Vulnerability in a Populated Coastal Zone and Its Influence by Oil Wells in Santa Elena, Ecuador
Abstract
:1. Introduction
Study Area
2. Materials and Methods
2.1. DIPS Methodology Proposal
2.2. DIPS Variables
2.2.1. Distance from Oil Wells to Populated Areas
2.2.2. Distance from Oil Wells to Water Bodies
2.2.3. Identification of Gas Emission from Oil Wells
2.2.4. Permeability of Soil around Oil Wells
2.2.5. State of the Oil Wells
3. Results
Application of the DIPS Methodology
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vorobev, V.; Safarov, I.; Mostovoy, P.; Shakirzyanov, L.; Fagereva, V. Best practices of exploration: Integration of seismic and electrical prospecting. In Proceedings of the SPE Annual Technology Conference Exhibition, Calgary, AB, Canada, 23 September 2019. [Google Scholar] [CrossRef]
- Antonenko, D.A.; Islamov, R.A.; Stavinsky, P.V.; Yatsenko, V.M. A system approach to vankorskoye oilfield development planning. In Proceedings of the SPE Russian Oil Gas Technology Conference Exhibition, Moscow, Russia, 3 October 2006; Volume 2, pp. 1067–1076. [Google Scholar] [CrossRef]
- Ruble, I. The U.S. crude oil refining industry: Recent developments, upcoming challenges and prospects for exports. J. Econ. Asymmetries 2019, 20, e00132. [Google Scholar] [CrossRef]
- Abdou, H.A.M. Case study in upgrading capability of a crude oil pipeline for maximum transportation capacity. In Proceedings of the Society Petroleum Engineers-North Africa Technology Conference Exhibition, NATC 2013, Cairo, Egypt, 15–17 April 2013; Volume 1, pp. 203–219. [Google Scholar] [CrossRef]
- Iwegbue, C.M.A.; Bebenimibo, E.; Tesi, G.O.; Egobueze, F.E.; Martincigh, B.S. Spatial characteristics and risk assessment of polychlorinated biphenyls in surficial sediments around crude oil production facilities in the Escravos River Basin, Niger Delta, Nigeria. Mar. Pollut. Bull. 2020, 159, 111462. [Google Scholar] [CrossRef]
- Zhao, J.; Fan, J.; He, Y.; Yang, Z.; Gao, W.; Gao, W. Optimization of horizontal well injection-production parameters for ultra-low permeable-tight oil production: A case from Changqing Oilfield, Ordos Basin, NW China. Pet. Explor. Dev. 2015, 42, 74–82. [Google Scholar] [CrossRef]
- Chilingar, G.V.; Endres, B. Environmental hazards posed by the Los Angeles Basin urban oilfields: An historical perspective of lessons learned. Environ. Geol. 2005, 47, 302–317. [Google Scholar] [CrossRef]
- Shamasunder, B.; Collier-Oxandale, A.; Blickley, J.; Sadd, J.; Chan, M.; Navarro, S.; Hannigan, M.; Wong, N.J. Community-based health and exposure study around urban oil developments in South Los Angeles. Int. J. Environ. Res. Public Health 2018, 15, 138. [Google Scholar] [CrossRef] [PubMed]
- Gatto, A.; Loewenstein, W.; Sadik-Zada, E.R. An extensive data set on energy, economy, environmental pollution and institutional quality in the petroleum-reliant developing and transition economies. Data Br. 2021, 35, 106766. [Google Scholar] [CrossRef]
- Chandel, A.K.; Sukumaran, R.K. Sustainable biofuels Development in India, 1st ed.; Springer: Cham, Switzerland, 2017; pp. 1–557. [Google Scholar] [CrossRef]
- García-Chiang, A. Corporate social responsibility in the Mexican oil industry: Social impact assessment as a tool for local development. Int. J. Corp. Soc. Responsib. 2018, 3, 1–8. [Google Scholar] [CrossRef]
- Amir-Heidari, P.; Raie, M. Probabilistic risk assessment of oil spill from offshore oil wells in Persian Gulf. Mar. Pollut. Bull. 2018, 136, 291–299. [Google Scholar] [CrossRef]
- Bakkensen, L.A.; Fox-Lent, C.; Read, L.K.; Linkov, I. Validating Resilience and Vulnerability Indices in the Context of Natural Disasters. Risk Anal. 2017, 37, 982–1004. [Google Scholar] [CrossRef] [PubMed]
- Scholz, R.W.; Blumer, Y.B.; Brand, F.S. Risk, vulnerability, robustness, and resilience from a decision-theoretic perspective. J. Risk Res. 2012, 15, 313–330. [Google Scholar] [CrossRef]
- Cutter, S.L. Vulnerability to hazards. Prog. Hum. Geogr. 1996, 20, 529–539. [Google Scholar] [CrossRef]
- Ahsan, M.N.; Warner, J. The socioeconomic vulnerability index: A pragmatic approach for assessing climate change led risks-A case study in the south-western coastal Bangladesh. Int. J. Disaster Risk Reduct. 2014, 8, 32–49. [Google Scholar] [CrossRef]
- Turconi, L.; Luino, F.; Gussoni, M.; Faccini, F.; Giardino, M.; Casazza, M. Intrinsic environmental vulnerability as shallow landslide susceptibility in environmental impact assessment. Sustainability 2019, 11, 6285. [Google Scholar] [CrossRef]
- Cohen, A. The multidimensional poverty assessment tool: A new framework for measuring rural poverty. Dev. Pract. 2010, 20, 887–897. [Google Scholar] [CrossRef]
- Suidarma, M.I.; Anggaradana, N.I.; Nengah, G.I.; Indrawati, Y. Financial System Vulnerability Indicators in Indonesia. Int. J. Econ. Financ. Issues 2017, 7, 299–306. [Google Scholar]
- Marzo, E.; Busini, V.; Rota, R. Definition of a short-cut methodology for assessing the vulnerability of a territory in natural-technological risk estimation. Reliab. Eng. Syst. Saf. 2015, 134, 92–97. [Google Scholar] [CrossRef]
- Guillard-Gonçalves, C.; Zêzere, J.L. Combining social vulnerability and physical vulnerability to analyse landslide risk at the municipal scale. Geoscience 2018, 8, 294. [Google Scholar] [CrossRef]
- Yariyan, P.; Avand, M.; Soltani, F.; Ghorbanzadeh, O.; Blaschke, T. Earthquake vulnerability mapping using different hybrid models. Symmetry 2020, 12, 405. [Google Scholar] [CrossRef]
- Yang, W.; Xu, K.; Lian, J.; Bin, L.; Ma, C. Multiple flood vulnerability assessment approach based on fuzzy comprehensive evaluation method and coordinated development degree model. J. Environ. Manag. 2018, 213, 440–450. [Google Scholar] [CrossRef]
- Granda, S.; Ferreira, T.M. Assessing Vulnerability and Fire Risk in Old Urban Areas: Application to the Historical Centre of Guimarães. Fire Technol. 2019, 55, 105–127. [Google Scholar] [CrossRef]
- Das, P.; Talukdar, S.; Ziaul, S.; Das, S.; Pal, S. Noise mapping and assessing vulnerability in meso level urban environment of Eastern India. Sustain. Cities Soc. 2019, 46, 101416. [Google Scholar] [CrossRef]
- Zhao, J.; Ji, G.; Tian, Y.; Chen, Y.; Wang, Z. Environmental vulnerability assessment for mainland China based on entropy method. Ecol. Indic. 2018, 91, 410–422. [Google Scholar] [CrossRef]
- He, L.; Shen, J.; Zhang, Y. Ecological vulnerability assessment for ecological conservation and environmental management. J. Environ. Manag. 2018, 206, 1115–1125. [Google Scholar] [CrossRef] [PubMed]
- Sahoo, S.; Dhar, A.; Kar, A. Environmental vulnerability assessment using Grey Analytic Hierarchy Process based model. Environ. Impact Assess. Rev. 2016, 56, 145–154. [Google Scholar] [CrossRef]
- Ho, H.C.; Wong, M.S.; Man, H.Y.; Shi, Y.; Abbas, S. Neighborhood-based subjective environmental vulnerability index for community health assessment: Development, validation and evaluation. Sci. Total Environ. 2019, 654, 1082–1090. [Google Scholar] [CrossRef] [PubMed]
- Ghajari, Y.E.; Alesheikh, A.A.; Modiri, M.; Hosnavi, R.; Abbasi, M. Spatial modelling of urban physical vulnerability to explosion hazards using GIS and fuzzy MCDA. Sustainability 2017, 9, 1274. [Google Scholar] [CrossRef]
- Jamshed, A.; Rana, I.A.; Mirza, U.M.; Birkmann, J. Assessing relationship between vulnerability and capacity: An empirical study on rural flooding in Pakistan. Int. J. Disaster Risk Reduct. 2019, 36, 101109. [Google Scholar] [CrossRef]
- Torresan, S.; Critto, A.; Dalla Valle, M.; Harvey, N.; Marcomini, A. Assessing coastal vulnerability to climate change: Comparing segmentation at global and regional scales. Sustain. Sci. 2008, 3, 45–65. [Google Scholar] [CrossRef]
- Sahoo, B.; Bhaskaran, P.K. Multi-hazard risk assessment of coastal vulnerability from tropical cyclones–A GIS based approach for the Odisha coast. J. Environ. Manag. 2018, 206, 1166–1178. [Google Scholar] [CrossRef]
- Yu, X.; Michael, H.A. Offshore Pumping Impacts Onshore Groundwater Resources and Land Subsidence. Geophys. Res. Lett. 2019, 46, 2553–2562. [Google Scholar] [CrossRef]
- Fatoba, P.O.; Ogunkunle, C.O.; Folarin, O.O.; Oladele, F.A. Heavy metal pollution and ecological geochemistry of soil impacted by activities of oil industry in the Niger Delta, Nigeria. Environ. Earth Sci. 2016, 75, 1–9. [Google Scholar] [CrossRef]
- Reale, M.; Costantini, E.; D’angelo, C.; Coppeta, L.; Mangifesta, R.; Jagarlapoodi, S.; Di Nicola, M.; Di Giampaolo, L. Network between cytokines, cortisol and occupational stress in gas and oilfield workers. Int. J. Mol. Sci. 2020, 21, 1118. [Google Scholar] [CrossRef]
- Ochege, F.U.; George, R.T.; Dike, E.C.; Okpala-Okaka, C. Geospatial assessment of vegetation status in Sagbama oilfield environment in the Niger Delta region, Nigeria. Egypt. J. Remote Sens. Sp. Sci. 2017, 20, 211–221. [Google Scholar] [CrossRef]
- Herrera-Franco, G.; Montalván-Burbano, N.; Mora-Frank, C.; Moreno-Alcívar, L. Research in Petroleum and Environment: A Bibliometric Analysis in South America. Int. J. Sustain. Dev. Plan. 2021, 16, 1109–1116. [Google Scholar] [CrossRef]
- Gupta, E. Oil vulnerability index of oil-importing countries. Energy Policy 2008, 36, 1195–1211. [Google Scholar] [CrossRef]
- Castanedo, S.; Juanes, J.A.; Medina, R.; Puente, A.; Fernandez, F.; Olabarrieta, M.; Pombo, C. Oil spill vulnerability assessment integrating physical, biological and socio-economical aspects: Application to the Cantabrian coast (Bay of Biscay, Spain). J. Environ. Manag. 2009, 91, 149–159. [Google Scholar] [CrossRef] [PubMed]
- de Andrade, M.M.N.; Szlafsztein, C.F.; Souza-Filho, P.W.M.; dos Araújo, A.R.; Gomes, M.K.T. A socioeconomic and natural vulnerability index for oil spills in an Amazonian harbor: A case study using GIS and remote sensing. J. Environ. Manag. 2010, 91, 1972–1980. [Google Scholar] [CrossRef]
- Olita, A.; Cucco, A.; Simeone, S.; Ribotti, A.; Fazioli, L.; Sorgente, B.; Sorgente, R. Oil spill hazard and risk assessment for the shorelines of a Mediterranean coastal archipelago. Ocean Coast. Manag. 2012, 57, 44–52. [Google Scholar] [CrossRef]
- Frazão Santos, C.; Carvalho, R.; Andrade, F. Quantitative assessment of the differential coastal vulnerability associated to oil spills. J. Coast. Conserv. 2013, 17, 25–36. [Google Scholar] [CrossRef]
- Ghalwash, G. Elkawam Updated Oil Spill Risk Assessment for The Gulf Of Suez. In Management Information Systems; Brebbia, C.A., Ed.; WIT Press: Chilworth, UK, 2004; pp. 463–472. ISBN 978-1-85312-736-6. [Google Scholar]
- Barbosa-Monteiro, C.B.; Haron, P.H.; Fagundes Leal, T.F.; Correa Marques, W.; Nicolodi, J.L.; Lopes, B.F. Integrated environmental vulnerability to oil spills in sensitive areas. Environ. Pollut. 2020, 267, 115238. [Google Scholar] [CrossRef]
- Wang, Z.; Wu, Q.; Zhang, Y.; Cheng, J. Confined groundwater pollution mechanism and vulnerability assessment in oilfields, North China. Environ. Earth Sci. 2011, 64, 1547–1553. [Google Scholar] [CrossRef]
- Loveless, S.E.; Lewis, M.A.; Bloomfield, J.P.; Davey, I.; Ward, R.S.; Hart, A.; Stuart, M.E. A method for screening groundwater vulnerability from subsurface hydrocarbon extraction practices. J. Environ. Manag. 2019, 249, 109349. [Google Scholar] [CrossRef] [PubMed]
- Gemitzi, A.; Petalas, C.; Tsihrintzis, V.A.; Pisinaras, V. Assessment of groundwater vulnerability to pollution: A combination of GIS, fuzzy logic and decision making techniques. Environ. Geol. 2006, 49, 653–673. [Google Scholar] [CrossRef]
- Zhang, H.; Lu, P.; Zhang, D.; Kou, S.; Bao, K.; Li, C.; Wang, J.; Mao, Y. Watershed-scale assessment of surface water-related risks from shale gas development in mountainous areas, China. J. Environ. Manag. 2021, 279, 111589. [Google Scholar] [CrossRef]
- Mortamais, M.; Pujol, J.; van Drooge, B.L.; Macià, D.; Martínez-Vilavella, G.; Reynes, C.; Sabatier, R.; Rivas, I.; Grimalt, J.; Forns, J.; et al. Effect of exposure to polycyclic aromatic hydrocarbons on basal ganglia and attention-deficit hyperactivity disorder symptoms in primary school children. Environ. Int. 2017, 105, 12–19. [Google Scholar] [CrossRef]
- Lieske, D.J.; Fifield, D.A.; Gjerdrum, C. Maps, models, and marine vulnerability: Assessing the community distribution of seabirds at-sea. Biol. Conserv. 2014, 172, 15–28. [Google Scholar] [CrossRef]
- Fauchald, P.; Erikstad, K.E.; Systad, G.H. Seabirds and marine oil incidents: Is it possible to predict the spatial distribution of pelagic seabirds? J. Appl. Ecol. 2002, 39, 349–360. [Google Scholar] [CrossRef]
- Golden, N.H.; Rattner, B.A. Ranking Terrestrial Vertebrate Species for Utility in Biomonitoring and Vulnerability to Environmental Contaminants. In Reviews of Environmental Contamination and Toxicology; Ware, G.W., Ed.; Springer: Berlin/Heidelberg, Germany, 2003; Volume 176, pp. 67–136. [Google Scholar]
- Mohammadfam, I.; Zarei, E. Safety risk modeling and major accidents analysis of hydrogen and natural gas releases: A comprehensive risk analysis framework. Int. J. Hydr. Energy 2015, 40, 13653–13663. [Google Scholar] [CrossRef]
- Dismukes, D.; Narra, S. Identifying the Vulnerabilities of Working Coasts Supporting Critical Energy Infrastructure. Water 2015, 8, 8. [Google Scholar] [CrossRef]
- Wijewickreme, D.; Honegger, D.; Mitchell, A.; Fitzell, T. Seismic Vulnerability Assessment and Retrofit of a Major Natural Gas Pipeline System: A Case History. Earthq. Spectr. 2005, 21, 539–567. [Google Scholar] [CrossRef]
- Taleb-Berrouane, M.; Khan, F.; Hawboldt, K.; Eckert, R.; Skovhus, T.L. Model for microbiologically influenced corrosion potential assessment for the oil and gas industry. Corros. Eng. Sci. Technol. 2018, 53, 378–392. [Google Scholar] [CrossRef]
- Bajpai, S.; Gupta, J.P. Securing oil and gas infrastructure. J. Pet. Sci. Eng. 2007, 55, 174–186. [Google Scholar] [CrossRef]
- Hassani, M.; Chaib, R.; Bouzerara, R. Vulnerability Assessment for Major Industrial Risks Proposal for a Semiquantitative Analysis Method (VAMIR) Application: Oil and Gas Industry. J. Fail. Anal. Prev. 2020, 20, 1568–1582. [Google Scholar] [CrossRef]
- Benalcazar, F.L.; Valdivieso, S. Successful Execution of an Exploratory Drilling Program Within Extremely Sensitive Environments in Ecuador. In Proceedings of the SPE Latin American and Caribbean Petroleum Engineering Conference, Quito, Ecuador, 18–20 November 2015; Volume 1. [Google Scholar] [CrossRef]
- Arild, O.; Ford, E.P.; Lohne, H.P.; Majoumerd, M.M.; Havlova, V. A Comparison of FEP-analysis and Barrier Analysis for CO2 Leakage Risk Assessment on an Abandoned Czech Oilfield. Energy Procedia 2017, 114, 4237–4255. [Google Scholar] [CrossRef]
- Schilling, J.; Akuno, M.; Scheffran, J.; Weinzierl, T. On raids and relations: Climate change, pastoral conflict and adaptation in north-western Kenya. In Conflict-Sensitive Adaptation to Climate Change in Africa; Bronkhorst, S., Urmilla, B., Eds.; Berliner Wissenschaftsverlag: Berlin, Germany, 2014; pp. 241–268. ISBN 978-3-8305-2010-8. [Google Scholar]
- Schilling, J.; Locham, R.; Weinzierl, T.; Vivekananda, J.; Scheffran, J. The nexus of oil, conflict, and climate change vulnerability of pastoral communities in northwest Kenya. Earth Syst. Dyn. 2015, 6, 703–717. [Google Scholar] [CrossRef]
- Romero, A.F.; Abessa, D.M.S.; Fontes, R.F.C.; Silva, G.H. Integrated assessment for establishing an oil environmental vulnerability map: Case study for the Santos Basin region, Brazil. Mar. Pollut. Bull. 2013, 74, 156–164. [Google Scholar] [CrossRef] [PubMed]
- Câmara, S.F.; Pinto, F.R.; da Silva, F.R.; de Soares, M.O.; De Paula, T.M. Socioeconomic vulnerability of communities on the Brazilian coast to the largest oil spill (2019–2020) in tropical oceans. Ocean Coast. Manag. 2021, 202, 5506. [Google Scholar] [CrossRef]
- Llerena-Montoya, S.; Velastegui-Montoya, A.; Zhirzhan-Azanza, B.; Herrera-Matamoros, V.; Adami, M.; De Lima, A.; Moscoso-Silva, F.; Encalada, L. Multitemporal analysis of land use and land cover within an oil block in the ecuadorian amazon. ISPRS Int. J. Geo-Inf. 2021, 10, 191. [Google Scholar] [CrossRef]
- GAD Santa Elena Plan de Desarrollo y Ordenamiento Territorial-Cantón Santa Elena 2014–2019. Available online: http://app.sni.gob.ec/sni-link/sni/PORTAL_SNI/data_sigad_plus/sigadplusdiagnostico/0960001540001_PlandeDesarrolloyOrdenamientoTerritorial30-01-2015-2fin_19-02-2015_09-41-20.pdf (accessed on 8 August 2021).
- GAD La Libertad Plan de Desarrollo y Ordenamiento Territorial. Available online: http://app.sni.gob.ec/sni-link/sni/PORTAL_SNI/data_sigad_plus/sigadplusdiagnostico/0960006340001_DiagnosticoCantonLaLibertad_14-03-2015_20-08-55.pdf (accessed on 8 August 2021).
- Inec Proyección De La Población Ecuatoriana, Por Años Calendario, Según Cantones 2010-2020. Available online: https://www.obraspublicas.gob.ec/wp-content/uploads/downloads/2017/03/proyeccion_cantonal_total_2010-202012016-v1.pdf (accessed on 29 September 2021).
- Mestanza, C.; Botero, C.M.; Anfuso, G.; Chica-Ruiz, J.A.; Pranzini, E.; Mooser, A. Beach litter in Ecuador and the Galapagos islands: A baseline to enhance environmental conservation and sustainable beach tourism. Mar. Pollut. Bull. 2019, 140, 573–578. [Google Scholar] [CrossRef]
- Estrada, J. Ancón En La Historia Petrolera Del Ecuador 1911-1976; ESPOL: Guayaquil, Ecuador, 2001; ISBN 9978-41-794-X. [Google Scholar]
- Moreno, J.; Sevillano, G.; Valverde, O.; Loayza, V.; Haro, R.; Zambrano, J. Soil from the Coastal Plane. In The Soils of Ecuador; Springer: Berlin/Heidelberg, Germany, 2018; pp. 27–77. ISBN 9783319253190. [Google Scholar]
- Bengtson, N.A. Some essential features of the geography of the santa elena peninsula, ecuador. Ann. Assoc. Am. Geogr. 1924, 14, 150–158. [Google Scholar] [CrossRef]
- Herrera-Franco, G.; Carrión-Mero, P.; Alvarado, N.; Morante-Carballo, F.; Maldonado, A.; Caldevilla, P.; Briones-Bitar, J.; Berrezueta, E. Geosites and georesources to foster geotourism in communities: Case study of the santa elena peninsula geopark project in Ecuador. Sustainability 2020, 12, 4484. [Google Scholar] [CrossRef]
- Herrera-Franco, G.; Erazo, K.; Mora-Frank, C.; Carrión-Mero, P.; Berrezueta, E. Evaluation of a Paleontological Museum as Geosite and Base for Geotourism. A Case Study. Heritage 2021, 4, 67. [Google Scholar] [CrossRef]
- Jaillard, É.; Ordoñez, M.; Benitez, S.; Berrones, G.; Jiménez, N.; Montenegro, G.; Zambrano, I. Basin Development in an Accretionary, Oceanic-Floored Fore-Arc Setting: Southern Coastal Ecuador During Late Cretaceous-Late Eocene Time. In Petroleum Basins of South America, 1st ed.; Tankard, A.J., Suárez Soruco, R., Welsink, H.J., Eds.; American Association of Petroleum Geologists: Tulsa, OK, USA, 1995; Volume 62, pp. 615–631. [Google Scholar] [CrossRef]
- Antenor Alemán, M.; Montenegro, G.; Palencia, A.; Lezama, E. Comentario al artículo “Correlación geoquímica entre crudos y rocas del sistema petrolero de la península de Santa Elena y el golfo de Guayaquil” por Lorenzo et al. Bol. Geol. 2019, 41, 151–157. [Google Scholar] [CrossRef]
- Nuñez, E.; Dugas, F. Guía Geológica del Suoreste de la Costa Ecuatoriana. J. Chem. Inf. Model. 1986, 53, 1689–1699. [Google Scholar]
- Higley, D.K. The Progreso Basin Province of Northwestern Peru and Sothwestern Ecuador: Neogene and Cretaceous-Paleogene Total Petroleum Systems. In USA Geological Survey Bulletin 2206-B; USA Department of the Interior: Washington, DC, USA, 2004. [Google Scholar]
- Petroecuador, E. El petróleo: Su formación, desarrollo y mercado. In El Petróleo En El Ecuador Nueva Era Petrolera; Gobierno de Ecuador: Quito, Ecuador, 2013; pp. 13–33. [Google Scholar]
- Rashid, A.K.M.M. Understanding Vulnerability and Risks. In Disaster Risk Reduction; Springer: Berlin/Heidelberg, Germany, 2013; pp. 23–43. ISBN 9784431542520. [Google Scholar]
- Dewan, A.M. Floods in a Megacity: Geospatial Techniques in Assessing Hazards, Risk and Vulnerability; Springer: Berlin/Heidelberg, Germany, 2013; ISBN 9789400758759. [Google Scholar]
- Barrios, M.; Guilera, G.; Nuño, L.; Gómez-Benito, J. Consensus in the delphi method: What makes a decision change? Technol. Forecast. Soc. Chang. 2021, 163, 120484. [Google Scholar] [CrossRef]
- Aller, L.; Bennett, T.; Lehr, J.H.; Petty, R.J.; Hackett, G. DRASTIC: A Standardized Method for Evaluating Ground Water Pollution Potential Using Hydrogeologic Settings; NWWA/Epa-600/2-87-035; Robert, S., Ed.; Kerr Environmental Research Laboratory: Ada, OK, USA, 1987; p. 455. [Google Scholar]
- Hignett, S.; McDermott, H. Qualitative Methodology. In Evaluation of Human Work; Taylor & Francis Group: Boca Raton, FL, USA, 2015; pp. 119–138. ISBN 9781466559615. [Google Scholar]
- Scholl, A. Quantitative methodology. Int. Encycl. Commun. 2015, 1, 67–74. [Google Scholar] [CrossRef]
- ESRI ArcGis Pro. Environmental Systems Research Institute, Inc. (ESRI), California, United States. Available online: https://www.esri.com/en-us/arcgis/products/arcgis-pro/overview (accessed on 18 December 2021).
- Huang, L.; Wang, Y.; Pei, S.; Cui, G.; Zhang, L.; Ren, S.; Zhang, Z.; Wang, N. Effect of elevated pressure on the explosion and flammability limits of methane-air mixtures. Energy 2019, 186, 115840. [Google Scholar] [CrossRef]
- Kang, M.; Kanno, C.M.; Reid, M.C.; Zhang, X.; Mauzerall, D.L.; Celia, M.A.; Chen, Y.; Onstott, T.C. Direct measurements of methane emissions from abandoned oil and gas wells in Pennsylvania. Proc. Natl. Acad. Sci. USA 2014, 111, 18173–18177. [Google Scholar] [CrossRef]
- MAE Mapa Interactivo. Available online: http://ide.ambiente.gob.ec/mapainteractivo/ (accessed on 18 December 2021).
- Gad La Libertad La Ordenanza Que Regula El Uso Del Suelo Y El Desarrollo Urbano En Zonas De Actividad Hidrocarburífera En El Cantón. Available online: Lalibertad.gob.ec/municipio/clases/download/ley/descarga/3610.pdf (accessed on 10 October 2021).
- Los Angeles Municipal Code Sec. 91.6105. Separation from Oil Wells. Available online: https://codelibrary.amlegal.com/codes/los_angeles/latest/lamc/0-0-0-176574#JD_91.6105 (accessed on 8 August 2021).
- Carter, H.H.; Najarian, T.O.; Pritchard, D.W.; Wilson, R.E. The dynamics of motion in estuaries and other coastal water bodies. Rev. Geophys. 1979, 17, 1585. [Google Scholar] [CrossRef]
- Lindegaard, C. Classification of water-bodies and pollution. In The Chironomidae; Springer: Dordrecht, The Netherlands, 1995; pp. 385–404. [Google Scholar]
- Lebel, E.D.; Lu, H.S.; Vielstädte, L.; Kang, M.; Banner, P.; Fischer, M.L.; Jackson, R.B. Methane Emissions from Abandoned Oil and Gas Wells in California. Environ. Sci. Technol. 2020, 54, 14617–14626. [Google Scholar] [CrossRef]
- Christian, S.; Celia, M.A.; Mauzerall, D.L.; Bill, M.; Miller, A.R.; Chen, Y.; Conrad, M.E.; Darrah, T.H.; Jackson, R.B. Correction: Identification and characterization of high methane-emitting abandoned oil and gas wells. Proc. Natl. Acad. Sci. USA 2016, 113, 13636–13641. [Google Scholar] [CrossRef]
- Kumar, N.; Gupta, H. Methane: Risk assessment, environmental, and health hazard. In Hazard. Gases, 1st ed.; Singh, J., Kaushik, R.D., Chawla, M., Eds.; Academic Press: London, UK, 2021; pp. 225–238. [Google Scholar] [CrossRef]
- McKain, K.; Down, A.; Raciti, S.M.; Budney, J.; Hutyra, L.R.; Floerchinger, C.; Herndon, S.C.; Nehrkorn, T.; Zahniser, M.S.; Jackson, R.B.; et al. Methane emissions from natural gas infrastructure and use in the urban region of Boston, Massachusetts. Proc. Natl. Acad. Sci. USA 2015, 112, 1941–1946. [Google Scholar] [CrossRef] [PubMed]
- Herrera-Franco, G.; Escandón-Panchana, P.; Erazo, K.; Mora-Frank, C.; Berrezueta, E. Geoenvironmental analysis of oil extraction activities in urban and rural zones of Santa Elena Province, Ecuador. Int. J. Energy Prod. Manag. 2021, 6, 211–228. [Google Scholar] [CrossRef]
- Dejam, M.; Hassanzadeh, H.; Chen, Z. Pre-Darcy Flow in Porous Media. Water Resour. Res. 2017, 53, 8187–8210. [Google Scholar] [CrossRef]
- McMahon, P.B.; Thomas, J.C.; Crawford, J.T.; Dornblaser, M.M.; Hunt, A.G. Methane in groundwater from a leaking gas well, Piceance Basin, Colorado, USA. Sci. Total Environ. 2018, 634, 791–801. [Google Scholar] [CrossRef]
- Rice, A.K.; Lackey, G.; Proctor, J.; Singha, K. Groundwater-quality hazards of methane leakage from hydrocarbon wells: A review of observational and numerical studies and four testable hypotheses. WIREs Water 2018, 5, 1–18. [Google Scholar] [CrossRef]
- Ministerio De Agricultura Y Ganadería Archivos De Información Geográfica. Available online: https://sni.gob.ec/coberturas (accessed on 8 August 2021).
- Freeze, R.A.; Cherry, J.A. Groundwater, 1st ed.; Brenn, K., McNeily, K., Eds.; Prentice-Hall: Hoboken, NJ, United States, 1979; ISBN 0133653129. [Google Scholar]
- Kaiser, M.J. Well Trends and Structure Inventory. In Decommissioning Forecasting and Operating Cost Estimation, 1st ed.; Kaiser, M.J., Ed.; Gulf Professional Publishing: Cambridge, MA, USA, 2019; pp. 135–154. [Google Scholar] [CrossRef]
- King, G.E.; Valencia, R.L. Environmental risk and well integrity of plugged and abandoned wells. In Proceedings of the Spe Annual Technology Conference Exhibition, Amsterdam, The Netherlands, 27 October 2014; Volume 6, pp. 4852–4868. [Google Scholar] [CrossRef]
- Vera San Martín, T.; Rodriguez Rosado, G.; Arreaga Vargas, P.; Gutierrez, L. Population and building vulnerability assessment by possible worst-case tsunami scenarios in Salinas, Ecuador. Nat. Hazards 2018, 93, 275–297. [Google Scholar] [CrossRef]
- Carvache-Franco, W.; Carvache-Franco, M.; Carvache-Franco, O.; Hernández-Lara, A.B. Motivation and segmentation of the demand for coastal and marine destinations. Tour. Manag. Perspect. 2020, 34, 100661. [Google Scholar] [CrossRef]
- Carrión-Mero, P.; Loor-Oporto, O.; Andrade-Ríos, H.; Herrera-Franco, G.; Morante-Carballo, F.; Jaya-Montalvo, M.; Aguilar-Aguilar, M.; Torres-Peña, K.; Berrezueta, E. Quantitative and Qualitative Assessment of the “El Sexmo” Tourist Gold Mine (Zaruma, Ecuador) as A Geosite and Mining Site. Resources 2020, 9, 28. [Google Scholar] [CrossRef]
- McCusker, K.; Gunaydin, S. Research using qualitative, quantitative or mixed methods and choice based on the research. Perfusion 2015, 30, 537–542. [Google Scholar] [CrossRef]
- Herrera-Franco, G.; Carrión-Mero, P.; Aguilar-Aguilar, M.; Morante-Carballo, F.; Jaya-Montalvo, M.; Morillo-Balsera, M.C. Groundwater Resilience Assessment in a Communal Coastal Aquifer System. The Case of Manglaralto in Santa Elena, Ecuador. Sustainability 2020, 12, 8290. [Google Scholar] [CrossRef]
- Pawlowski, S.D. The Delphi Method as a Research Tool: An Example, Design Considerations and Applications 1 Introduction 2 Overview of the Delphi method. Inf. Manag. 2004, 42, 15–29. [Google Scholar]
- Pásková, M. Can indigenous knowledge contribute to the sustainability management of the aspiring rio coco geopark, Nicaragua? Geoscience 2018, 8, 277. [Google Scholar] [CrossRef]
- McKenzie, L.M.; Allshouse, W.B.; Burke, T.; Blair, B.D.; Adgate, J.L. Population Size, Growth, and Environmental Justice Near Oil and Gas Wells in Colorado. Environ. Sci. Technol. 2016, 50, 11471–11480. [Google Scholar] [CrossRef] [PubMed]
- Nelson, J.R.; Grubesic, T.H. Oil spill modeling. Prog. Phys. Geogr. Earth Environ. 2018, 42, 112–127. [Google Scholar] [CrossRef]
- French-McCay, D.; Crowley, D.; Rowe, J.J.; Bock, M.; Robinson, H.; Wenning, R.; Walker, A.H.; Joeckel, J.; Nedwed, T.J.; Parkerton, T.F. Comparative Risk Assessment of spill response options for a deepwater oil well blowout: Part 1. Oil spill modeling. Mar. Pollut. Bull. 2018, 133, 1001–1015. [Google Scholar] [CrossRef]
- Shabarchin, O.; Tesfamariam, S. Internal corrosion hazard assessment of oil & gas pipelines using Bayesian belief network model. J. Loss Prev. Process Ind. 2016, 40, 479–495. [Google Scholar] [CrossRef]
- Patel, H.; Salehi, S. Structural integrity of liner cement in oil & gas wells: Parametric study, sensitivity analysis, and risk assessment. Eng. Fail. Anal. 2021, 122, 105203. [Google Scholar] [CrossRef]
- Zhang, P.; Qin, G.; Wang, Y. Risk Assessment System for Oil and Gas Pipelines Laid in One Ditch Based on Quantitative Risk Analysis. Energies 2019, 12, 981. [Google Scholar] [CrossRef]
- Ghazavi, R.; Ebrahimi, Z. Assessing groundwater vulnerability to contamination in an arid environment using DRASTIC and GOD models. Int. J. Environ. Sci. Technol. 2015, 12, 2909–2918. [Google Scholar] [CrossRef]
- Atakpo, E.A.; Ayolabi, E.A. Evaluation of aquifer vulnerability and the protective capacity in some oil producing communities of western Niger Delta. Environmentalist 2009, 29, 310–317. [Google Scholar] [CrossRef]
- Preston, T.M.; Chesley-Preston, T.L.; Thamke, J.N. A GIS-based vulnerability assessment of brine contamination to aquatic resources from oil and gas development in eastern Sheridan County, Montana. Sci. Total Environ. 2014, 472, 1152–1162. [Google Scholar] [CrossRef] [PubMed]
- Besser, H.; Hamed, Y. Causes and risk evaluation of oil and brine contamination in the Lower Cretaceous Continental Intercalaire aquifer in the Kebili region of southern Tunisia using chemical fingerprinting techniques. Environ. Pollut. 2019, 253, 412–423. [Google Scholar] [CrossRef]
- Morgan, R.K. Environmental impact assessment: The state of the art. Impact Assess. Proj. Apprais. 2012, 30, 5–14. [Google Scholar] [CrossRef]
- Boulabeiz, M.; Klebingat, S.; Agaguenia, S. A GIS-Based GOD Model and Hazard Index Analysis: The Quaternary Coastal Collo Aquifer (NE-Algeria). Groundwater 2019, 57, 166–176. [Google Scholar] [CrossRef] [PubMed]
- Toro, J.; Duarte, O.; Requena, I.; Zamorano, M. Determining Vulnerability Importance in Environmental Impact Assessment. The case of Colombia. Environ. Impact Assess. Rev. 2012, 32, 107–117. [Google Scholar] [CrossRef]
- Herrera-Franco, G.; Carrión-Mero, P.; Morante-Carballo, F.; Herrera-Narváez, G.; Briones-Bitar, J.; Torrens, R.B. Strategies for the development of the value of the mining-industrial heritage of the Zaruma-Portovelo, ecuador, in the context of a geopark project. Int. J. Energy Prod. Manag. 2020, 5, 48–59. [Google Scholar] [CrossRef]
Variables | Rank | Rating | Weight |
---|---|---|---|
Distance from oil wells to populated areas (Dp) | <x1 | 5 | 5 |
x2 | 4 | ||
x3 | 3 | ||
x4 | 2 | ||
x5 | 1 | ||
Distance from oil wells to water bodies (Dwb) | <10 | 3 | 4 |
10 to 30 | 2 | ||
30 to 100 | 1 | ||
>100 | 0 | ||
Identification of gas emission from oil wells (I) | Sometimes | 2 | 3 |
No | 0 | ||
Permeability of soil around oil wells (P) | High | 3 | 2 |
Medium | 2 | ||
Low | 1 | ||
State of the oil wells (S) | Producing wells | 3 | 1 |
Temporarily abandoned wells | 2 | ||
Improperly abandoned wells | 1 | ||
Permanently abandoned wells | 0 |
Vulnerability | Score | Colour |
---|---|---|
High (H) | 37–<52 | Red |
Medium (M) | 22–<36 | Yellow |
Low (L) | 7–<21 | Green |
Distance (m) Rating | ||
---|---|---|
General Buffers | Salinas–La Libertad Buffers | Rating |
<x1 | <10 | 5 |
x2 | 10–14 | 4 |
x3 | 14–18 | 3 |
x4 | 18–30 | 2 |
x5 | 30–60 | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Herrera-Franco, G.; Montalván, F.J.; Velastegui-Montoya, A.; Caicedo-Potosí, J. Vulnerability in a Populated Coastal Zone and Its Influence by Oil Wells in Santa Elena, Ecuador. Resources 2022, 11, 70. https://doi.org/10.3390/resources11080070
Herrera-Franco G, Montalván FJ, Velastegui-Montoya A, Caicedo-Potosí J. Vulnerability in a Populated Coastal Zone and Its Influence by Oil Wells in Santa Elena, Ecuador. Resources. 2022; 11(8):70. https://doi.org/10.3390/resources11080070
Chicago/Turabian StyleHerrera-Franco, Gricelda, F. Javier Montalván, Andrés Velastegui-Montoya, and Jhon Caicedo-Potosí. 2022. "Vulnerability in a Populated Coastal Zone and Its Influence by Oil Wells in Santa Elena, Ecuador" Resources 11, no. 8: 70. https://doi.org/10.3390/resources11080070
APA StyleHerrera-Franco, G., Montalván, F. J., Velastegui-Montoya, A., & Caicedo-Potosí, J. (2022). Vulnerability in a Populated Coastal Zone and Its Influence by Oil Wells in Santa Elena, Ecuador. Resources, 11(8), 70. https://doi.org/10.3390/resources11080070