Study of Unpicked Grapes Valorization: A Natural Source of Polyphenolic Compounds and Evaluation of Their Antioxidant Capacity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Sample Preparation
2.3. Ultrasound-Assisted Extraction
2.4. Grape Physicochemical Parameters
2.5. Polyphenolic Fractions Analysis
2.5.1. Total Phenolic Content
2.5.2. Hydroxycinnamic Acid Derivatives and Flavonols
2.5.3. Flavan-3-ols
2.5.4. Total Anthocyanins
2.5.5. Tannins
2.6. Antioxidant Capacity Determination
2.6.1. ORAC Assay
2.6.2. DPPH Radical Scavenging Activity
2.6.3. FRAP Assay
2.6.4. CUPRAC Assay
2.6.5. ABTS Method
2.7. Statistical Analysis
3. Results and Discussion
3.1. Grape Physicochemical Parameters
3.2. Polyphenolic Fractions
3.3. Antioxidant Capacities
3.4. Correlation of Polyphenolic Profiles and Antioxidant Capacity
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Koch, W. Dietary Polyphenols-Important Non-Nutrients in the Prevention of Chronic Noncommunicable Diseases. A Systematic Review. Nutrients 2019, 11, 1039. [Google Scholar] [CrossRef] [Green Version]
- Lourenço Neto, M.; Agra, K.L.; Suassuna Filho, J.; Jorge, F.E. TDDFT calculations and photoacoustic spectroscopy experiments used to identify phenolic acid functional biomolecules in Brazilian tropical fruits in natura. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2018, 193, 249–257. [Google Scholar] [CrossRef]
- Scalbert, A.; Manach, C.; Morand, C.; Rémésy, C.; Jiménez, L. Dietary polyphenols and the prevention of diseases. Crit. Rev. Food Sci. Nutr. 2005, 45, 287–306. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Jiménez, J.; Neveu, V.; Vos, F.; Scalbert, A. Identification of the 100 richest dietary sources of polyphenols: An application of the Phenol-Explorer database. Eur. J. Clin. Nutr. 2010, 64, S112–S120. [Google Scholar] [CrossRef] [PubMed]
- Kammerer, D.; Claus, A.; Carle, R.; Schieber, A. Polyphenol screening of pomace from red and white grape varieties (Vitis vinifera L.) by HPLC-DAD-MS/MS. J. Agric. Food Chem. 2004, 52, 4360–4367. [Google Scholar] [CrossRef] [PubMed]
- Obreque-Slier, E.; Peña-Neira, Á.; López-Solís, R.; Zamora-Marín, F.; Silva, J.M.R.; Laureano, O. Comparative study of the phenolic composition of seeds and skins from Carménère and Cabernet sauvignon grape varieties (Vitis vinifera L.) during ripening. J. Agric. Food Chem. 2010, 58, 3591–3599. [Google Scholar] [CrossRef] [PubMed]
- Garrido, J.; Borges, F. Wine and grape polyphenols—A chemical perspective. Food Res. Int. 2011, 44, 3134–3148. [Google Scholar] [CrossRef] [Green Version]
- Di Lecce, G.; Arranz, S.; Jáuregui, O.; Tresserra-Rimbau, A.; Quifer-Rada, P.; Lamuela-Raventós, R.M. Phenolic profiling of the skin, pulp and seeds of Albariño grapes using hybrid quadrupole time-of-flight and triple-quadrupole mass spectrometry. Food Chem. 2014, 145, 874–882. [Google Scholar] [CrossRef]
- International Organisation of Vine and Wine (OIV). 2020 Statistical Report on World Vitiviniculture; OIV: Paris, France, 2020. [Google Scholar]
- OIV. State of the World Vitivinicultural Sector in 2019. Available online: http://www.oiv.int/public/medias/7298/oiv-state-of-the-vitivinicultural-sector-in-2019.pdf (accessed on 18 March 2022).
- Soceanu, A.; Dobrinas, S.; Sirbu, A.; Manea, N.; Popescu, V. Economic aspects of waste recovery in the wine industry. A multidisciplinary approach. Sci. Total Environ. 2021, 759, 143543. [Google Scholar] [CrossRef]
- Bharathiraja, B.; Iyyappan, J.; Jayamuthunagai, J.; Kumar, R.P.; Sirohi, R.; Gnansounou, E.; Pandey, A. Critical review on bioconversion of winery wastes into value-added products. Ind. Crop. Prod. 2020, 158, 112954. [Google Scholar] [CrossRef]
- Ahmad, B.; Yadav, V.; Yadav, A.; Rahman, M.U.; Yuan, W.Z.; Li, Z.; Wang, X. Integrated biorefinery approach to valorize winery waste: A review from waste to energy perspectives. Sci. Total Environ. 2020, 719, 137315. [Google Scholar] [CrossRef] [PubMed]
- Cardullo, N.; Leanza, M.; Muccilli, V.; Tringali, C. Valorization of Agri-Food Waste from Pistachio Hard Shells: Extraction of Polyphenols as Natural Antioxidants. Resources 2021, 10, 45. [Google Scholar] [CrossRef]
- Iglesias-Carres, L.; Mas-Capdevila, A.; Sancho-Pardo, L.; Bravo, F.I.; Mulero, M.; Muguerza, B.; Arola-Arnal, A. Optimized Extraction by Response Surface Methodology Used for the Characterization and Quantification of Phenolic Compounds in Whole Red Grapes (Vitis vinifera). Nutrients 2018, 10, 1931. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barba, F.J.; Galanakis, C.M.; Esteve, M.J.; Frigola, A.; Vorobiev, E. Potential use of pulsed electric technologies and ultrasounds to improve the recovery of high-added value compounds from blackberries. J. Food Eng. 2015, 167, 38–44. [Google Scholar] [CrossRef]
- Makris, D.P. Kinetics of Ultrasound-Assisted Flavonoid Extraction from Agri-Food Solid Wastes Using Water/Glycerol Mixtures. Resources 2016, 5, 7. [Google Scholar] [CrossRef] [Green Version]
- Chemat, F.; Zille, H.; Khan, M.K. Applications of ultrasound in food technology: Processing, preservation and extraction. Ultrason. Sonochem. 2011, 18, 813–835. [Google Scholar] [CrossRef]
- Chemat, F.; Rombaut, N.; Sicaire, A.G.; Meullemiestre, A.; Fabiano-Tixier, A.S.; Abert-Vian, M. Ultrasound assisted extraction of food and natural products. Mechanisms, techniques, combinations, protocols and applications: A review. Ultrason. Sonochem. 2017, 37, 540–560. [Google Scholar] [CrossRef]
- Carpentieri, S.; Soltanipour, F.; Ferrari, G.; Pataro, G.; Donsì, F. Emerging Green Techniques for the Extraction of Antioxidants from Agri-Food By-Products as Promising Ingredients for the Food Industry. Antioxidants 2021, 10, 1417. [Google Scholar] [CrossRef]
- Finaud, J.; Lac, G.; Filaire, E. Oxidative stress. Sports Med. 2006, 36, 327–358. [Google Scholar] [CrossRef]
- Elejalde, E.; Villarán, M.C.; Alonso, R.M. Grape polyphenols supplementation for exercise-induced oxidative stress. J. Int. Soc. Sports Nutr. 2021, 18, 3. [Google Scholar] [CrossRef]
- MacDonald-Wicks, L.K.; Wood, L.G.; Garg, M.L. Methodology for the determination of biological antioxidant capacity in vitro: A review. J. Sci. Food Agric. 2006, 86, 2046–2056. [Google Scholar] [CrossRef]
- Santos-Sánchez, N.F.; Salas-Coronado, R.; Villanueva-Cañongo, C.; Hernández-Carlos, B. Antioxidant compounds and their antioxidant mechanism. In Antioxidants; Shalaby, E., Ed.; IntechOpen: London, UK, 2016; p. 29. [Google Scholar]
- Shahidi, F.; Zhong, Y. Measurement of antioxidant activity. J. Funct. Foods 2015, 18 Pt B, 757–781. [Google Scholar] [CrossRef]
- Granato, D.; Shahidi, F.; Wrolstad, R.; Kilmartin, P.; Melton, L.D.; Hidalgo, F.J.; Miyashita, K.; van Camp, J.; Alasalvar, C.; Ismail, A.B.; et al. Antioxidant activity, total phenolics and flavonoids contents: Should we ban in vitro screening methods? Food Chem. 2018, 264, 471–475. [Google Scholar] [CrossRef] [PubMed]
- Fia, G.; Bucalossi, G.; Proserpio, C.; Vincenzi, S. Unripe grapes: An overview of the composition, traditional and innovative applications, and extraction methods of a promising waste of viticulture. Aust. J. Grape Wine Res. 2022, 28, 8–26. [Google Scholar] [CrossRef]
- Gutiérrez-Gamboa, G.; Wei, M.; Moreno-Simunovic, Y.; Sun, X.; Fang, Y. Potential opportunities of thinned clusters in viticulture: A mini review. J. Sci. Food Agric. 2021, 101, 4435–4443. [Google Scholar] [CrossRef] [PubMed]
- Carmona-Jiménez, Y.; Palma, M.; Guillén-Sánchez, D.A.; García-Moreno, M.V. Study of the Cluster Thinning Grape as a Source of Phenolic Compounds and Evaluation of Its Antioxidant Potential. Biomolecules 2021, 11, 227. [Google Scholar] [CrossRef] [PubMed]
- Fia, G.; Bucalossi, G.; Gori, C.; Borghini, F.; Zanoni, B. Recovery of Bioactive Compounds from Unripe Red Grapes (cv. Sangiovese) through a Green Extraction. Foods 2020, 9, 566. [Google Scholar] [CrossRef]
- Salvador, Â.C.; Simões, M.M.Q.; Silva, A.M.S.; Santos, S.A.O.; Rocha, S.M.; Silvestre, A.J.D. Vine Waste Valorisation: Integrated Approach for the Prospection of Bioactive Lipophilic Phytochemicals. Int. J. Mol. Sci. 2019, 20, 4239. [Google Scholar] [CrossRef] [Green Version]
- Figueiredo-González, M.; Martínez-Carballo, E.; Cancho-Grande, B.; Santiago, J.L.; Martínez, M.C.; Simal-Gándara, J. Pattern recognition of three Vitis vinifera L. red grapes varieties based on anthocyanin and flavonol profiles, with correlations between their biosynthesis pathways. Food Chem. 2012, 130, 9–19. [Google Scholar] [CrossRef]
- Natolino, A.; Da Porto, C. Kinetic models for conventional and ultrasound assistant extraction of polyphenols from defatted fresh and distilled grape marc and its main components skins and seeds. Chem. Eng. Res. Des. 2020, 156, 1–12. [Google Scholar] [CrossRef]
- European Economic Community (EEC). Commission Regulation (EEC) No. 2676/90 of 17 September 1990 Determining Community Methods for the Analysis of Wines; EEC: Brussels, Belgium, 1990. [Google Scholar]
- Müller, L.; Gnoyke, S.; Popken, A.M.; Böhm, V. Antioxidant capacity and related parameters of different fruit formulations. LWT—Food Sci. Technol. 2010, 43, 992–999. [Google Scholar] [CrossRef]
- Mazza, G.; Fukumoto, L.; Delaquis, P.; Girard, B.; Ewert, B. Anthocyanins, phenolics, and color of Cabernet Franc, Merlot, and Pinot Noir wines from British Columbia. J. Agric. Food Chem. 1999, 47, 4009–4017. [Google Scholar] [CrossRef] [PubMed]
- Vivas, N.; Glories, Y.; Laguna, I.; Saucier, C.Y.; Augustín, M. Estimation du degré de polymérisation des procyanidines du raisin et du vin par la méthode au p-diimethylaminocinnamaldéhyde. J. Int. Sci. Vigne Vin 1994, 28, 319–336. [Google Scholar] [CrossRef]
- Di Stefano, R.; Cravero, M.C.; Gentilini, N. Metodi per lo studio dei polifenoli dei vini. Enotecnico 1989, 25, 83–89. [Google Scholar]
- Sarneckis, C.J.; Dambergs, R.G.; Jones, P.; Mercurio, M.; Herderich, M.J.; Smith, P.A. Quantification of condensed tannins by precipitation with methyl cellulose: Development and validation of an optimised tool for grape and wine analysis. Aust. J. Grape Wine Res. 2006, 12, 39–49. [Google Scholar] [CrossRef]
- Prior, R.L.; Wu, X.; Schaich, K. Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. J. Agric. Food Chem. 2005, 53, 4290–4302. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT—Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Benzie, I.F.F.; Strain, J.J. The Ferric Reducing Ability of Plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [Green Version]
- Apak, R.; Güçlü, K.; Özyürek, M.; Karademir, S.E. Novel total antioxidant capacity index for dietary polyphenols and vitamins C and E, using their cupric ion reducing capability in the presence of neocuproine: CUPRAC method. J. Agric. Food Chem. 2004, 52, 7970–7981. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Anastasiadi, M.; Pratsinis, H.; Kletsas, D.; Skaltsounis, A.-L.; Haroutounian, S.A. Bioactive non-coloured polyphenols content of grapes, wines and vinification by-products: Evaluation of the antioxidant activities of their extracts. Food Res. Int. 2010, 43, 805–813. [Google Scholar] [CrossRef]
- Liu, Q.; Tang, G.-Y.; Zhao, C.-N.; Feng, X.-L.; Xu, X.-Y.; Cao, S.-Y.; Meng, X.; Li, S.; Gan, R.-Y.; Li, H.-B. Comparison of Antioxidant Activities of Different Grape Varieties. Molecules 2018, 23, 2432. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stockley, C.S.; Hoj, P.B. Better wine for better health: Fact or fiction? Aust. J. Grape Wine Res. 2005, 11, 127–138. [Google Scholar] [CrossRef]
- Downey, M.O.; Dokoozlian, N.K.; Krstic, M.P. Cultural practice and environmental impacts on the flavonoid composition of grapes and wine: A review of recent research. Am. J. Enol. Vitic. 2006, 57, 257–268. [Google Scholar]
- Perestrelo, R.; Lu, Y.; Santos, S.A.O.; Silvestre, A.J.D.; Neto, C.P.; Câmara, J.S.; Rocha, S.M. Phenolic profile of Sercial and Tinta Negra Vitis vinifera L. grape skins by HPLC-DAD-ESI-MSn: Novel phenolic compounds in Vitis vinifera L. grape. Food Chem. 2012, 135, 94–104. [Google Scholar] [CrossRef] [Green Version]
- Martínez-Gil, A.M.; Gutiérrez-Gamboa, G.; Garde-Cerdán, T.; Pérez-Álvarez, E.P.; Moreno-Simunovic, Y. Characterization of phenolic composition in Carignan noir grapes (Vitis vinifera L.) from six wine-growing sites in Maule Valley, Chile. J. Sci. Food Agric. 2018, 98, 274–282. [Google Scholar] [CrossRef]
- Gougoulias, N.; Vyrlas, P.; Giurgiulescu, L.; Kalfountzos, D.; Eugenia, F. Evaluation of polyphenols content and antioxidant activity of two table grape varieties under environmental conditions of thessaly. Carpathian J. Food Sci. Technol. 2015, 7, 119–125. [Google Scholar]
- Mota, A.; Pinto, J.; Fartouce, I.; Correia, M.J.; Costa, R.; Carvalho, R.; Aires, A.; Oliveira, A.A. Chemical profile and antioxidant potential of four table grape (Vitis Vinifera) cultivars grown in Douro region, Portugal. Ciênc. Téc. Vitiviníc. 2018, 33, 125–135. [Google Scholar] [CrossRef]
- Silva, V.; Igrejasb, G.; Falcoe, V.; Santos, T.P.; Torres, C.; Oliveira, A.M.P.; Pereira, J.E.; Amarali, J.S.; Poeta, P. Chemical composition, antioxidant and antimicrobial activity of phenolic compounds extracted from wine industry by-products. Food Control 2018, 92, 516–522. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Liu, R.H.; Martinson, T.E. Phytochemical profiles and antioxidant activities of wine grapes. Food Chem. 2009, 116, 332–339. [Google Scholar] [CrossRef]
- Fernandes, F.; Ramalhosa, E.; Pires, P.; Verdial, J.; Valentão, P.; Andrade, P.; Bento, A.; Pereira, J.A. Vitis vinifera leaves towards bioactivity. Ind. Crop. Prod. 2013, 43, 434–440. [Google Scholar] [CrossRef]
- Choi, J.S.; Chung, H.Y.; Kang, S.S.; Jung, M.J.; Kim, J.W.; No, J.K.; Jung, H.A. The structure-activity relationship of flavonoids as scavenger of peroxynitrite. Phyther. Res. 2002, 16, 232–235. [Google Scholar] [CrossRef] [PubMed]
- Sadeghipour, M.; Terreux, R.; Phipps, J. Flavonoids and tyrosine nitration: Structure-activity relationship correlation with enthalpy of formation. Toxicol. Vitr. 2005, 19, 155–165. [Google Scholar] [CrossRef] [PubMed]
Variety | pH | Brix Degree | Total Acidity 1 |
---|---|---|---|
Red | |||
Tempranillo | 3.18 ± 0.02 e | 24.6 ± 0.0 g | 5.2 ± 0.0 g |
Garnacha | 3.28 ± 0.02 g | 29.8 ± 0.0 l | 4.4 ± 0.0 d |
Cabernet sauvignon | 3.47 ±0.01 h | 25.2 ± 0.0 h | 4.2 ± 0.0 c |
Graciano | 3.21 ± 0.02 f | 22.6 ± 0.0 d | 4.9 ± 0.0 e |
Hondarrabi beltza | 3.17 ± 0.02 e | 17.8 ± 0.0 a | 8.3 ± 0.0 j |
Maturana tinta | 3.52 ± 0.03 i | 26.4 ± 0.0 k | 4.1 ± 0.0 b |
Mazuelo | 3.11 ± 0.02 d | 21.6 ± 0.0 c | 6.4 ± 0.0 h |
White | |||
Hondarrabi zuri | 2.80 ± 0.01 b | 20.2 ± 0.0 b | 10.0 ± 0.1 k |
Petit courbu | 2.81 ± 0.03 b | 20.2 ± 0.0 b | 10.6 ± 0.0 k |
Petit manseng | 3.04 ± 0.01 c | 24.4 ± 0.0 f | 7.5 ± 0.0 i |
Gross manseng | 2.75 ± 0.02 a | 23.4 ± 0.0 d | 10.9 ± 0.0 l |
Malvasía | 3.53 ± 0.01 i | 26.0 ± 0.0 i | 4.0 ± 0.0 a |
Viura | 3.21 ± 0.01 f | 26.2 ± 0.0 j | 5.1 ± 0.0 f |
Variety | Total Phenolic Content | Hydroxycinnamic Acids | Anthocyanins | Flavonols | Flavan-3-ols | Tannins |
---|---|---|---|---|---|---|
Red | ||||||
Tempranillo | 20.26 ± 0.32 f | 16.56 ± 0.11 g | 5.48 ± 0.08 d | 1.21 ± 0.00 g | 3.05 ± 0.05 h | 23.35 ± 0.81 i |
Garnacha | 13.87 ± 0.43 c | 11.50 ± 0.08 c,d | 3.40 ± 0.01 c | 1.14 ± 0.01 f | 2.31 ± 0.05 d | 15.88 ± 0.38 d,e |
Cabernet sauvignon | 21.71 ± 0.31 g | 13.60 ± 1.21 e | 1.35 ± 0.06 b | 1.10 ± 0.01 f | 2.92 ± 0.02 g | 16.68 ± 0.03 f |
Graciano | 22.33 ± 0.65 g | 18.20 ± 1.38 h | 8.12 ± 0.12 e | 1.36 ± 0.02 h | 3.53 ± 0.09 i | 24.68 ± 0.46 j |
Hondarrabi beltza | 17.49 ± 0.30 e | 11.02 ± 0.06 c,d | 1.06 ± 0.03 a | 0.61 ± 0.01 b | 2.52 ± 0.03 e | 13.95 ± 0.66 c |
Maturana tinta | 24.95 ± 1.07 h | 20.40 ± 0.16 i | 11.19 ± 0.15 g | 1.95 ± 0.02 j | 2.72 ± 0.05 f | 32.39 ± 0.25 k |
Mazuelo | 14.88 ± 0.07 d | 9.26 ± 0.21 b | 9.27 ± 0.22 f | 1.31 ± 0.03 h | 1.47 ± 0.01 c | 20.88 ± 0.36 h |
White | ||||||
Hondarrabi zuri | 24.97 ± 0.26 h | 14.71 ± 0.50 f | - | 0.85 ± 0.01 e | 4.77 ± 0.16 k | 18.37 ± 0.40 g |
Petit courbu | 17.35 ± 0.12 e | 10.49 ± 0.44 c | - | 0.61 ± 0.02 b | 3.00 ± 0.02 g,h | 9.39 ± 0.24 b |
Petit manseng | 22.22 ± 0.46 g | 13.06 ± 0.22 e | - | 0.73 ± 0.00 d | 4.21 ± 0.09 j | 16.36 ± 0.19 e,f |
Gross manseng | 20.88 ± 0.63 f | 11.74 ± 0.05 d | - | 0.66 ± 0.01 c | 4.12 ± 0.00 j | 15.57 ± 0.14 d |
Malvasía | 4.69 ± 0.21 a | 2.74 ± 0.09 a | - | 0.60 ± 0.05 b | 0.47 ± 0.01 a | 4.81 ± 0.06 a |
Viura | 7.34 ± 0.51 b | 3.04 ± 0.33 a | - | 0.49 ± 0.02 a | 0.72 ± 0.06 b | 5.03 ± 0.19 a |
Variety | ORAC | DPPH | FRAP | CUPRAC | ABTS |
---|---|---|---|---|---|
Red | |||||
Tempranillo | 335.09 ± 25.52 d | 230.67 ± 11.71 j | 113.14 ± 2.86 f | 201.78 ± 8.91 i | 159.79 ± 7.10 c,d |
Garnacha | 254.94 ± 12.06 c | 134.53 ± 3.81 c | 76.38 ± 2.30 d | 146.85 ± 0.60 e | 206.90 ± 0.75 h,i |
Cabernet sauvignon | 371.44 ± 23.64 e,f | 164.56 ± 14.74 e,f | 93.27 ± 3.36 e | 154.82 ± 4.92 e | 169.87 ± 10.37 d,e |
Graciano | 397.90 ± 6.23 f,g | 193.29 ± 14.45 g,h | 110.10 ± 4.16 f | 174.25 ± 4.77 g | 155.79 ± 8.91 b,c |
Hondarrabi beltza | 333.26 ± 14.62 d | 144.54 ± 18.99 c,d | 67.75 ± 3.34 c | 122.72 ± 2.67 c | 196.17 ± 2.03 g,h |
Maturana tinta | 412.90 ± 9.67 g,h | 220.78 ± 4.23 i,j | 124.38 ± 2.06 g | 196.29 ± 10.41 h,i | 164.35 ± 7.68 c,d |
Mazuelo | 396.31 ± 6.73 f,g | 72.95 ± 2.21 b | 54.43 ± 0.34 b | 96.24 ± 1.23 b | 220.82 ± 4.48 i |
White | |||||
Hondarrabi zuri | 440.11 ± 39.33 h | 206.80 ± 10.45 h,i | 114.06 ± 10.44 f | 189.49 ± 8.21 h | 129.87 ± 13.49 a |
Petit courbu | 383.04 ± 7.83 e,f | 148.47 ± 12.85 c,d,e | 70.18 ± 2.14 c,d | 136.07 ± 1.12 d | 191.42 ± 4.09 f,g |
Petit manseng | 421.47 ± 4.24 g,h | 175.75 ± 15.51 f,g | 90.82 ± 2.97 e | 169.62 ± 4.70 f,g | 142.97 ± 13.98 a,b |
Gross manseng | 365.54 ± 10.19 e | 155.65 ± 8.26 d,e | 94.20 ± 6.80 e | 163.70 ± 4.30 f | 181.34 ± 2.27 e,f |
Malvasía | 102.28 ± 2.22 a | 29.50 ± 1.57 a | 14.36 ± 0.33 a | 45.54 ± 2.63 a | 288.75 ± 1.26 j |
Viura | 146.49 ± 6.40 b | 38.64 ± 2.56 a | 19.38 ± 1.43 a | 50.63 ± 2.98 a | 276.02 ± 6.63 j |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Elejalde, E.; Villarán, M.C.; Lopez-de-Armentia, I.; Ramón, D.; Murillo, R.; Alonso, R.M. Study of Unpicked Grapes Valorization: A Natural Source of Polyphenolic Compounds and Evaluation of Their Antioxidant Capacity. Resources 2022, 11, 33. https://doi.org/10.3390/resources11030033
Elejalde E, Villarán MC, Lopez-de-Armentia I, Ramón D, Murillo R, Alonso RM. Study of Unpicked Grapes Valorization: A Natural Source of Polyphenolic Compounds and Evaluation of Their Antioxidant Capacity. Resources. 2022; 11(3):33. https://doi.org/10.3390/resources11030033
Chicago/Turabian StyleElejalde, Edurne, María Carmen Villarán, Iratxe Lopez-de-Armentia, Daniel Ramón, Raquel Murillo, and Rosa María Alonso. 2022. "Study of Unpicked Grapes Valorization: A Natural Source of Polyphenolic Compounds and Evaluation of Their Antioxidant Capacity" Resources 11, no. 3: 33. https://doi.org/10.3390/resources11030033
APA StyleElejalde, E., Villarán, M. C., Lopez-de-Armentia, I., Ramón, D., Murillo, R., & Alonso, R. M. (2022). Study of Unpicked Grapes Valorization: A Natural Source of Polyphenolic Compounds and Evaluation of Their Antioxidant Capacity. Resources, 11(3), 33. https://doi.org/10.3390/resources11030033