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Abstract

:

The oil industry requires studies of the possible impacts and risks that exploration, exploitation, and industrialization can cause to the environment and communities. The main objective of this study was to assess the vulnerability caused by oil wells of the Salinas and La Libertad cantons in Ecuador by proposing a multi-criteria spatial analysis methodology that would aid in land-use planning and management. The proposed methodology relates the variables of distance, identification of gas emission from oil wells, permeability, and the state of oil wells (DIPS). The methodology consists of: (i) the diagnosis of oilfield wells; (ii) environmental considerations of productive wells, wells in temporary abandonment, and wells in permanent abandonment; (iii) the vulnerability assessment of both intrinsic and extrinsic aspects of the wells; and (iv) the development of a vulnerability map and recommendations for land management. The results showed 462 wells in the study area, of which 92% were shown to be located in urban areas. Of the total, 114 wells were considered to be productive wells, 89% of which are in urban areas. The vulnerability map identified the areas to be addressed, which coincided with coastal and urban areas associated with oil production. Our main recommendation is to elaborate land-use planning regulations and build safety infrastructure around the wells to guarantee their distance from houses, beaches, and tourism-development sites. The vulnerability map was shown to serve as an essential diagnostic for decision making in managing oil territories, especially in coastal areas.
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1. Introduction


The oil and gas industry searches for hydrocarbon reservoirs for exploitation worldwide using prospecting techniques such as seismic exploration [1]. Once a reservoir has been identified, wells and surface facilities are designed to exploit the oilfield [2]. Hydrocarbons are transported through pipeline systems to refineries for conversion into fuels and feedstock for other industries [3,4]. Oil and gas are exploited in the open sea or sedimentary basins worldwide [5,6], but exploitation can also occur in and nearby urban areas [7,8]. Exploiting these energy resources is beneficial to humans’ economic development and energy consumption [9,10]. However, exploitation can negatively impact society and the environment [11]. A common example is offshore oilfields, which can potentially spill oil into marine environments. Accordingly, researchers can use probability and simulation to prevent and respond to these events [12].



Vulnerability is defined as the susceptibility of a system to a specific hazard [13]. It can also be considered the risks a system faces when negatively affected by specific disturbances [14]. The term also refers to potential loss or damage at either the individual or societal level [15]. There are different vulnerability types: physical, social, economic, and environmental [16]. Therefore, vulnerability studies are important for identifying and assessing different levels of natural and industrial risks affecting people and the environment [17].



There are different methods to determine the different types of vulnerabilities. For example, the “Poverty Assessment Tools” method can be used to analyse poverty in socioeconomics [18] and the analysis of macroeconomic risks using financial indicators has been used in economics [19]. When it pertains to territories associated with industrial plants, the vulnerability index helps assess the probability of risks [20]. Landslide vulnerability assesses a potential damage index by relating physical and social vulnerability [21]. Other methods include seismic vulnerability assessments, which relate variables such as building materials, population, lithology, and faults to obtain a map of vulnerability to earthquakes in a region [22]. In the case of floods, a vulnerability index can be obtained by relating the variables of exposure, sensitivity and adaptive capacity [23]. In the case of fire, the authors of previous studies have analysed vulnerability with the fire risk index, which considers the ignition and evacuation phases [24]. In addition, vulnerability to noise can by assessed by measuring the noise level and the effect of exposure to such noise on people [25].



Quantitative studies on environmental vulnerability have considered indicators such as vegetation, soil, landscapes, and meteorological information and related them to the social economy to understand their socio-environmental impacts and aid decision making [26,27]. These studies have often used satellite images and mathematical models to generate environmental protection maps [28], e.g., mathematical vulnerability models allow for the analysis of environmental impacts in cities and their relationship to the health of their communities [29].



Urban areas are vulnerable to natural events and risks that are mainly generated by anthropogenic activities [30]. As a result, vulnerability studies have been used to detect hazards from natural events such as floods and earthquakes [22,31]. Climate change also generates vulnerability in coastal areas due to sea-level rise, losses of territory, tourism, and cyclones [32,33]. One example is the vulnerability of coastal aquifers’ caused by seawater intrusion due to offshore oilfields’ hydrocarbon exploitation [34]. The metals present in oil spills are toxic to the health of humans and animals alike because plants and humans absorb them through the food chain [35]. In addition, oilfield workers can suffer from fatigue, headaches, and high stress levels, among other symptoms [36].



The oil and gas industry can affect the environment and land use [37,38]. Of the methodologies used to assess vulnerability in a territory due to oil activities, some are focused on social, physical, environmental, and/or economic vulnerability; the coastal or inland environment; and quantitative and/or qualitative measures. For example, the authors of one study presented a model for assessing the economic vulnerability of oil-importing countries to high oil prices per barrel due to different geopolitical and climatic conditions [39]. Other models for assessing oil spill vulnerabilities consider environmental, social, and economic aspects explicitly designed for coastal environments [40,41,42,43,44] and sensitive areas such as forests [45]. Other models have been used to assess the vulnerability of groundwater to oil activities [46,47,48] and watersheds to fracking in mountainous areas [49]. In addition, the authors of previous studies developed vulnerability models for cognitive activity in children generated by the presence of petroleum products in the air [50]. There have also been cases where the vulnerability of different vertebrate species and seabirds to developing offshore platforms and oil spills was analysed [51,52,53].



Some models enable vulnerability assessments due to the presence of refineries in coastal areas where physical, social, and environmental aspects are considered [54,55]. The risk of gas pipelines to seismic events [56] and the vulnerability of these infrastructures to abiotic and biotic factors that cause corrosion have been analysed using probabilistic methods [57]. Risk analysis has been used to evaluate the vulnerability of different oil infrastructures to vandalism [58]. A more comprehensive comparison of methodologies can be found in Supplementary Materials Table S1.



Researchers often seek to reduce the vulnerability generated by the oil and gas industry to people and territories. For example, a study on the relationship between intensity and sensitivity was conducted in Hassi R’Mel, Algeria [59]. Other studies have focused on reducing vulnerability by reducing the area of operation of hydrocarbon activities in protected areas such as the Yasuní National Park in Ecuador [60]. In the Czech Republic, the Lbr-1 oilfield planned for CO2 storage was assessed for risk and vulnerability under ISO 31000:2009 [61]. Other studies in Turkana, Kenya linked the interaction between oil exploration/exploitation, conflict, water, and climate change vulnerability to their communities. Small groups of people were surveyed, and these data were correlated with temperature and precipitation data [62,63]. In Brazil, probability and numerical simulation models were used to assess vulnerability to oil spills [45]. The authors of other studies on vulnerability to oil spills have used probability to determine the environmental sensitivity index [64]. Furthermore, socio-economic vulnerability due to extensive oil spills has been studied by relating the number of establishments to high, medium, and low proximities to oil spills and their levels of exposure [65].



In Santa Elena Province, Ecuador, the oil search and exploitation era began in 1911 with the drilling of the Ancon 1 well [66]. The population grew near the oil infrastructure during the time of peak hydrocarbon exploitation activities. In this context, our research question was: how should one develop a methodology to help measure a territory’s vulnerability due to oil wells in populated areas? This work was aimed to propose a methodology based on the variables of distance (to populated areas and water bodies), identification of gas emission from oil wells, permeability of soil around oil wells, and state of oil wells (DIPS) to assess a territory’s vulnerability to oil wells using technical and environmental analysis for area management. The proposed methodology was applied to a coastal area with oil activity that coexists with urban areas.



The methodology was conducted in three phases: reviewing bibliographic information, creating an inventory of wells, and assessing the conditions related to their geographical environments. The DIPS methodology was used to consider the key criteria of the territory associated with the influence of oil wells for subsequent application to the case study and to obtain vulnerability maps.



Study Area


The study area is located at the centre of the coast of Ecuador (Figure 1). The Ancon oilfield comprises a large part of the territory of Santa Elena Province (SEP). The territorial extension of the province is 3665 km2 [67], of which 1200 km2 correspond to the oilfield [68]. The cities of Santa Elena, La Libertad, and Salinas have a combined population of 401,178 inhabitants [69]. The main economic activities in the SEP are tourism, mining, oil production and refining, and fishing [70]. The parish of Ancon is a sector that belongs to the Decentralised Autonomous Government of Santa Elena. The cultural heritage Santa Elena in Ecuador is tied to its English architecture and the site of the country’s first oil well [71].



The geological framework of SEP consists of soils and sedimentary rocks [72]. SEP is a coastal region of Ecuador with significant geological complexity [73,74,75], with stratigraphic successions and sequences ranging from the Upper Palaeocene to the subsidence of the Progreso Basin [76]. Figure 2 shows the formations present in this area, listed according to the following stratigraphic deposition: Ancon, Socorro, Passage Beds, Azúcar, Santa Elena, Cayo, Calentura and Piñón. The Calentura Formation has potential as a hydrocarbon-bearing rock, and the Socorro and Passage Bed formations are reservoir rocks [77]. The Cayo Formation outcrops on the offshore front present clayey and calcareous shales with secondary silicification. The Azúcar Formation has rocks of moderate tenacity, containing alternating thin sandstone layers and black siliceous shales. The Ancon Group has clay Passage Bed, Socorro, and Seca formations. They have a sequence of greyish green clays, thin sandstone layers with greenish-grey shales, and sandstones with shales in thick layers, respectively [78]. The Tablazo Formation is the most outstanding in Santa Elena, and it presents fine agglomerates, sandstones, and fossiliferous sands [74] used for construction and handicraft materials. Finally, there are indications that the Ancon oilfield and the Peru-Bank block belong to the same petroleum system, the Progreso Basin, which is part of the Cretaceous–Paleogene [79]. Furthermore, the oil from the Ancon field has an API gravity of 33.4° [80], so it is the highest quality oil in Ecuador.





2. Materials and Methods


The methodology of this study consisted of three phases (Figure 3): Phase 1 focused on reviewing scientific literature, determining vulnerability types, analysing the territory’s current situation, and collecting available data (mainly regarding their geographical location) from oil wells [81,82].



Phase 2 covered the characterisation of the oil wells. First was the classification of oil wells into productive, temporarily abandoned, improperly abandoned, and permanently abandoned wells. Then, this DIPS methodology identified the proposed variables; information was collected in situ through focus groups and the Delphi method. The information was provided by the community and experts on the environment, territory losses, risks, and petroleum engineering [83,84].



Phase 3 was focused on applying the DIPS methodology, generating the vulnerability maps of the study area, and proposing strategies for decision making in territorial management.



2.1. DIPS Methodology Proposal


The DIPS methodology is qualitative (involving the people in a study area) [85] and quantitative (because it measures and compares vulnerability) [86]. First, the DIPS variables were integrated into a geographic information system (GIS) to obtain a vulnerability map with discrete and continuous data using ArcGIS Pro 2.8.1 software, Environmental Systems Research Institute, Inc. (ESRI), Redlands, CA, United States [87]. Then, a weight and rating were assigned to each variable for the discrete data map.




2.2. DIPS Variables


2.2.1. Distance from Oil Wells to Populated Areas


This variable received the highest weighting, with a score of 5, because wells can spill hydrocarbons and emit or concentrate gases that can affect the nearby populations when exposed to certain pressure, temperature, and fluid volume [88,89]. In addition, to determine the populated areas, the “populated area” class was selected from the current land-cover and land-use data available in the governmental entity’s geoportals [90].



Subsequently, the proximity of oil wells to urban areas was determined using different buffers in ArcGIS Pro. The methodology applied five buffer rings around the wells according to the environmental laws of local entities [91,92], which define the radius of influence of safety and affectation of the wells. The safety and buffer distances were defined by the variables x1, x2, x3, x4 and x5 using the following expressions:



Equation (1): x1 corresponds to the minimum distance variable rmin, with a rating of 5. It is suggested that this distance be greater than 10 m (m).


x1 = rmin,



(1)







Equation (2): x5 defines the largest buffer distance, rmax, which is considered safe and feasible for land use, thus earning a rating of 1.


x5 = rmax to 2(rmax)



(2)







Equation (3): d is the difference between the maximum and minimum distances divided by the ranges used in DIPS.


d = (x1 − x5)/5



(3)







Equation (4): x2 corresponds to the second rank, with a rating of 4.


x2 = x1 to (x1 + d)



(4)







Equation (5): x3 corresponds to the mid-range, with a rating of 3.


x3 = (x1 + d) to [(x1 + d) + 2d]



(5)







Equation (6): x4 is the penultimate rank, with a rating of 2.


x4 = [(x1 + d) + 2d] to [(x1 + d) + 4d]



(6)








2.2.2. Distance from Oil Wells to Water Bodies


Water bodies are in coastal and inland environments. In coastal environments, they are linked with the sea and sea mouths [93]. On the other hand, in inland environments, water is associated with lagoons and rivers [94]. The distance variable considers the distance of oil wells to different surface water bodies that could be contaminated by hydrocarbons, thus receiving a weight of 4. This distance was determined in ArcGIS Pro using three buffer rings: the first ring corresponded to the first 10 m, with a rating of 3; the second ring corresponded to a distance between 10 m and 30 m, with a rating of 2; the third ring corresponded to a distance between 30 m and 100 m, with a rating of 1; and the final ring corresponded to distances greater than 100 m, with a rating of 0.




2.2.3. Identification of Gas Emission from Oil Wells


Oil wells emit gas flows into the environment [95,96] that can be perceived by an area’s inhabitants, causing health and environmental risks [97,98,99]. Accordingly, this variable received a weighting of 3. In order to determine the presence of gases, focus groups in the study area were asked to report the perception of gas odours in oil wells, assigning a rating of 2 where they were perceived; otherwise, the rating was 0. The gas perception data were georeferenced to nearby wells in ArcGIS Pro software.




2.2.4. Permeability of Soil around Oil Wells


Permeability is the ability of a medium to enable the flow of fluids from one point to another [100]. As a result, hydrocarbons can infiltrate the ground during the exploitation and permanent abandonment processes, affecting aquifers [101,102]. Therefore, this variable was given a weighting of 2. In this variable, the “permeability” class was selected from the hydrogeology data available in governmental entities’ geoportals [103]. As a result, soils were classified as high permeability with a rating of 3, medium permeability with a rating of 2, and low permeability with a rating of 1 [104].




2.2.5. State of the Oil Wells


The state of an oil well defines its productive condition, being classified as productive, temporarily abandoned, improperly abandoned, and permanently abandoned wells [105,106]. This variable was assigned a weight of 1. Productive wells can generate some risk, so they received a rating of 3. Temporarily abandoned wells that can be productive were assigned a rating of 2. Improperly abandoned wells have no surrounding safety infrastructure and were thus assigned a rating of 1. Finally, permanently abandoned wells comply with environmental requirements to ensure safety in their surroundings, so they were assigned a rating of 0.



Table 1 shows the DIPS variables alongside their weight (ranging from 1 to 5, depending on the environmental impact) and rating.



The ratings and weights of the variables were multiplied together to obtain the DIPS variable score.



Equation (7) shows the product rating-weight score, where S is the score, R is the rating, and W is the weight.


S = R × W



(7)







The total score (St) was calculated with the sum of the score in each variable, as indicated in Equation (8), adapted from the DRASTIC (depth–recharge rate–aquifer–soil–topography–zone’s impact–hydraulic conductivity) method, and used to determine the vulnerability of aquifers [84]. The maximum St value was 52, resulting from the multiplication of the highest value in rating in the variable by its weight. The minimum value was 7, resulting from the multiplication of the value of the weight of each variable by the minimum value of its rating.


St = DpR × DW + DwbR × DwbW + IR × IW + PR × PW + SR × SW



(8)







The valorisation in this methodology was classified as high, medium, and low vulnerability, as shown in Table 2.



Finally, all the data were integrated into ArcGIS Pro to generate the vulnerability map. As part of this integration process, it was necessary to convert all data to raster to assign the respective ratings and weights of the variables. In addition, a Kernel density analysis was carried out to create a raster of continuous data based on an oil well’s status. Subsequently, the preliminary raster data were merged using the Raster Calculator tool, thus obtaining the vulnerability map of the region.






3. Results


Application of the DIPS Methodology


Salinas, located in the most outstanding area of continental Ecuador, is one of the most visited places in SEP due to its landscapes and beaches [107]. The local economy is based on fishing activity, handicrafts, and tourism [108]. In La Libertad, there is infrastructure for oil production, storage, and refinement. Salinas and La Libertad had estimated populations in 2020 of 94,590 and 117,767, respectively [69]. The study area has 462 oil wells, with 425 in populated areas, 101 productive wells, 320 temporarily abandoned wells, and 4 permanently abandoned wells. Outside the urban areas, there are only 13 productive wells, 17 temporarily abandoned wells, and 7 improperly abandoned wells. In Salinas and La Libertad, the safety or buffer distance from wells to civil infrastructure must be 30 m according to the law of ordinance that regulates land use and urban development in areas of hydrocarbon activity [91]. However, in other cities with oil wells, such as Los Angeles, USA, the safety radius defined in local regulations is 200 feet (60 m) [92]. Table 3 shows the buffer distances of the wells to populated areas for Salinas and La Libertad according to the equations of the DIPS methodology.



The DIPS methodology was applied to 462 oil wells in the territory. The wells were classified as productive, temporarily abandoned, improperly abandoned, and permanently abandoned wells that were distributed in different areas, e.g., close to the sea, inside populated areas, and outside populated areas, as shown in Figure 4.



Figure 5 shows the vulnerability map obtained using the DIPS methodology for the cantons of Salinas and La Libertad. The map represents the incidence of oil wells in the territory with discrete points. Four zones where the largest wells are concentrated on the map were identified. Zone A was found to have 27 oil wells, 23 of which were highly vulnerable and 4 of which were of medium vulnerability. Zone B was found to have 30 wells, 13 of which were highly vulnerable due to their proximity to urban areas and the sea and 17 of which were of medium vulnerability. Zone C was found to have 270 wells, 78 of which had high vulnerability. Finally, zone D was found to comprise 39 wells, 14 of which were found to have high vulnerability. The wells dispersed inside La Libertad were found to be located on the outskirts of the urban areas. Figure 6 shows the vulnerability generated by the concentration of oil wells in the study area, as processed using continuous data. In this case, zones A and C showed a higher vulnerability than zones B and D, and the other areas were found to be less vulnerable to the concentration of wells.





4. Discussion


The DIPS methodology was designed to determine the vulnerability of populated areas within petroleum zones. In this methodology, the proximity of wells to populated areas and water bodies is given a high weighting. DIPS uses recommended characteristics of practical, quantitative, and qualitative methodologies [109,110], and it has been applied to urban areas in coastal environments using land-use strategies [111,112,113]. In addition, DIPS relates five variables: oil well status, soil permeability, gas perception, the distance of oil wells from the water bodies, and the distance of oil wells from urban areas. The rating of each variable depends on the exposure of the affected territory. In other words, DIPS focuses on large-scale multi-criteria evaluation that helps determine land use due to the presence of oil wells from a social and environmental point of view. One of this study’s limitations was that the population distribution in the studied cantons was not considered due to the absence of this information, so resorted to using the class of “populated areas” as a tool to determine whether an area was residential. In addition, it used focus groups to assess the perception of gas emissions from oil wells.



The vulnerability map for the cantons of Salinas and La Libertad in SEP shows that 92% of the wells considered in this study are located within populated areas (Figure 5). The constant urban growth associated with population increases has led to the presence of oil wells in territories that have traditionally excluded oil activities. Moreover, the scarce security infrastructure, an absence of territorial planning, and a lack of knowledge about the risks to inhabitants have encouraged the development of these areas. Several wells are located close to water bodies and are prone to spilling hydrocarbons into beaches or the sea, so they were categorised as highly vulnerable wells. The DIPS methodology was used to identify that the Salinas canton is more vulnerable than La Libertad due to the higher concentration of wells in its urban areas and areas near the sea (Figure 6).



Vulnerability is important for land-use planning. The authors of some previous studies have analysed the potential impacts of oil spills in the vicinity of populated areas, considering both social and environmental aspects [114,115]. However, most oil assessment methods are focused on spills into marine and inland environments [12,116], as well as risk assessments for oil well and pipeline failures [117,118,119]. Additional methods are used to determine vulnerability. For example, DRASTIC and GOD (groundwater confinement, overlying strata, and depth to groundwater) methods assess aquifer contamination [120]. The vulnerability of aquifers to hydrocarbons can be studied via their physical properties [121,122].



The DIPS methodology considers social, technical, and environmental aspects for analysing vulnerability caused by oil wells in populated areas. This methodological approach can be applied to coastal or inland environments using GIS to integrate variables, calculate vulnerability, and process vulnerability maps. Some methodologies relating vulnerability to the oil industry are focused on oil spills in near-shore areas and involve mathematical models relating to social and environmental conditions [40,41,42,43]. Further methodologies have been used for analysing vulnerability caused by energy infrastructure and refineries in marine environments relating to social and physical conditions [54,55], as well as the vulnerability caused by oil activities due to their potential for polluting groundwater [46,47,49,123]. However, the methodology proposed in this study integrates the proximity of wells to towns and bodies of water, gas emissions, soil permeability, and well condition. Because the coastal marine zone of this research’s study area is a tourist centre and in total demographic growth, it requires a territorial management strategy.



This study determined the vulnerability caused by oil wells located in coastal urban areas. The authors of previous research measured this type of risk through numerical simulations of effects generated by the explosion of a liquefied petroleum gas storage tank on a studied infrastructure and population [59]. Studies on environmental impact tend to consider citizen participation [124]. In the case of DIPS, the use of focus groups helped us to identify environmental issues affecting the community.



Various methods can be used to generate different vulnerability indexes, e.g., for natural disasters, toxicological hazards, explosions, fires, and groundwater contamination [20,24,30,125], and it is important to determine vulnerability in various areas of knowledge [126] as a mechanism for assessing the susceptibility of a system to potential risks and hazards [13,14].



The analysis of the DIPS map in this study revealed areas with a high vulnerability that require strategies to promote the development and continuous improvement of the territory [127]. The following requirements should be met: (i) oil wells must have a surrounding security infrastructure; (ii) abandoned wells must have isolation and protection infrastructure; (iii) territorial reordering that considers the critical zones detected in this work should be proposed; (iv) the population must be made aware of the risks associated with oil wells in the sector; and (v) new settlements in the vicinity of wells must be prevented.




5. Conclusions


This study evaluated the vulnerability in a populated territory with oil well incidence using the DIPS methodology, which integrates five variables (distance from oil wells to populated areas and water bodies, identification of gas perception, permeability, and state of the wells) in GIS software. DIPS enabled us to generate vulnerability maps (which are essential for decision making in territorial planning) in the service of the protection and conservation of the marine–coastal zone while favouring sustainable development. In the study area were identified 462 wells, 156 of which (34%) were shown to have high vulnerability. One hundred and fifteen of the wells with high vulnerability were found to be in the Salinas canton, with scores between 32 and 47. Within these wells, six were shown to have a higher score of between 41 and 47 due to their proximity to the coastline. In the canton of La Libertad, 39 wells presented a high vulnerability. In addition, in both Salinas and La Libertad were found 101 and 159 wells, respectively, with medium vulnerability.



The reported high vulnerability was due to the concentration of wells and gas emissions observed in zones A, B, C, and D. Additionally, the proximity of wells to the coastline influenced vulnerability, as observed in zones A and B. In urban areas, 102 wells were found to be productive, leading to fire risks and affecting the inhabitants of these sectors. Finally, it is recommended to implement: (i) protective infrastructure that prevents free access to the wells and guarantees distance and/or buffering from homes; (ii) land-use planning; (iii) protection of tourist and heritage areas; (iv) landscape management; (v) the dissemination of an education plan; (vi) changes to protection perimeters; and (vii) the monitoring of oil wells in urban areas.



Vulnerability analyses are useful because they consider variables regarding soil type, gases, distance to populated areas, environment, and human health. The DIPS methodology was developed to recommend land-use planning strategies. Our analysis enabled the identification of vulnerable areas generated by the presence and concentration of oil wells through discrete and continuous data, a process that could be applied to urban territories located near industrial activities.



Finally, our application of DIPS was focused on urban or rural centres with the presence of oil wells. Therefore, it is recommended to advise the relevant government entities to (i) identify the location of oil wells, along with their status (productive, temporarily abandoned, improperly abandoned, and permanently abandoned wells); (ii) use focus groups to identify the perception of hydrocarbon gas emissions from wells; (iii) use geodata available in different government geoportals to determine populated areas, water bodies, and soil permeability; (iv) search for legislation that determines the safety radii around wells and to use the equations described for buffers; and (v) use a geographic information systems tool for visualisation and decision making.
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Figure 1. Location of the study area: productive, temporarily abandoned, improperly abandoned, and permanently abandoned wells. 
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Figure 2. Geological formations in the study area. 
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Figure 3. Diagram of the study method. 
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Figure 4. (A) Improperly abandoned well at Salinas. (B) Permanently abandoned well. (C) Productive well in a populated area of Salinas. (D) Improperly abandoned well near the sea. 
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Figure 5. Application of the DIPS methodology for vulnerability in oil wells of Salinas and La Libertad. The red spots represent areas with high vulnerability, the yellow buffers represent areas of medium vulnerability, and the green area represents territory with low vulnerability. 
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Figure 6. Map of high and low vulnerability caused by the concentration of oil wells. 
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Table 1. DIPS matrix for vulnerability generated by oil wells.
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Variables

	
Rank

	
Rating

	
Weight






	
Distance from oil wells to populated areas (Dp)

	
<x1

	
5

	
5




	
x2

	
4




	
x3

	
3




	
x4

	
2




	
x5

	
1




	
Distance from oil wells to water bodies (Dwb)

	
<10

	
3

	
4




	
10 to 30

	
2




	
30 to 100

	
1




	
>100

	
0




	
Identification of gas emission from oil wells (I)

	
Sometimes

	
2

	
3




	
No

	
0




	
Permeability of soil around oil wells (P)

	
High

	
3

	
2




	
Medium

	
2




	
Low

	
1




	
State of the oil wells (S)

	
Producing wells

	
3

	
1




	
Temporarily abandoned wells

	
2




	
Improperly abandoned wells

	
1




	
Permanently abandoned wells

	
0











[image: Table] 





Table 2. Classifying vulnerability according to score.
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	Vulnerability
	Score
	Colour





	High (H)
	37–<52
	Red



	Medium (M)
	22–<36
	Yellow



	Low (L)
	7–<21
	Green
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Table 3. The distances of oil wells to populated areas for Salinas and La Libertad based on the oil exploitation law and DIPS equations.
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Distance (m) Rating






	
General Buffers

	
Salinas–La Libertad Buffers

	
Rating




	
<x1

	
<10

	
5




	
x2

	
10–14

	
4




	
x3

	
14–18

	
3




	
x4

	
18–30

	
2




	
x5

	
30–60

	
1
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