443. [Google Scholar]
- Andreetta, A.; Cecchini, G.; Marchetto, A.; Carnicelli, S. Soil-atmosphere Interface: The Impact of Depositions on Forest Soils in Italy. Geophys. Res. Abstr. 2019, 21, 1. [Google Scholar]
- Artz, R.; Anastasiou, D.; Arrouays, D.; Bastos, A.C.; Bendetti, A.; Bispo, A.; Brandmayr, P.; Broll, G.; Bunning, S.; Castracani, C.; et al. European Atlas of Soil Biodiversity. Off. Publ. Off. Commun. Eur. 2010, 1, 128. [Google Scholar] [CrossRef]
- Marecik, R.; Króliczak, P.; Cyplik, P. Fitoremediacja–Alternatywa dla Tradycyjnych Metod Oczyszczania środowiska. Biotechnologia 2006, 3, 88–97. [Google Scholar]
- Pilon-Smiths, E.; Freeman, J.L. Environmental Cleanup Using Plants: Biotechnological Advances and Ecological Considerations. Front. Ecol. Environ. 2006, 4, 203–210. [Google Scholar] [CrossRef] [Green Version]
- Kabata-Pendias, A.; Mukherjee, A.B. Trace Elements from Soil to Human; Springer Nature: Berlin, Germany, 2007. [Google Scholar]
- Kicińska, A.; Smreczak, B.; Jadczyszyn, J. Soil Bioavailability of Cadmium, Lead, and Zinc in the Areas of Zn-Pb Ore Mining and Processing (Bukowno, Olkusz). J. Ecol. Eng. 2019, 20, 84–92. [Google Scholar] [CrossRef]
- Atanassova, I.; Vatchev, T.; Atanassova, E.; Petkova, Z.; Nenova, L.; Simeonova, T. Influence of Copper and Fusarium Culmorum on Metal Solubility and Wheat Uptake in Alluvial-Meadow Soil. Bulg. J. Agric. Sci. 2017, 23, 252–259. [Google Scholar]
- Bożym, M. The Study of Heavy Metals Leaching from Waste Foundry Sands Using a One-step Extraction. E3S Web Conf. 2017, 19, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Garbisu, C.; Alkorta, I. Phytoextraction: A Cost Effective Plant-based Technology for the Removal of Metals from the Environment. Bioresour. Technol. 2001, 77, 229–236. [Google Scholar] [CrossRef]
- Yang, X.; Feng, Y.; He, Z.; Stoffella, P.J. Molecular Mechanisms of Heavy Metal Hyperaccumulation and Phytoremediation. J. Trace Elem. Med. Biol. 2005, 18, 339–353. [Google Scholar] [CrossRef] [PubMed]
- Malik, R.N.; Husain, S.Z.; Nazir, I. Heavy Metal Contamination and Accumulation in Soil and Wild Plant Species from Industrial Area of Islamabad. Pak. J. Bot. 2010, 42, 291–301. [Google Scholar]
- Cheraghi, M.; Lorestani, B.; Khorasani, N.; Yousef, N.; Karami, M. Findings on the Phytoextraction and Phytostabilization of Soils Contaminated with Heavy Metals. Biol. Trace Elem. Res. 2011, 144, 1133–1141. [Google Scholar] [CrossRef]
- Saha, J.K.; Selladurai, R.; Coumar, M.V.; Dotaniya, M.L.; Kundu, S.; Patra, A.K. Assessment of Heavy Metals Contamination in Soil. In Soil Pollution—An Emerging Threat to Agriculture; Environmental Chemistry for a Sustainable World; Springer: Singapore, 2017; Volume 10. [Google Scholar]
- McGrath, S.P.; Zhao, F.J. Phytoextraction of Metals and Metalloids from Contaminated Soils. Curr. Opin. Biotechnol. 2003, 14, 277–282. [Google Scholar] [CrossRef]
- Deram, A.; Denayer, F.O.; Dubourgier, H.C.; Douay, D.; Petit, D.; van Haluwyn, C. Zinc and Cadmium Accumulation among and within Populations of the Pseudometalophytic Species Arrhenatherum Elatius: Implications for Phytoextraction. Sci. Total Environ. 2007, 372, 372–381. [Google Scholar] [CrossRef]
- Talke, I.N.; Hanikenne, M.; Krämer, U. Zinc-dependent Global Transcriptional Control, Transcriptional Deregulation, and Higher Gene Copy Number for Genes in Metal Homeostasis of the Hyperaccumulator Arabidopsis halleri. Plant Physiol. 2006, 142, 148–167. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krämer, U.; Smith, R.D.; Wenzel, W.W.; Raskin, I.; Salt, D.E. The Role of Metal Transport and Tolerance in Nickel Hyperaccumulation by Thlaspi Goesingense Halácsy. Plamt Physiol. 1997, 115, 1641–1650. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Soil | Zn | Cd | Ni | Cr | Pb | Cu |
---|---|---|---|---|---|---|
(mg/kg d.m. soil) | ||||||
G1 | 11,032 ± 348 | 35.5 ± 2.5 | 291.3 ± 15.3 | 784.9 ± 35.9 | 9885 ± 316 | 1748 ± 71 |
G2 | 66.1 ± 4.3 | 0.40 ± 0.05 | 13.2 ± 1.1 | 9.30 ± 0.79 | 15.9 ± 1.3 | 14.2 ± 1.1 |
G1:G2 /Plant | Total Content of Metals in Soil * (mg/kg d.m.) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Zn | Cd | Ni | Cr | Pb | Cu | |||||||
Mean | σ | Mean | σ | Mean | σ | Mean | σ | Mean | σ | Mean | σ | |
1:1/P1 | 5095 | 139 | 12.80 | 0.84 | 140.8 | 6.0 | 328.7 | 18.3 | 5225 | 183 | 748.4 | 31.5 |
1:1/P2 | 5101 | 143 | 12.95 | 0.67 | 139.0 | 6.9 | 298.2 | 14.7 | 4804 | 133 | 745.2 | 37.3 |
LSD_0.95 | 118.5 | 0.72 | 10.4 | 26.6 | 231.7 | 36.1 | ||||||
1:3/P1 | 2522 | 86 | 6.74 | 0.60 | 57.7 | 4.5 | 180.9 | 7.6 | 1892 | 61 | 383.9 | 23.3 |
1:3/P2 | 2154 | 90 | 7.22 | 0.61 | 63.7 | 5.7 | 190.3 | 9.4 | 1872 | 60 | 412.7 | 13.3 |
LSD_0.95 | 113 | 0.77 | 6.7 | 11.0 | 78 | 24.4 | ||||||
1:7/P1 | 1157 | 49 | 3.92 | 0.48 | 53.0 | 3.3 | 77.5 | 5.2 | 1087 | 52 | 258.2 | 15.7 |
1:7/P2 | 1201 | 37 | 3.78 | 0.41 | 41.9 | 3.4 | 74.2 | 7.0 | 1013 | 41 | 265.4 | 21.8 |
LSD_0.95 | 56 | 0.57 | 4.3 | 8.0 | 60 | 24.4 | ||||||
1:9/P1 | 1017 | 41 | 3.52 | 0.63 | 42.6 | 3.3 | 57.2 | 4.3 | 848.0 | 25.6 | 143.7 | 7.5 |
1:9/P2 | 972.5 | 44.2 | 3.05 | 0.28 | 25.9 | 2.5 | 53.3 | 4.5 | 810.2 | 37.7 | 129.7 | 11.5 |
LSD_0.95 | 55 | 0.63 | 3.8 | 5.7 | 41.5 | 12.5 |
G1:G2 /Plant | Metal Content after 1 M HCl Extraction* (mg/kg d.m.) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Zn | Cd | Ni | Cr | Pb | Cu | |||||||
mean | σ | mean | σ | mean | σ | mean | σ | mean | σ | mean | σ | |
1:1/P1 | 4595 | 156 | 11.50 | 0.82 | 64.0 | 4.3 | 145.0 | 6.0 | 4370 | 204 | 618.2 | 31.2 |
1:1/P2 | 4578 | 138 | 10.88 | 2.02 | 56.3 | 3.3 | 124.2 | 7.1 | 4051 | 109 | 638.4 | 33.9 |
LSD_0.95 | 128.7 | 1.14 | 3.9 | 9.7 | 152.5 | 26.5 | ||||||
1:3/P1 | 2252 | 81 | 5.18 | 0.44 | 39.5 | 2.8 | 75.2 | 5.4 | 1690 | 80 | 347.3 | 15.4 |
1:3/P2 | 1926 | 59 | 5.13 | 0.43 | 36.7 | 3.8 | 68.5 | 8.6 | 1670 | 54 | 304.4 | 18.5 |
LSD_0.95 | 92 | 0.56 | 4.3 | 9.2 | 88 | 21.9 | ||||||
1:7/P1 | 1045 | 40 | 3.26 | 0.33 | 23.5 | 1.6 | 48.7 | 6.6 | 967.0 | 45.6 | 227.7 | 8.6 |
1:7/P2 | 1018 | 36 | 2.95 | 0.54 | 22.1 | 1.9 | 50.5 | 8.9 | 902.4 | 29.4 | 214.9 | 13.4 |
LSD_0.95 | 49 | 0.57 | 2.3 | 10.1 | 49.3 | 14.5 | ||||||
1:9/P1 | 923.7 | 47.0 | 2.56 | 0.28 | 13.0 | 1.3 | 44.6 | 2.7 | 688.0 | 23.2 | 126.7 | 6.1 |
1:9/P2 | 856.5 | 31.5 | 2.47 | 0.20 | 12.9 | 1.2 | 39.2 | 4.2 | 721.8 | 23.5 | 105.1 | 6.4 |
LSD_0.95 | 51.5 | 0.32 | 1.6 | 4.6 | 30.1 | 8.1 |
G1:G2 /Plant | Metal Content after DTPA Extraction * (mg/kg d.m.) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Zn | Cd | Ni | Cr | Pb | Cu | |||||||
mean | σ | mean | σ | mean | σ | mean | σ | mean | σ | mean | σ | |
1:1/P1 | 266.9 | 12.8 | 1.95 | 0.18 | 1.72 | 0.14 | 3.68 | 0.37 | 660.1 | 39.1 | 110.2 | 6.1 |
1:1/P2 | 245.7 | 19.0 | 1.92 | 0.17 | 1.57 | 0.12 | 3.70 | 0.25 | 611.9 | 24.7 | 96.9 | 4.9 |
LSD_0.95 | 12.9 | 0.14 | 0.11 | 0.29 | 31.9 | 5.23 | ||||||
1:3/P1 | 151.7 | 10.0 | 1.27 | 0.11 | <det. | - | 3.40 | 0.33 | 461.4 | 18.1 | 63.2 | 4.6 |
1:3/P2 | 140.4 | 8.5 | 1.19 | 0.15 | <det. | - | 3.30 | 0.28 | 459.1 | 23.5 | 53.7 | 4.7 |
LSD_0.95 | 11.9 | 0.17 | - | 0.39 | 26.9 | 6.0 | ||||||
1:7/P1 | 101.8 | 5.6 | 0.83 | 0.09 | <det. | - | 3.10 | 0.37 | 295.1 | 17.4 | 36.7 | 2.5 |
1:7/P2 | 98.2 | 4.9 | 1.05 | 0.17 | <det. | - | 2.93 | 0.30 | 298.3 | 13.3 | 33.3 | 2.7 |
LSD_0.95 | 6.8 | 0.17 | - | 0.43 | 19.9 | 3.3 | ||||||
1:9/P1 | 75.4 | 4.5 | 0.71 | 0.09 | <det. | - | 2.70 | 0.22 | 252.9 | 18.3 | 29.0 | 1.9 |
1:9/P2 | 79.8 | 3.3 | 0.77 | 0.10 | <det. | - | 2.72 | 0.19 | 270.5 | 17.1 | 26.8 | 2.7 |
LSD_0.95 | 5.1 | 0.12 | - | 0.27 | 22.8 | 3.0 |
G1:G2 /Plant | Metal Content after 1 M NH4NO3 Extraction * (mg/kg d.m.) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Zn | Cd | Ni | Cr | Pb | Cu | |||||||
mean | σ | mean | σ | mean | σ | mean | σ | mean | σ | mean | σ | |
1:1/P1 | 146.9 | 8.5 | 1.10 | 0.07 | 2.20 | 0.21 | 2.08 | 0.17 | 6.68 | 0.59 | 77.4 | 5.9 |
1:1/P2 | 137.0 | 6.9 | 0.93 | 0.08 | 2.30 | 0.24 | <det. | - | 6.23 | 0.55 | 70.2 | 4.2 |
LSD_0.95 | 8.6 | 0.02 | 0.18 | - | 0.49 | 3.9 | ||||||
1:3/P1 | 68.5 | 2.7 | 0.51 | 0.08 | 1.30 | 0.19 | <det. | - | 2.52 | 0.30 | 37.2 | 2.9 |
1:3/P2 | 64.6 | 4.0 | 0.47 | 0.04 | 1.20 | 0.14 | <det. | - | 2.98 | 0.28 | 34.3 | 3.1 |
LSD_0.95 | 4.4 | 0.08 | 0.22 | - | 0.37 | 3.8 | ||||||
1:7/P1 | 31.0 | 1.8 | 0.29 | 0.04 | <det. | - | <det. | - | 2.50 | 0.20 | 9.4 | 0.8 |
1:7/P2 | 34.5 | 2.5 | 0.31 | 0.04 | <det. | - | <det. | - | 2.70 | 0.24 | 9.5 | 0.5 |
LSD_0.95 | 2.8 | 0.05 | - | - | 0.29 | 0.8 | ||||||
1:9/P1 | 22.7 | 1.2 | <det. | - | <det. | - | <det. | - | 1.88 | 0.18 | 4.4 | 0.4 |
1:9/P2 | 15.4 | 1.3 | <det. | - | <det. | - | <det. | - | 1.87 | 0.16 | 3.9 | 0.3 |
LSD_0.95 | 1.6 | - | - | - | 0.22 | 0.5 |
G1:G2 | Plant | Yield of Plant (g d.m.) | |
---|---|---|---|
Mean * | σ | ||
1:1 | P1—Festuca rubra L. | 11.82 | 2.10 |
P2—Alyssum saxatile L. | 0.67 | 0.60 | |
LSD_0.95 | 11.43 | ||
1:3 | P1—Festuca rubra L. | 17.46 | 1.01 |
P2—Alyssum saxatile L. | 23.25 | 9.83 | |
LSD_0.95 | 8.98 | ||
1:7 | P1—Festuca rubra L. | 19.72 | 1.37 |
P2—Alyssum saxatile L. | 35.96 | 16.48 | |
LSD_0.95 | 15.04 | ||
1:9 | P1—Festuca rubra L. | 23.64 | 1.08 |
P2—Alyssum saxatile L. | 37.99 | 18.22 | |
LSD_0.95 | 16.61 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pusz, A.; Wiśniewska, M.; Rogalski, D. Assessment of the Accumulation Ability of Festuca rubra L. and Alyssum saxatile L. Tested on Soils Contaminated with Zn, Cd, Ni, Pb, Cr, and Cu. Resources 2021, 10, 46. https://doi.org/10.3390/resources10050046
Pusz A, Wiśniewska M, Rogalski D. Assessment of the Accumulation Ability of Festuca rubra L. and Alyssum saxatile L. Tested on Soils Contaminated with Zn, Cd, Ni, Pb, Cr, and Cu. Resources. 2021; 10(5):46. https://doi.org/10.3390/resources10050046
Chicago/Turabian StylePusz, Agnieszka, Magdalena Wiśniewska, and Dominik Rogalski. 2021. "Assessment of the Accumulation Ability of Festuca rubra L. and Alyssum saxatile L. Tested on Soils Contaminated with Zn, Cd, Ni, Pb, Cr, and Cu" Resources 10, no. 5: 46. https://doi.org/10.3390/resources10050046
APA StylePusz, A., Wiśniewska, M., & Rogalski, D. (2021). Assessment of the Accumulation Ability of Festuca rubra L. and Alyssum saxatile L. Tested on Soils Contaminated with Zn, Cd, Ni, Pb, Cr, and Cu. Resources, 10(5), 46. https://doi.org/10.3390/resources10050046