Evaluation of Sourcing Decision for Hydrogen Supply Chain Using an Integrated Multi-Criteria Decision Analysis (MCDA) Tool
Abstract
:1. Introduction
2. Literature Review
- Studies related to MCDA tools are found in a wide range of applications in the literature. However, research that focuses on an area of renewable energy is scarce. Additionally, hydrogen energy-based specific studies are relatively new and limited to only a few country-wide case studies;
- Current studies related to the selection problem of hydrogen production source and technology types analyze only weighted criteria and/or the ranking of alternatives. However, there is a need to also evaluate the relative efficiency of each alternative for hydrogen source and technology type. Thus, the efficiency optimization is conducted through the DEA analysis in our study;
- Existing studies typically use a single tool under the MCDA approach to tackle the specific problem. However, there is a need to integrate MCDA tools in order deal with limitations of a particular, single method. Thus, our research utilizes AHP, fuzzy AHP, and DEA in an integrated way;
- Additionally, information obtained from decision makers may be incomplete, deficient, and vague. Thus, uncertainty in making decisions should be considered. In this study, we integrate fuzzy logic based on a probabilistic triangular distribution with the MCDA approach to incorporate the possibility of uncertain decisions for evaluating relevant alternatives;
- While there are prevalent studies related to hydrogen production and supply chains in some specific western countries, studies in emerging countries, especially in Asia, are uncommon but necessary. Thus, we focus our research on the case study in Thailand to contribute to the literature in this regard.
3. Methodology
3.1. Analytic Hierarchy Process (AHP)
3.2. Fuzzy Analytic Hierarchy Process (FAHP)
3.3. Data Envelopment Analysis (DEA)
4. Case Study and Results
4.1. Case Study
4.2. Criteria Evaluation
4.3. Alternative Evaluation
4.4. Relative Efficiency Analysis Using the DEA Technique
5. Sensitivity Analysis and Managerial Insights
5.1. Sensitivity Analysis
5.2. Managerial Implications
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
MCDA | Multi-Criteria Decision Analysis |
AHP | Analytic Hierarchy Process |
FAHP | Fuzzy Analytic Hierarchy Process |
DEA | Data Envelopment Analysis |
GHG | Greenhouse Gas |
FCEV | Fuel-Cell Electric Vehicle |
EU | European Union |
HSCN | Hydrogen Supply Chain Network |
DMU | Decision-Making Unit |
CCR | Charnes, Cooper, and Rhodes |
AHP | |
A positive reciprocal matrix | |
The maximum eigenvalue | |
Normalized principal eigenvector | |
Global alternative weight | |
Priority weight of criteria | |
Local alternative weight with respect to each criterion | |
Upper bound of maximum eigenvalue | |
FAHP | |
A fuzzy comparison matrix | |
L | The minimum value of the triangular distribution |
M | The most-likely value of the triangular distribution |
U | The maximum value of the triangular distribution |
Fuzzy comparison element | |
Fuzzy addition operator | |
Fuzzy multiplication operator | |
Crisp numerical value | |
DEA | |
Parameter for the amount of input data | |
Parameter for the amount of output data | |
Decision variable representing weight assigned to the input | |
Decision variable representing weight assigned to the output |
Appendix A
Study | Method | Uncertainty | Problem | Alternatives |
---|---|---|---|---|
Montignac et al. [32] | MACBETH technique | x | Selection of hydrogen storage technologies | Compressed, liquid and solid |
Acar et al. [33] | Hesitant fuzzy AHP | Hesitant fuzzy | Selection of hydrogen production methods | Grid electrolysis, wind electrolysis, photovoltaic electrolysis, nuclear thermochemical water splitting cycles, solar, and photoelectrochemical cells |
Xu et al. [34] | DEA, FAHP, FTOPSIS | Fuzzy | Selection of hydrogen production in China | Thermochemical, electrolysis, direct water splitting, biological |
Shah [20] | Fuzzy Delphi, FAHP and DEA | Fuzzy | Selection of hydrogen source in Pakistan | Wind, solar, biomass, municipal solid waste, geothermal, and micro-hydro. |
Wulf et al. [35] | PROMETHEE | Life cycle impact assessment | Selection of location for sustainable industrial hydrogen production | Austria, Germany and Spain |
Li et al. [36] | SMCDA with GIS | x | Selection of site for offshore wind farm siting | Four different altitudes of areas in the UK |
Xuan et al. [37] | SWARA, WASPAS, COPRAS, EDAS, and WSM | x | Selection of site location for solar-powered hydrogen production plant | Thirteen provinces of Uzbekistan |
This study | Integrative AHP, FAHP, DEA | Fuzzy | Selection of hydrogen source and technology | Natural gas, coal, biomass, and water |
References
- Elahi, E.; Khalid, Z.; Tauni, M.Z.; Zhang, H.; Lirong, X. Extreme weather events risk to crop-production and the adaptation of innovative management strategies to mitigate the risk: A retrospective survey of rural Punjab, Pakistan. Technovation 2022, 117, 102255. [Google Scholar] [CrossRef]
- Elahi, E.; Khalid, Z.; Zhang, Z. Understanding farmers’ intention and willingness to install renewable energy technology: A solution to reduce the environmental emissions of agriculture. Appl. Energy 2022, 309, 118459. [Google Scholar] [CrossRef]
- Farias, C.B.B.; Barreiros, R.C.S.; da Silva, M.F.; Casazza, A.A.; Converti, A.; Sarubbo, L.A. Use of Hydrogen as Fuel: A Trend of the 21st Century. Energies 2022, 15, 311. [Google Scholar] [CrossRef]
- Gawusu, S.; Zhang, X.; Jamatutu, S.A.; Ahmed, A.; Amadu, A.A.; Djam Miensah, E. The dynamics of green supply chain management within the framework of renewable energy. Int. J. Energy Res. 2022, 46, 684–711. [Google Scholar] [CrossRef]
- Levenda, A.M.; Behrsin, I.; Disano, F. Renewable energy for whom? A global systematic review of the environmental justice implications of renewable energy technologies. Energy Res. Soc. Sci. 2021, 71, 101837. [Google Scholar] [CrossRef]
- Mandley, S.J.; Daioglou, V.; Junginger, H.M.; van Vuuren, D.P.; Wicke, B. EU bioenergy development to 2050. Renew. Sustain. Energy Rev. 2020, 127, 109858. [Google Scholar] [CrossRef]
- Department of Alternative Energy Development and Efficiency (DEDE). Research and Development in the Field of Energy Conservation and Renewable Energy in Thailand. 2021. Available online: http://weben.dede.go.th/ (accessed on 1 May 2022).
- Energy Tracker Asia. Southeast Asia Looks beyond Coal. 2022. Available online: https://energytracker.asia/ (accessed on 1 May 2022).
- Global Hydrogen Generation Market Size Report. Grand View Research. 2022. Available online: https://www.grandviewresearch.com/ (accessed on 1 May 2022).
- Körner, A.; Tam, C.; Bennett, S.; Gagné, J. Technology Roadmap-Hydrogen and Fuel Cells; International Energy Agency (IEA): Paris, France, 2015. [Google Scholar]
- Ren, X.; Li, W.; Ding, S.; Dong, L. Sustainability assessment and decision making of hydrogen production technologies: A novel two-stage multi-criteria decision making method. Int. J. Hydrogen Energy 2020, 45, 34371–34384. [Google Scholar] [CrossRef]
- Talebian, H.; Herrera, O.E.; Mérida, W. Policy effectiveness on emissions and cost reduction for hydrogen supply chains: The case for British Columbia. Int. J. Hydrogen Energy 2021, 46, 998–1011. [Google Scholar] [CrossRef]
- Thailand Board of Investment (BOI). Thailand’s Bio Economy. 2022. Available online: https://www.boi.go.th/ (accessed on 1 May 2022).
- Cornwall Insight. Low-Carbon Hydrogen Index. 2022. Available online: https://www.cornwall-insight.com/ (accessed on 1 May 2022).
- Green Car Congress. 2021. Available online: https://www.greencarcongress.com/ (accessed on 1 May 2022).
- Yoon, H.J.; Seo, S.K.; Lee, C.J. Multi-period optimization of hydrogen supply chain utilizing natural gas pipelines and byproduct hydrogen. Renew. Sustain. Energy Rev. 2022, 157, 112083. [Google Scholar] [CrossRef]
- Atashbar, N.Z.; Labadie, N.; Prins, C. Modelling and optimization of biomass supply chains: A review. Int. J. Prod. Res. 2018, 56, 3482–3506. [Google Scholar] [CrossRef] [Green Version]
- Ransikarbum, K.; Mason, S.J. A bi-objective optimisation of post-disaster relief distribution and short-term network restoration using hybrid NSGA-II algorithm. Int. J. Prod. Res. 2021, 60, 5769–5793. [Google Scholar] [CrossRef]
- Ransikarbum, K.; Pitakaso, R.; Kim, N.; Ma, J. Multicriteria decision analysis framework for part orientation analysis in additive manufacturing. J. Comput. Des. Eng. 2021, 8, 1141–1157. [Google Scholar] [CrossRef]
- Shah, S.A.A. Feasibility study of renewable energy sources for developing the hydrogen economy in Pakistan. Int. J. Hydrogen Energy 2020, 45, 15841–15854. [Google Scholar] [CrossRef]
- Van de Graaf, T.; Overland, I.; Scholten, D.; Westphal, K. The new oil? The geopolitics and international governance of hydrogen. Energy Res. Soc. Sci. 2020, 70, 101667. [Google Scholar] [CrossRef] [PubMed]
- Collins, L. A Wake-Up Call on Green Hydrogen: The Amount of Wind and Solar Needed Is Immense; Recharge: London, UK, 2020. [Google Scholar]
- Chaiyaphan, C.; Ransikarbum, K. Criteria Analysis of Food Safety using the Analytic Hierarchy Process (AHP)—A Case study of Thailand’s Fresh Markets. In Proceedings of the 2019 Research, Invention, and Innovation Congress (RI2C 2019), Bangkok, Thailand, 11–13 December 2019; EDP Sciences: Les Ulis, Frace, 2020; Volume 141, p. 02001. [Google Scholar]
- Ransikarbum, K.; Leksomboon, R. Analytic Hierarchy Process Approach for Healthcare Educational Media Selection: Additive Manufacturing Inspired Study. In Proceedings of the 2021 IEEE 8th International Conference on Industrial Engineering and Applications (ICIEA), Chengdu, China, 23–26 April 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 154–158. [Google Scholar]
- Laganà, I.R.; Colapinto, C. Multiple criteria decision-making in healthcare and pharmaceutical supply chain management: A state-of-the-art review and implications for future research. J. Multi-Criteria Decis. Anal. 2022, 29, 122–134. [Google Scholar] [CrossRef]
- Goyal, P.; Kumar, D.; Kumar, V. Application of multicriteria decision analysis (MCDA) in the area of sustainability: A literature review. Int. J. Anal. Hierarchy Process 2020, 12, 720. [Google Scholar] [CrossRef]
- Chanthakhot, W.; Ransikarbum, K. Integrated IEW-TOPSIS and fire dynamics simulation for agent-based evacuation modeling in industrial safety. Safety 2021, 7, 47. [Google Scholar] [CrossRef]
- Dos Santos, P.H.; Neves, S.M.; Sant’Anna, D.O.; de Oliveira, C.H.; Carvalho, H.D. The analytic hierarchy process supporting decision making for sustainable development: An overview of applications. J. Clean. Prod. 2019, 212, 119–138. [Google Scholar] [CrossRef]
- Liu, Y.; Eckert, C.M.; Earl, C. A review of fuzzy AHP methods for decision-making with subjective judgements. Expert Syst. Appl. 2020, 161, 113738. [Google Scholar] [CrossRef]
- Yu, D.; He, X. A bibliometric study for DEA applied to energy efficiency: Trends and future challenges. Appl. Energy 2020, 268, 115048. [Google Scholar] [CrossRef]
- Yu, D.; Kou, G.; Xu, Z.; Shi, S. Analysis of collaboration evolution in AHP research: 1982–2018. Int. J. Inf. Technol. Decis. Mak. 2021, 20, 7–36. [Google Scholar] [CrossRef]
- Montignac, F.; Mousseau, V.; Bouyssou, D.; Aloulou, M.A.; Rousval, B.; Damart, S. An MCDA approach for evaluating hydrogen storage systems for future vehicles. In Evaluation and Decision Models with Multiple Criteria; Springer: Berlin/Heidelberg, Germany, 2015; pp. 501–532. [Google Scholar]
- Acar, C.; Beskese, A.; Temur, G.T. Sustainability analysis of different hydrogen production options using hesitant fuzzy AHP. Int. J. Hydrogen Energy 2018, 43, 18059–18076. [Google Scholar] [CrossRef]
- Xu, L.; Wang, Y.; Shah, S.A.A.; Zameer, H.; Solangi, Y.A.; Walasai, G.D.; Siyal, Z.A. Economic viability and environmental efficiency analysis of hydrogen production processes for the decarbonization of energy systems. Processes 2019, 7, 494. [Google Scholar] [CrossRef] [Green Version]
- Wulf, C.; Zapp, P.; Schreiber, A.; Kuckshinrichs, W. Setting thresholds to define indifferences and preferences in PROMETHEE for life cycle sustainability assessment of European hydrogen production. Sustainability 2021, 13, 7009. [Google Scholar] [CrossRef]
- Li, Z.; Tian, G.; El-Shafay, A.S. Statistical-analytical study on world development trend in offshore wind energy production capacity focusing on Great Britain with the aim of MCDA based offshore wind farm siting. J. Clean. Prod. 2022, 363, 132326. [Google Scholar] [CrossRef]
- Xuan, H.A.; Trinh, V.V.; Techato, K.; Phoungthong, K. Use of hybrid MCDM methods for site location of solar-powered hydrogen production plants in Uzbekistan. Sustain. Energy Technol. Assess. 2022, 52, 101979. [Google Scholar]
- Mu, E. The Past and Future of AHP/ANP: An ISAHP2020 Perspective. Int. J. Anal. Hierarchy Process 2020, 12, 842. [Google Scholar] [CrossRef]
- Ransikarbum, K.; Kim, N. Multi-criteria selection problem of part orientation in 3D fused deposition modeling based on analytic hierarchy process model: A case study. In Proceedings of the 2017 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM), Singapore, 10–13 December 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 1455–1459. [Google Scholar]
- Darko, A.; Chan, A.P.C.; Ameyaw, E.E.; Owusu, E.K.; Pärn, E.; Edwards, D.J. Review of application of analytic hierarchy process (AHP) in construction. Int. J. Constr. Manag. 2019, 19, 436–452. [Google Scholar] [CrossRef]
- Ransikarbum, K.; Pitakaso, R.; Kim, N. A decision-support model for additive manufacturing scheduling using an integrative analytic hierarchy process and multi-objective optimization. Appl. Sci. 2020, 10, 5159. [Google Scholar] [CrossRef]
- Alonso, J.A.; Lamata, M.T. Consistency in the analytic hierarchy process: A new approach. Int. J. Uncertain. Fuzziness Knowl. -Based Syst. 2006, 14, 445–459. [Google Scholar] [CrossRef] [Green Version]
- Ransikarbum, K.; Kim, N. Data envelopment analysis-based multi-criteria decision making for part orientation selection in fused deposition modeling. In Proceedings of the 2017 4th International Conference on Industrial Engineering and Applications (ICIEA), Nagoya, Japan, 21–23 April 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 81–85. [Google Scholar]
- Kohl, S.; Schoenfelder, J.; Fügener, A.; Brunner, J.O. The use of Data Envelopment Analysis (DEA) in healthcare with a focus on hospitals. Health Care Manag. Sci. 2019, 22, 245–286. [Google Scholar] [CrossRef] [PubMed]
- Ransikarbum, K.; Pitakaso, R.; Kim, N. Evaluation of assembly part build orientation in additive manufacturing environment using data envelopment analysis. In Proceedings of the 2019 7th Asia Conference on Mechanical and Materials Engineering (ACMME 2019), Tokyo, Japan, 14–17 June 2019; EDP Sciences: Les Ulis, Frace, 2019; Volume 293, p. 02002. [Google Scholar]
- Cooper, W.W.; Seiford, L.M.; Tone, K. Data Envelopment Analysis: A Comprehensive Text with Models, Applications, References and DEA-Solver Software; Springer: New York, NY, USA, 2007; Volume 2, p. 489. [Google Scholar]
- Li, L.; Manier, H.; Manier, M.A. Hydrogen supply chain network design: An optimization-oriented review. Renew. Sustain. Energy Rev. 2019, 103, 342–360. [Google Scholar] [CrossRef]
- Aditiya, H.B.; Aziz, M. Prospect of hydrogen energy in Asia-Pacific: A perspective review on techno-socio-economy nexus. Int. J. Hydrogen Energy 2021, 46, 35027–35056. [Google Scholar] [CrossRef]
- Ishizaka, A.; Labib, A. Review of the main developments in the analytic hierarchy process. Expert Syst. Appl. 2011, 38, 14336–14345. [Google Scholar] [CrossRef] [Green Version]
- Ho, W.; Ma, X. The state-of-the-art integrations and applications of the analytic hierarchy process. Eur. J. Oper. Res. 2018, 267, 399–414. [Google Scholar] [CrossRef]
- Expert Choice. 2023. Available online: https://www.expertchoice.com/ahp-software (accessed on 1 May 2022).
- Keren, B.; Hadad, Y.; Laslo, Z. Combining AHP and DEA methods for selecting a project manager. Manag. J. Sustain. Bus. Manag. Solut. Emerg. Econ. 2014, 19, 17–28. [Google Scholar] [CrossRef]
- Raychaudhuri, A.; Ghosh, S.K. Biomass supply chain in Asian and European countries. Procedia Environ. Sci. 2016, 35, 914–924. [Google Scholar] [CrossRef]
Matrix Size | The Confidence Level for Consistency | ||||
---|---|---|---|---|---|
3 | 0.01 | 0.05 | 0.10 | 0.20 | 0.50 |
4 | 4.027 | 4.136 | 4.273 | 4.546 | 5.364 |
5 | 5.045 | 5.225 | 5.450 | 5.900 | 7.249 |
Fuzzy Number | Verbal Judgment |
---|---|
(1, 1, 1) | Equally preferred |
(1, 2, 3) | Equally to moderately preferred |
(2, 3, 4) | Moderately preferred |
(3, 4, 5) | Moderately to strongly preferred |
(4, 5, 6) | Strongly preferred |
(5, 6, 7) | Strongly to very strongly preferred |
(6, 7, 8) | Very strongly preferred |
(7, 8, 9) | Very to extremely strongly preferred |
(9, 9, 9) | Extremely preferred |
Decision Maker | Criteria | Consistency | ||||
---|---|---|---|---|---|---|
C1 | C2 | C3 | C4 | C5 | The Maximum Eigenvalue | |
DM1 | 0.325 | 0.086 | 0.146 | 0.292 | 0.151 | 5.208 |
DM2 | 0.601 | 0.179 | 0.098 | 0.090 | 0.032 | 5.351 |
DM3 | 0.580 | 0.065 | 0.207 | 0.066 | 0.083 | 5.238 |
DM4 | 0.556 | 0.111 | 0.111 | 0.111 | 0.111 | 5.000 |
DM5 | 0.341 | 0.165 | 0.340 | 0.066 | 0.088 | 5.258 |
DM6 | 0.497 | 0.206 | 0.157 | 0.036 | 0.104 | 5.209 |
DM7 | 0.274 | 0.182 | 0.411 | 0.086 | 0.046 | 5.202 |
DM8 | 0.591 | 0.209 | 0.090 | 0.055 | 0.055 | 5.277 |
DM9 | 0.552 | 0.204 | 0.127 | 0.085 | 0.032 | 5.298 |
Group decision (Geometric mean) | 0.513 | 0.155 | 0.172 | 0.088 | 0.072 |
C1 | C2 | C3 | C4 | C5 | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
A1 | A2 | A3 | A4 | A1 | A2 | A3 | A4 | A1 | A2 | A3 | A4 | A1 | A2 | A3 | A4 | A1 | A2 | A3 | A4 | |
Decision maker 1 (DM1) | ||||||||||||||||||||
L | 0.13 | 0.21 | 0.10 | 0.10 | 0.14 | 0.21 | 0.10 | 0.10 | 0.31 | 0.05 | 0.09 | 0.18 | 0.14 | 0.27 | 0.13 | 0.10 | 0.19 | 0.28 | 0.07 | 0.05 |
M | 0.26 | 0.37 | 0.20 | 0.17 | 0.24 | 0.38 | 0.18 | 0.20 | 0.50 | 0.07 | 0.14 | 0.29 | 0.23 | 0.41 | 0.21 | 0.15 | 0.32 | 0.49 | 0.12 | 0.07 |
U | 0.48 | 0.61 | 0.43 | 0.33 | 0.43 | 0.61 | 0.36 | 0.43 | 0.53 | 0.73 | 0.20 | 0.12 | 0.38 | 0.59 | 0.32 | 0.25 | 0.56 | 0.79 | 0.21 | 0.13 |
Decision maker 2 (DM2) | ||||||||||||||||||||
L | 0.20 | 0.15 | 0.11 | 0.29 | 0.10 | 0.20 | 0.04 | 0.23 | 0.36 | 0.06 | 0.07 | 0.11 | 0.07 | 0.08 | 0.14 | 0.23 | 0.09 | 0.03 | 0.19 | 0.43 |
M | 0.25 | 0.23 | 0.15 | 0.38 | 0.17 | 0.33 | 0.06 | 0.44 | 0.56 | 0.10 | 0.11 | 0.20 | 0.12 | 0.15 | 0.29 | 0.45 | 0.12 | 0.03 | 0.26 | 0.58 |
U | 0.30 | 0.33 | 0.20 | 0.48 | 0.30 | 0.60 | 0.10 | 0.75 | 0.82 | 0.20 | 0.19 | 0.31 | 0.26 | 0.29 | 0.58 | 0.82 | 0.16 | 0.04 | 0.38 | 0.77 |
Decision maker 3 (DM3) | ||||||||||||||||||||
L | 0.24 | 0.17 | 0.16 | 0.05 | 0.11 | 0.27 | 0.18 | 0.05 | 0.47 | 0.04 | 0.10 | 0.14 | 0.18 | 0.15 | 0.15 | 0.04 | 0.19 | 0.03 | 0.19 | 0.37 |
M | 0.49 | 0.24 | 0.21 | 0.06 | 0.17 | 0.47 | 0.29 | 0.08 | 0.69 | 0.06 | 0.14 | 0.22 | 0.34 | 0.30 | 0.30 | 0.06 | 0.23 | 0.03 | 0.23 | 0.52 |
U | 0.66 | 0.35 | 0.28 | 0.09 | 0.28 | 0.75 | 0.47 | 0.13 | 0.98 | 0.09 | 0.22 | 0.34 | 0.64 | 0.57 | 0.57 | 0.11 | 0.29 | 0.04 | 0.29 | 0.68 |
Decision maker 4 (DM4) | ||||||||||||||||||||
L | 0.11 | 0.10 | 0.16 | 0.29 | 0.25 | 0.25 | 0.25 | 0.25 | 0.20 | 0.05 | 0.11 | 0.15 | 0.31 | 0.24 | 0.24 | 0.16 | 0.19 | 0.05 | 0.27 | 0.09 |
M | 0.15 | 0.13 | 0.26 | 0.48 | 0.25 | 0.25 | 0.25 | 0.25 | 0.38 | 0.07 | 0.19 | 0.27 | 0.34 | 0.24 | 0.24 | 0.17 | 0.31 | 0.08 | 0.47 | 0.14 |
U | 0.34 | 0.25 | 0.42 | 0.74 | 0.25 | 0.25 | 0.25 | 0.25 | 0.62 | 0.10 | 0.36 | 0.47 | 0.38 | 0.25 | 0.25 | 0.19 | 0.55 | 0.13 | 0.77 | 0.23 |
Decision maker 5 (DM5) | ||||||||||||||||||||
L | 0.11 | 0.23 | 0.11 | 0.13 | 0.15 | 0.42 | 0.16 | 0.03 | 0.28 | 0.04 | 0.10 | 0.18 | 0.13 | 0.47 | 0.15 | 0.03 | 0.32 | 0.04 | 0.32 | 0.32 |
M | 0.17 | 0.37 | 0.20 | 0.26 | 0.19 | 0.57 | 0.20 | 0.04 | 0.48 | 0.06 | 0.16 | 0.29 | 0.17 | 0.61 | 0.19 | 0.04 | 0.32 | 0.04 | 0.32 | 0.32 |
U | 0.33 | 0.61 | 0.43 | 0.36 | 0.24 | 0.76 | 0.26 | 0.06 | 0.74 | 0.09 | 0.27 | 0.45 | 0.21 | 0.78 | 0.23 | 0.05 | 0.32 | 0.04 | 0.32 | 0.32 |
Decision maker 6 (DM6) | ||||||||||||||||||||
L | 0.38 | 0.38 | 0.05 | 0.05 | 0.30 | 0.30 | 0.05 | 0.10 | 0.33 | 0.05 | 0.11 | 0.13 | 0.19 | 0.19 | 0.37 | 0.03 | 0.14 | 0.04 | 0.05 | 0.63 |
M | 0.44 | 0.44 | 0.06 | 0.06 | 0.40 | 0.40 | 0.07 | 0.14 | 0.53 | 0.07 | 0.17 | 0.21 | 0.23 | 0.23 | 0.52 | 0.03 | 0.18 | 0.05 | 0.07 | 0.70 |
U | 0.50 | 0.50 | 0.07 | 0.07 | 0.51 | 0.51 | 0.10 | 0.20 | 0.79 | 0.10 | 0.30 | 0.33 | 0.29 | 0.29 | 0.68 | 0.04 | 0.22 | 0.07 | 0.09 | 0.79 |
Decision maker 7 (DM7) | ||||||||||||||||||||
L | 0.26 | 0.02 | 0.42 | 0.03 | 0.10 | 0.21 | 0.36 | 0.03 | 0.15 | 0.06 | 0.08 | 0.21 | 0.29 | 0.22 | 0.10 | 0.03 | 0.20 | 0.07 | 0.05 | 0.30 |
M | 0.38 | 0.02 | 0.56 | 0.04 | 0.13 | 0.30 | 0.52 | 0.04 | 0.32 | 0.09 | 0.13 | 0.34 | 0.48 | 0.34 | 0.14 | 0.05 | 0.32 | 0.11 | 0.07 | 0.50 |
U | 0.60 | 0.03 | 0.73 | 0.05 | 0.20 | 0.44 | 0.74 | 0.06 | 0.54 | 0.17 | 0.24 | 0.56 | 0.73 | 0.56 | 0.22 | 0.07 | 0.55 | 0.18 | 0.12 | 0.78 |
Decision maker 8 (DM8) | ||||||||||||||||||||
L | 0.10 | 0.20 | 0.04 | 0.22 | 0.07 | 0.04 | 0.16 | 0.47 | 0.33 | 0.05 | 0.08 | 0.13 | 0.45 | 0.45 | 0.05 | 0.05 | 0.30 | 0.39 | 0.06 | 0.03 |
M | 0.17 | 0.40 | 0.07 | 0.36 | 0.10 | 0.05 | 0.23 | 0.62 | 0.53 | 0.08 | 0.13 | 0.23 | 0.45 | 0.45 | 0.05 | 0.05 | 0.37 | 0.52 | 0.07 | 0.03 |
U | 0.31 | 0.70 | 0.11 | 0.64 | 0.13 | 0.07 | 0.34 | 0.81 | 0.79 | 0.14 | 0.21 | 0.36 | 0.45 | 0.45 | 0.05 | 0.05 | 0.50 | 0.66 | 0.08 | 0.04 |
Decision maker 9 (DM9) | ||||||||||||||||||||
L | 0.16 | 0.12 | 0.12 | 0.17 | 0.11 | 0.16 | 0.03 | 0.32 | 0.20 | 0.05 | 0.10 | 0.18 | 0.06 | 0.07 | 0.13 | 0.40 | 0.06 | 0.03 | 0.18 | 0.52 |
M | 0.27 | 0.22 | 0.20 | 0.31 | 0.17 | 0.27 | 0.05 | 0.51 | 0.38 | 0.07 | 0.16 | 0.30 | 0.09 | 0.11 | 0.21 | 0.59 | 0.09 | 0.04 | 0.23 | 0.64 |
U | 0.43 | 0.34 | 0.37 | 0.58 | 0.31 | 0.43 | 0.07 | 0.78 | 0.62 | 0.12 | 0.27 | 0.50 | 0.16 | 0.18 | 0.32 | 0.85 | 0.12 | 0.05 | 0.30 | 0.78 |
Criteria | Alternatives | DM1 | DM2 | DM3 | DM4 | DM5 | DM6 | DM7 | DM8 | DM9 | Group |
---|---|---|---|---|---|---|---|---|---|---|---|
C1 | A1 | 0.25 | 0.25 | 0.49 | 0.15 | 0.18 | 0.44 | 0.38 | 0.17 | 0.27 | 0.286 |
A2 | 0.35 | 0.23 | 0.24 | 0.13 | 0.37 | 0.44 | 0.03 | 0.39 | 0.21 | 0.263 | |
A3 | 0.22 | 0.15 | 0.21 | 0.26 | 0.22 | 0.06 | 0.56 | 0.07 | 0.20 | 0.218 | |
A4 | 0.18 | 0.38 | 0.06 | 0.46 | 0.23 | 0.06 | 0.04 | 0.36 | 0.31 | 0.233 | |
C2 | A1 | 0.24 | 0.17 | 0.17 | 0.25 | 0.19 | 0.39 | 0.14 | 0.10 | 0.18 | 0.203 |
A2 | 0.35 | 0.34 | 0.46 | 0.25 | 0.57 | 0.39 | 0.30 | 0.05 | 0.27 | 0.332 | |
A3 | 0.19 | 0.06 | 0.29 | 0.25 | 0.20 | 0.07 | 0.52 | 0.23 | 0.05 | 0.207 | |
A4 | 0.22 | 0.43 | 0.08 | 0.25 | 0.04 | 0.14 | 0.04 | 0.62 | 0.50 | 0.258 | |
C3 | A1 | 0.42 | 0.56 | 0.61 | 0.40 | 0.48 | 0.53 | 0.35 | 0.54 | 0.41 | 0.479 |
A2 | 0.26 | 0.12 | 0.05 | 0.07 | 0.06 | 0.07 | 0.11 | 0.09 | 0.08 | 0.101 | |
A3 | 0.14 | 0.12 | 0.13 | 0.22 | 0.17 | 0.19 | 0.16 | 0.14 | 0.18 | 0.161 | |
A4 | 0.18 | 0.20 | 0.20 | 0.30 | 0.29 | 0.22 | 0.38 | 0.23 | 0.33 | 0.259 | |
C4 | A1 | 0.24 | 0.13 | 0.34 | 0.34 | 0.17 | 0.23 | 0.47 | 0.45 | 0.10 | 0.275 |
A2 | 0.39 | 0.15 | 0.30 | 0.24 | 0.60 | 0.23 | 0.35 | 0.45 | 0.11 | 0.313 | |
A3 | 0.21 | 0.29 | 0.30 | 0.24 | 0.19 | 0.51 | 0.14 | 0.05 | 0.21 | 0.238 | |
A4 | 0.16 | 0.43 | 0.06 | 0.17 | 0.04 | 0.03 | 0.05 | 0.05 | 0.58 | 0.174 | |
C5 | A1 | 0.36 | 0.17 | 0.23 | 0.32 | 0.32 | 0.37 | 0.33 | 0.38 | 0.09 | 0.286 |
A2 | 0.47 | 0.03 | 0.03 | 0.08 | 0.04 | 0.05 | 0.11 | 0.51 | 0.04 | 0.151 | |
A3 | 0.12 | 0.27 | 0.23 | 0.46 | 0.32 | 0.07 | 0.07 | 0.07 | 0.23 | 0.205 | |
A4 | 0.05 | 0.53 | 0.51 | 0.14 | 0.32 | 0.51 | 0.49 | 0.03 | 0.64 | 0.358 |
Decision Maker | Global Weight | ||||||||
---|---|---|---|---|---|---|---|---|---|
C1 | C2 | C3 | C4 | C5 | A1 | A2 | A3 | A4 | |
DM1 | 0.327 | 0.084 | 0.146 | 0.294 | 0.149 | 0.289 | 0.354 | 0.186 | 0.171 |
DM2 | 0.627 | 0.168 | 0.097 | 0.079 | 0.028 | 0.201 | 0.251 | 0.186 | 0.362 |
DM3 | 0.596 | 0.073 | 0.196 | 0.049 | 0.085 | 0.452 | 0.220 | 0.204 | 0.124 |
DM4 | 0.556 | 0.111 | 0.111 | 0.111 | 0.111 | 0.245 | 0.137 | 0.274 | 0.345 |
DM5 | 0.340 | 0.164 | 0.341 | 0.065 | 0.090 | 0.341 | 0.241 | 0.193 | 0.224 |
DM6 | 0.508 | 0.217 | 0.147 | 0.034 | 0.094 | 0.412 | 0.329 | 0.096 | 0.163 |
DM7 | 0.279 | 0.173 | 0.426 | 0.079 | 0.043 | 0.305 | 0.163 | 0.328 | 0.205 |
DM8 | 0.615 | 0.200 | 0.082 | 0.052 | 0.052 | 0.210 | 0.315 | 0.105 | 0.370 |
DM9 | 0.575 | 0.195 | 0.122 | 0.079 | 0.029 | 0.198 | 0.229 | 0.189 | 0.384 |
Group | 0.514 | 0.158 | 0.173 | 0.085 | 0.070 | 0.313 | 0.262 | 0.204 | 0.221 |
Alternatives | Input Criteria | Output Criteria | Relative Efficiency | |||||
---|---|---|---|---|---|---|---|---|
I1 | I2 | O1 (C1) | O2 (C2) | O3 (C3) | O4 (C4) | O5 (C5) | ||
DMU1 (A1) | 76.5 | 1.34 | 0.286 | 0.203 | 0.479 | 0.275 | 0.286 | 1.000 |
DMU2 (A2) | 63.0 | 0.92 | 0.263 | 0.332 | 0.101 | 0.313 | 0.151 | 1.000 |
DMU3 (A3) | 53.0 | 1.81 | 0.218 | 0.207 | 0.161 | 0.238 | 0.205 | 0.901 |
DMU4 (A4) | 31.0 | 3.39 | 0.233 | 0.258 | 0.259 | 0.174 | 0.358 | 1.000 |
Study | Ranking Results | |
---|---|---|
This study | Criteria | Political—Social—Economic—Resource—Environment |
Alternatives | Natural Gas—Coal—Water for Electrolysis—Biomass | |
Acar et al. [33] | Criteria | Technical—Environment—Availability—Economic—Social |
Alternatives | Grid electrolysis—Photo electrochemical cell—Wind electrolysis—Solar thermochemical—Nuclear | |
Xu et al. [34] | Criteria | Capital cost—Production—Feedstock—O and M—Emissions |
Alternatives | Wind—PV Electrolysis—Biomass gasification—Grid Electrolysis—Solar—Photobiological—Natural gas—Coal—Photoelectrochemical—Biomass liquid reforming—Microbial biomass |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ransikarbum, K.; Chanthakhot, W.; Glimm, T.; Janmontree, J. Evaluation of Sourcing Decision for Hydrogen Supply Chain Using an Integrated Multi-Criteria Decision Analysis (MCDA) Tool. Resources 2023, 12, 48. https://doi.org/10.3390/resources12040048
Ransikarbum K, Chanthakhot W, Glimm T, Janmontree J. Evaluation of Sourcing Decision for Hydrogen Supply Chain Using an Integrated Multi-Criteria Decision Analysis (MCDA) Tool. Resources. 2023; 12(4):48. https://doi.org/10.3390/resources12040048
Chicago/Turabian StyleRansikarbum, Kasin, Wattana Chanthakhot, Tony Glimm, and Jettarat Janmontree. 2023. "Evaluation of Sourcing Decision for Hydrogen Supply Chain Using an Integrated Multi-Criteria Decision Analysis (MCDA) Tool" Resources 12, no. 4: 48. https://doi.org/10.3390/resources12040048
APA StyleRansikarbum, K., Chanthakhot, W., Glimm, T., & Janmontree, J. (2023). Evaluation of Sourcing Decision for Hydrogen Supply Chain Using an Integrated Multi-Criteria Decision Analysis (MCDA) Tool. Resources, 12(4), 48. https://doi.org/10.3390/resources12040048