Applying Utility Criteria to Select the Design Variant of the Transport System in Underground Mine Workings
Abstract
:1. Introduction
2. Materials and Methods
2.1. Multi-Criteria Analysis as a Basis for the Selection and Optimization of the Transport System
- pkuji—score for “j” criterion in “i” variant [point U];
- ui—parameter value in “i” variant [value];
- umin—minimum parameter value for “j” criterion—;
- umax—maximum parameter value for “j” criterion—;
- sui—basic parameter score in the umin–umax range for “j” criterion;
- wkui—weight, maximum score for “j” criterion [point U].
2.2. KU1 Criterion—Lead Time of the Transport Task
- Tzt—transport task duration [min];
- tot—technical handling duration [min];
- tm—maneuver work duration [min];
- tz1—duration of loading at the dispatch station [min];
- tj1—duration of transport to the collection station [min];
- tr1—duration of unloading at the collection station [min];
- tz2—duration of loading at the collection station [min];
- tj2—duration of transport to the dispatch station (return) [min];
- tr2—duration of unloading at the dispatch station (upon return) [min];
- st—length of the transport distance to the collection (dispatch) station [m];
- vu—transport speed— [m/s];
- łp—payload use coefficient: 1 ≥ łp ≥ 0 [1].
- sti—“n” distance to the collection point in the “i” variant [m];
- n—number of possible transport routes to the collection points [pc.].
- pku1A i—score for KU1A criterion in “i” variant [point U];
- pku1B i—score for KU1B criterion in “i” variant [point U];
- wku1A—weight, maximum score for KU1A criterion [point U];
- wku1B—weight, maximum score for KU1B criterion [point U];
- ttp max, ttd max—the longest transport duration to the point situated at an average (extreme) distance [min];
- ttp min, ttd min—the shortest transport duration to the point situated at an average (extreme) distance [min];
- ttp i, ttd i—the transport duration to the point situated at an average (extreme) distance in “i” variant [min].
2.3. KU2 Criterion—Compatibility of Transport Systems
- For suspended rail in [kN];
- For underground rail and rack railway in axle load [kN/axle].
- pku2i—score for KU2 criterion in “i” variant [point U];
- wku2—weight, maximum score for KU2 criterion [point U];
- Rcki—additional score for “i” variant [D];
- Rk max—maximum additional score, max (Rck1, …, Rcki, …, Rckn) [point D];
- Rk min—minimum additional score, min (Rck1, …, Rcki, …, Rckn) [point D].
2.4. KU3 Criterion—Continuous Communication
- Łti—continuous communication coverage of transport routes in “i” variant [%];
- łtj—“j” section of transport routes with continuous communication [m];
- nł—number of sections with continuous communication [pc.];
- Lti—total length of the transport routes in “i” variant [m].
- pku3 i—score for KU3 criterion in “i” variant [point U];
- wku3—weight, maximum score for KU3 criterion [point U];
- łt max—maximum continuous communication coverage of transport routes [%];
- łt min—minimum continuous communication coverage of transport routes [%];
- łt i—continuous communication coverage of transport routes in “i” variant [%].
2.5. KU4 Criterion—Co-Use with Other Transport Tasks
- sjl—distance of the staff transport [m];
- vjl—useful speed of passenger transport [m/s];
- sjl p—passenger station at the average distance [m];
- sjl d—furthermost (extreme) passenger station [m];
- tjl p—transport duration to the passenger station at the average distance— [min];
- tjl d—transport duration to the passenger station at the extreme distance (furthermost)— [min].
- pku4A1 i—score for KU4A1 criterion in “i” variant [point U];
- pku4A2 i—score for KU4A2 criterion in “i” variant [point U];
- wku4A1—weight, maximum score for KU4A1 criterion [point U];
- wku4A2—weight, maximum score for KU4A2 criterion [point U];
- tjlp max—the longest passenger transport duration to the station at an average distance [min];
- tjld max—the longest passenger transport duration to the station at an extreme distance [min];
- tjlp min—the shortest passenger transport duration to the station at an average distance [min];
- tjld min—the shortest passenger transport duration to the station at an extreme distance [min];
- tjlp i—passenger transport duration to the station at an average distance in “i” variant [min];
- tjld i—passenger transport duration to the station at an extreme distance [min].
- The minimum carrying capacity of the trackbed enabling to transport concentrated load;
- No need to expand the loading gauge. It is met if the selected means of transport enable the transport of devices in the assumed dismounting state.
- pku4B i—score for KU4 criterion in “i” variant [point U];
- wku4B—weight, maximum score for KU4B criterion [point U];
- Rzl i—additional score for “i” variant [point D];
- Rzl max—maximum additional score, max (Rzl1, …, Rzli, …, Rzln) [point D];
- Rzl min—minimum additional score, min (Rzl1, …, Rzli, …, Rzln) [point D].
2.6. KU5 Criterion—Safety
- Rcbi—KU5 criterion additional score for “i” variant [point D];
- nut—number of transport system types (differing in terms of drives) [pc.].
- pku5 i—score for KU5 criterion in “i” variant [point U];
- wku5—weight, maximum score for KU5 criterion [point U];
- Rb max—maximum additional score [point D];
- Rb min—minimum additional score [point D];
- Rcbi—KU5 criterion additional score for “i” variant [point D].
2.7. KU6 Criterion—Nuisance
- pku6 i—score for KU6 criterion in “i” variant [point U];
- wku6—weight, maximum score for KU6 criterion [point U];
- Pst max, Pst min—maximum (minimum) total power of combustion engines [kW];
- Pst i—total power of combustion engines in the means of transport selected in “i” variant [point U].
2.8. KU7 Criterion—Operation in Circumstances Exceeding the Initial Assumptions
- The reduction in the collection point number—with a certain increase in the transport capacity.
- The increase in the collection point number—accompanied by the increased number of non-delivered transport units.
- An additional assumption is the unchanged number of multiple units and the transport cycle duration.
- Zpd—material consumption of an additional collection point [pc., t.u./change];
- npo—base number of collection points [pc.];
- zpi—material consumption of “i” base collection point [pc., t.u./change].
- The “extra” number of multiple units,
- The shortage of multiple units, e.g., resulting from a tractor failure.
- Ld—payload of the additional multiple unit [pc. t.u.];
- nzt—base number of multiple units [pc.];
- lzi—payload of the “i” base transport unit [pc. t.u.].
KU7A Criterion—Operation in Uncertain Circumstances
- K1A max. (min) criterion—an optimum variant where the number of non-delivered transport units is the lowest in the circumstances with the highest shortage of those units, i.e., the variant being “the best in the worst circumstances”;
- K1B max. (max) criterion—an optimum variant where the transport capacity increase will be the highest in the circumstances with the lowest number of collection points, i.e., the variant being “the best in the best circumstances” which may, e.g., allow for a reduction in the number of non-delivered transport units.
- wi min (max)—minimum (maximum) number of non-delivered transport units in “i” variant [pc.];
- h—caution coefficient.
si1 = max (w11, …, wi1, …, wn1)—wi1
- sim—number of non-delivered transport units in “i” variant in “m” circumstances [t.u.].
- Nji—score for “j” uncertainty criterion in “i” variant [point U];
- zj—weight, maximum score for “j” criterion [point U];
- Kji—number of transport units in “j” uncertainty criterion in “i” variant [pc. t.u.];
- Kj min—minimum number of transport units in “j” uncertainty criterion [pc. t.u.], Kj min = min (Kj1, …, Kji, …, Kjn) [pc. t.u.];
- Kj max—maximum number of transport units in “j” uncertainty criterion [pc. u.t.] Kj max = max (Kj1, …, Kji, …, Kjn) [pc. t.u.].
α− = (1 − α0) − α+ α+ = (1 − α0) − α−
- α0 > 0.5—circumstances exceeding the initial assumptions will be less probable than the base circumstance set;
- α0 < 0.5—circumstances exceeding the initial assumptions will be more probable than the base circumstance set;
- α0 = 0—the base circumstance set is not considered, solely circumstances exceeding the initial assumptions will occur.
wR1 = max (B1, …, Bi, …, Bn)
- Bi—anticipated value in “i” variant of B criterion [t.u.];
- wR1—anticipated value for the optimum variant [t.u.].
- The “i” variant is the optimum one if wR1 = Bi.
RRij = αmax ∗ Wij
- WR2—anticipated value of the optimum variant in the highest probability rule;
- “i” variant is the optimum one if wR2 = RRi condition is met.
ei1 = max (w11, …, wi1, …, wn1)—wi1
- Ei—lost profit amount [pc. t.u.];
- αi—probability of “i” circumstances occurrence [1];
- eim—relative loss of transport units in “i” variant in “m” circumstances [pc. t.u.];
- wim—number of non-delivered transport units in “i” variant in “m” circumstances [pc. t.u.].
- Rji—score for “j” risk criterion in “i” variant [point U];
- KRji—anticipated number of transport units in “j” risk criterion in “i” variant [pc. t.u.];
- zj—weight, maximum score for “j” criterion [point U];
- KRj max—maximum anticipated value of transport units in “j” risk criterion, KRj max = max (KRj1, …, KRji, …, KRjn) [pc. t.u.];
- KRj min—minimum anticipated value of transport units in “j” risk criterion, KRj min = min (KRj1, …, KRji, …, KRjn) [pc. t.u.].
- If the designer is unable to determine the probability of individual circumstance set occurrence, they use the KU7A criterion;
- If they are able to determine that probability, they use the KU7B criterion.
3. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bednarczyk, Ł.; Jamroży, J.; Janas, J. Zarządzanie strategiczne realizacją zadań transportowych w podziemnych systemach transportu w kopalniach węgla kamiennego. Zesz. Nauk. Politech. Śląskiej Ser. Organ. Zarządzanie 2018, 132, 61–76. [Google Scholar]
- Naghadehi, M.Z.; Mikaeil, R.; Ataei, M. The application of fuzzy analytic hierarchy process (FAHP) approach to selection of optimum underground mining method for Jajarm Bauxite Mine, Iran. Expert Syst. Appl. 2009, 36, 8218–8226. [Google Scholar] [CrossRef]
- Saki, F.; Dehghani, H.; Jodeiri Shokri, B.; Bogdanovic, D. Determination of the most appropriate tools of multi-criteria decision analysis for underground mining method selection—A case study. Arab. J. Geosci. 2020, 13, 1271. [Google Scholar] [CrossRef]
- Haghshenas, S.S.; Haghshenas, S.S.; Abduelrhman, M.A.; Zare, S.; Mikaei, R. Identifying and Ranking of Mechanized Tunneling Project’s Risks by Using A Fuzzy Multi-Criteria Decision Making Technique. J. Soft Comput. Civ. Eng. 2022, 19, 29–45. [Google Scholar] [CrossRef]
- Banghua, Y.; Qingqing, M.; Jianping, W.; Donglin, C. Effect of protective coal seam mining and gas extraction on gas transport in a coal seam. Int. J. Min. Sci. Technol. 2016, 26, 637–643. [Google Scholar] [CrossRef]
- Caneda-Martínez, L.; Medina, C.; Sánchez de Rojas, M.I.; Frías, M. Water transport in binary eco-cements containing coal mining waste. Cem. Concr. Compos. 2019, 104, 103373. [Google Scholar] [CrossRef]
- An, N.; Zagorščak, R.; Thomas, H.R. Transport of heat, moisture, and gaseous chemicals in hydro-mechanically altered strata surrounding the underground coal gasification reactor. Int. J. Coal Geol. 2022, 249, 103879. [Google Scholar] [CrossRef]
- Skubacz, K.; Wojtecki, Ł.; Urban, P. Aerosol concentration and particle size distributions in underground excavations of a hard coal mine. Int. J. Occup. Saf. Ergon. 2017, 23, 318–327. [Google Scholar] [CrossRef]
- Burgess-Limerick, R.; Steiner, L. Injuries associated with continuous miners, shuttle cars, load–haul–dump and personnel transport in New South Wales underground coal mines. Min. Technol. 2006, 115, 160–168. [Google Scholar] [CrossRef]
- Gautam, S.; Kumar Patra, A.; Sahu, S.P.; Hitch, M. Particulate matter pollution in opencast coal mining areas: A threat to human health and environment. Int. J. Min. Reclam. Environ. 2018, 32, 75–92. [Google Scholar] [CrossRef]
- Steuer, R. Multiple Criteria Optimization and Computation; University of Georgia: Athens, GA, USA, 2004. [Google Scholar]
- Jędrzejczyk, Z. Badania Operacyjne w Przykładach i Zadaniach; Wydawnictwo PWN: Warszawa, Poland, 2011. [Google Scholar]
- Koopmans, T. An Analysis of Production as an Efficient Combination of Activities. Cowles Commission for Research in Economics; Monograph No. 14; John Wiley & Sons: New York, NY, USA, 1951. [Google Scholar]
- Vincke, P. Multicriteria Decision-Aid; John Wiley & Sons: Chichester, UK, 1992. [Google Scholar]
- Zeleny, M. Multiple Criteria Decision Making; McGraw-Hill Book Comapany: New York, NY, USA, 1982. [Google Scholar]
- Roy, B. Decision aid and decision making. Eur. J. Oper. Res. 1990, 45, 324–331. [Google Scholar] [CrossRef]
- Ehrgott, M. Multicriteria Optimization; Springer: Berlin, Germany, 2005. [Google Scholar]
- Keeney, R.; Raiffa, H. Decisions with Multiple Objectives. Preferences and Value Tradeoffs; Cambridge University Press: Cambridge, UK, 1993. [Google Scholar]
- Gossen, H.H. Entwickelung der Gesetze des Menschlichen Verkehrs: Und der Daraus Fliessenden Regeln für Menschliches Handeln; Forgotten Books: London, UK, 2018. [Google Scholar]
- Żak, J.; Fierek, S.; Żmuda-Trzebiatowski, P.; Kruszyński, M. Multiple Level, Multiple Criteria Ranking Transportation Project. In Proceedings of the 13th World Conference on Transport Research, Rio de Janeiro, Brazil, 15–18 July 2013. [Google Scholar]
- Osyczka, A. Evolutionary Algorithms for Single and Multicriteria Design Optimization; Physica-Verlag: Heidelberg, Germany, 2002. [Google Scholar]
- Morisugi, H. Evaluation methodologies of transportation projects in Japan. Transp. Policy 2000, 7, 35–40. [Google Scholar] [CrossRef]
- Giorgi, L.; Tandon, A. The Theory and Practice of Evaluation; Trans—Talk Contract No. 1999-TN.10869; Trans-Talk Contract: Vienna, Austria, 2000. [Google Scholar]
- Cascetta, E. Transportation Systems. Analysis—Models and Applications; Springer: New York, NY, USA, 2009. [Google Scholar]
- Goldbach, S.G.; Leleur, S. Cost-Benefit Analysis (CBA) and Alternative Approaches from the Centre for Logistics and Goods (CLG) Study of Evaluation Techniques; Centre for Logistics and Goods (CLG): Kongens Lyngby, Denmark, 2004. [Google Scholar]
- Straka, M.; Bindzár, P.; Kaduková, A. Utilization of the multicriteria decision-making methods for the needs of mining industry. Acta Montan. Slovaca 2014, 19, 199–206. [Google Scholar]
- Sitorus, F.; Cilliers, J.J.; Brito-Parada, P.R. Multi-criteria decision making for the choice problem in mining and mineral processing. Appl. Trends 2019, 121, 393–417. [Google Scholar]
- Kałuski, J. (Ed.) Wielokryterialne Modele Planowania i Kontrolowania Potrzeb Materiałowych w Kopalni Węgla Kamiennego; Monografia; Wydawnictwo Politechniki Śląskiej: Gliwice, Poland, 2013. [Google Scholar]
- Sadowy, J. (Ed.) Kryteria Oceny Ofert w Postępowaniu o Udzielnie Zamówienia Publicznego—Przykłady Zastosowania; Urząd Zamówień Publicznych: Warszawa, Poland, 2011. [Google Scholar]
- Abt, S. Zarządzanie Logistyczne w Przedsiębiorstwie; Polskie Wydawnictwo Ekonomiczne: Warszawa, Poland, 1998. [Google Scholar]
- Wiszniowski, P.; Babecki, D.; Zych, K. Bezprzewodowy system wspomagania logistyki WLSS™ jako element poprawy bezpieczeństwa transportu kopalnianego. Napędy Sterow. 2011, 7/8, 34–42. [Google Scholar]
- Wojaczek, A. Wpływ Środowiska Technicznego Kopalń Podziemnych na Transmisję Sygnałów w Dołowych Sieciach Telekomunikacyjnych; Monografia; Wydawnictwo Politechniki Śląskiej: Gliwice, Poland, 2014. [Google Scholar]
- Christopher, M. Logistics and Supply Chain Management; Wydawnictwo Pearson: London, UK, 2016. [Google Scholar]
- Bąk, P. Production Planning in a Mining Enterprise—Selected Problems and Solutions. Gospod. Surowcami Miner.-Miner. Resour. Manag. 2018, 34, 97–116. [Google Scholar] [CrossRef]
- Cabała, P. Podejmowanie Decyzji w Warunkach Niepełnej Informacji; Wydawnictwo Uniwersytetu Ekonomicznego: Kraków, Poland, 2014. [Google Scholar]
- Cegiełka, K. Matematyczne Wspomaganie Decyzji; Szkoła Główna Służby Pożarniczej: Warszawa, Poland, 2012. [Google Scholar]
- Kowalik, S. Teoria Gier z Zastosowaniami Górniczymi; Wydawnictwo Politechniki Śląskiej: Gliwice, Poland, 2007. [Google Scholar]
- Jakubczyk, M.; Kamiński, B.; Szapiro, T. Modelowanie Decyzji w Arkuszu Kalkulacyjnym; Wydawnictwo Szkoły Głównej Handlowej: Warszawa, Poland, 2021. [Google Scholar]
Variants | Transport Duration to the Collection Point Situated at an Average Distance [min] | Weight: wku1A [Point U] | Transport Duration to the Collection Point Situated at an Extreme Distance [min] | Weight: wku1B [Point U] |
---|---|---|---|---|
W1 | ttp1 | pku1A1 | ttd1 | pku1B1 |
… | … | … | … | … |
Wi | ttpi | pku1Ai | ttdi | pku1Bi |
… | … | … | … | … |
Wn | ttpn | pkun1An | ttdn | pku1Bn |
Variants | Trackbed and Rolling Stock [Point D] | Weight: wku2 [Point U] |
---|---|---|
W1 | Rck1 | pku21 |
… | ||
Wi | Rcki | pku2i |
… | ||
Wn | Rckn | pku2n |
Scope | Additional Score [Point D] |
---|---|
Rk1—track passability | 2 |
Rk2—track carrying capacity | 1 |
Rk3—rolling stock kind conformity | 2 |
Rk4—rolling stock type conformity | 1 |
Variants | Continuous Communication Coverage [%] | Weight: wku3 [Point U] |
---|---|---|
W1 | łt1 | pku3 1 |
… | … | … |
Wi | łti | pku3 i |
… | … | … |
Wn | łtn | pku3 n |
Variants | Transport Duration to the Passenger Station at an Average Distance [min] | Weight: wku4A1 [Point U] | Transport Duration to the Passenger Station at an Extreme Distance [min] | Weight: wku4A2 [Point U] |
---|---|---|---|---|
W1 | tjlp 1 | pku4A1 1 | tjld 1 | pku4A2 1 |
… | … | … | … | … |
Wi | tjlp i | pku4A1 i | tjld i | pku4A2 i |
… | … | … | … | … |
Wn | tjlp n | pku4A1 n | tjld n | pku4A2 n |
Variants | Trackbed and Rolling Stock [Point D] | Weight: wku4B [Point U] |
---|---|---|
W1 | Rczl 1 | pku4B 1 |
… | … | … |
Wi | Rczl i | pku4B i |
… | … | … |
Wn | Rczl n | pku4B n |
Condition | Additional Score [Point D] |
---|---|
Rzl1—track carrying capacity | 1 |
Rzl2—loading gauge | 2 |
Rzl3—rolling stock use | 1 |
Condition | Additional Score [Point D] |
---|---|
Rb1—self-propelled | 4 |
Rb2—wired propulsion—slide busbar | 3 |
Rb3—wired drive—trailing conductor/hose * | 2 |
Rb4—rope traction | 1 |
Variants | Circumstances Exceeding the Initial Assumptions | ||||
---|---|---|---|---|---|
I | II | III | … | m | |
Number of Additional Collection Points [pcs.] | |||||
b1 (+) | b2 (0) | b3 (−) | … | bm (−) | |
Number of Non-Delivered Transport Units [t.u.] | |||||
W1 | w11 | w12 | w13 | w1 … | w1m |
… | … | … | … | … | … |
Wi | wi 1 | wi 2 | wi 3 | wi … | wim |
… | … | … | … | … | … |
Wn | wn 1 | wn 2 | wn 3 | wn … | wnm |
Variant | Min | Max |
---|---|---|
W1 | w1 min | w1 max |
… | … | … |
Wi | wi min | wi max |
… | … | … |
Wn | wn min | wn max |
Variant | Circumstances Exceeding the Initial Assumptions | Max [t.u.] | |||
---|---|---|---|---|---|
I | II | … | m | ||
W1 | s11 | s12 | … | s1m | Smax 1 |
… | … | … | … | … | |
Wi | si1 | si2 | … | sim | Smax i |
… | … | … | … | … | |
Wn | sn1 | sn2 | … | snm | Smax n |
Variant | Circumstances Exceeding the Initial Assumptions | Lmax [t.u.] | |||
---|---|---|---|---|---|
I | II | … | m | ||
W1 | l11 | l12 | … | l1m | Lmax 1 |
… | … | … | … | … | |
Wi | li1 | li2 | … | lim | Lmax i |
… | … | … | … | … | |
Wn | ln1 | ln2 | … | lnm | Lmax n |
Variant | Uncertainty Criterion | Weight: wku7A [Point U] | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Min (max) | Max (max) | Hurwicz’s | Savage’s | Laplace’s | |||||||
zm | zmm | zH | zS | zL | |||||||
W1 | K1m | N1m | K1mm | N1mm | K1H | N1H | K1s | N1s | K1L | N1L | pku7A 1 |
… | … | … | … | … | … | … | … | … | … | … | … |
Wi | Kim | Nim | Kimm | Nimm | KiH | NiH | KiS | NiS | KiL | NiL | pku7A i |
… | … | … | … | … | … | … | … | … | … | … | … |
Wn | Knm | Nnm | Knmm | Knmm | KnH | NnH | KnS | NnS | KnL | NnL | pku7A n |
Variants | Circumstances Exceeding the Initial Assumptions | ||||
---|---|---|---|---|---|
I | II | III | … | m | |
Number of Additional Collection Points [pcs.] | |||||
b1 (+) | b2 (0) | b3 (−) | b… (−) | bm (−) | |
Risk of Occurrence | |||||
α1 | α2 | α3 | α… | αm | |
Number of Non-Delivered Transport Units [t.u.] | |||||
W1 | w11 | w12 | w13 | w1… | w1m |
… | … | … | … | … | … |
Wi | wi1 | wi2 | wi3 | wi… | wim |
… | … | … | … | … | … |
Wn | wn1 | wn2 | wn3 | wn… | wnm |
Variant | Circumstances Exceeding the Initial Assumptions | Max [t.u.] | ||||
---|---|---|---|---|---|---|
I | II | III | … | m | ||
W1 | e11 | e12 | e13 | … | e1m | E1 |
… | … | … | … | … | … | |
Wi | ei1 | ei2 | ei3 | … | eim | Ei |
… | … | … | … | … | … | |
Wn | en1 | en2 | en3 | … | enm | En |
Variant | Risk Criteria | Weight: wku7B [Point U] | |||||
---|---|---|---|---|---|---|---|
Bayes’ | Highest Probability | Lost Profit | |||||
zB | zp | zuk | |||||
W1 | KR1B | R1B | KR1p | R1p | KR1uk | R1uk | pku7B 1 |
… | … | … | … | … | … | … | |
Wi | KRiB | RiB | KRip | Rip | KRiuk | Riuk | pku7B i |
… | … | … | … | … | … | … | |
Wn | KRnB | RnB | KRnp | Rnp | KRnuk | Rnuk | pku7B n |
Criterion | KU1A | KU1B | KU2 | KU3 | KU4A1 | KU4A2 | KU4B | KU5 | KU6 | KU7A | KU7B |
---|---|---|---|---|---|---|---|---|---|---|---|
Score [point U] | 5 | 5 | 6 | 4 | 4 | 4 | 8 | 3 | 10 | 51 | 51 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Turek, M.C.; Bednarczyk, Ł.; Jonek-Kowalska, I. Applying Utility Criteria to Select the Design Variant of the Transport System in Underground Mine Workings. Resources 2023, 12, 129. https://doi.org/10.3390/resources12110129
Turek MC, Bednarczyk Ł, Jonek-Kowalska I. Applying Utility Criteria to Select the Design Variant of the Transport System in Underground Mine Workings. Resources. 2023; 12(11):129. https://doi.org/10.3390/resources12110129
Chicago/Turabian StyleTurek, Marian Czesław, Łukasz Bednarczyk, and Izabela Jonek-Kowalska. 2023. "Applying Utility Criteria to Select the Design Variant of the Transport System in Underground Mine Workings" Resources 12, no. 11: 129. https://doi.org/10.3390/resources12110129
APA StyleTurek, M. C., Bednarczyk, Ł., & Jonek-Kowalska, I. (2023). Applying Utility Criteria to Select the Design Variant of the Transport System in Underground Mine Workings. Resources, 12(11), 129. https://doi.org/10.3390/resources12110129