Flotation Recovery of Sphalerite in Sea Water: A Feasibility Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Minerals and Reagents
2.2. SEM Analysis
2.3. Technique for Studying Attachment Kinetics
2.4. Frothless Flotation
3. Results and Discussion
3.1. Sphalerite Sample Characterization
3.2. Non-Activated Sphalerite Particles
3.3. Activated Sphalerite Particles
3.4. Frothless Flotation of Sphalerite
4. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Farjana, S.H.; Huda, N.; Parvez Mahmud, M.A.; Saidur, R. A review on the impact of mining and mineral processing industries through life cycle assessment. J. Clean. Prod. 2019, 231, 1200–1217. [Google Scholar] [CrossRef]
- Seki, H.A.; Thorn, J.P.R.; Platts, P.J.; Shirima, D.D.; Marchant, R.A.; Abeid, Y.; Baker, N.; Annandale, M.; Marshall, A.R. Indirect impacts of commercial gold mining on adjacent ecosystems. Biol. Conserv. 2022, 275, 109782. [Google Scholar] [CrossRef]
- Boldy, R.; Santini, T.; Annandale, M.; Erskine, P.D.; Sonter, L.J. Understanding the impacts of mining on ecosystem services through a systematic review. Extr. Ind. Soc. 2021, 8, 457–466. [Google Scholar] [CrossRef]
- Nkuna, R.; Ijoma, G.N.; Matambo, T.S.; Chimwani, N. Accessing Metals from Low-Grade Ores and the Environmental Impact Considerations: A Review of the Perspectives of Conventional versus Bioleaching Strategies. Minerals 2022, 12, 506. [Google Scholar] [CrossRef]
- Endl, A.; Gottenhuber, S.L.; Gugerell, K. Bridging Policy Streams of Minerals and Land Use Planning: A Conceptualisation and Comparative Analysis of Instruments for Policy Integration in 11 European Member States. In Proceedings of the REAL CORP 2020—SHAPING URBAN CHANGE, Aachen, Germany, 15–18 September 2020; pp. 95–105. [Google Scholar]
- Abramov, A.A. Tekhnologiya Obogashcheniya Rud Tsvetnykh Metallov; Nedra: Moscow, Russia, 1983; p. 359. [Google Scholar]
- Bulatovic, S.M. Handbook of Flotation Reagents: Chemistry, Theory and Practice Flotation of Sulfide Ores, 1st ed.; Elsevier: Amsterdam, The Netherlands, 2007; p. 727. [Google Scholar]
- Herrera-Urbina, R.; Hanson, J.S.; Harris, G.H.; Fuerstenau, D.W. Principles and practice of sulphide mineral flotation. In Sulphide Deposits—Their Origin and Processing; Springer: Dordrecht, The Netherlands, 1990; pp. 87–101. [Google Scholar]
- Castro, S.; Laskowski, J.S. Froth flotation in saline water. KONA Powder Part. J. 2011, 29, 4–15. [Google Scholar] [CrossRef] [Green Version]
- Schneider, S.H.; Root, T.L.; Mastrandrea, M.D. Encyclopedia of Climate and Weather; Oxford University Press: New York, NY, USA, 1996; p. 1488. [Google Scholar]
- Laskowski, J.S.; Castro, S.; Gutierrez, L. Flotation in seawater. Mining, Metall. Explor. 2019, 36, 89–98. [Google Scholar] [CrossRef]
- Cisternas, L.A.; Gálvez, E.D. The use of seawater in mining. Miner. Process Extr. Metall. Rev. 2018, 39, 18–33. [Google Scholar] [CrossRef]
- Moreno, P.A.; Aral, H.; Cuevas, J.; Monardes, A.; Adaro, M.; Norgate, T.; Bruckard, W. The use of seawater as process water at Las Luces copper-molybdenum beneficiation plant in Taltal (Chile). Miner. Eng. 2011, 24, 852–858. [Google Scholar] [CrossRef]
- Levay, G.; Smart, R.S.C.; Skinner, W.M. The impact of water quality on flotation performance. J. S. Afr. Instig. Min. Metall. 2001, 101, 69–75. [Google Scholar]
- Liu, W.; Moran, C.J.; Vink, S. A review of the effect of water quality on flotation. Miner. Eng. 2013, 53, 91–100. [Google Scholar] [CrossRef]
- Wang, B.; Peng, Y. The effect of saline water on mineral flotation—A critical review. Miner. Eng. 2014, 66–68, 13–24. [Google Scholar] [CrossRef]
- Meißner, S. The Impact of Metal Mining on Global Water Stress and Regional Carrying Capacities—A GIS-Based Water Impact Assessment. Resources 2021, 10, 120. [Google Scholar] [CrossRef]
- Carvalho, J.; Galos, K.; Kot-Niewiadomska, A.; Gugerell, K.; Raaness, A.; Lisboa, V. A look at European practices for identifying mineral resources that deserve to be safeguarded in land-use planning. Resour. Policy 2021, 74, 102248. [Google Scholar] [CrossRef]
- Suopajärvi, L.; Beland Lindahl, K.; Eerola, T.; Poelzer, G. Social aspects of business risk in the mineral industry—Political, reputational, and local acceptability risks facing mineral exploration and mining. Miner. Econ. 2022. [Google Scholar] [CrossRef]
- Ihle, C.F.; Kracht, W. The relevance of water recirculation in large scale mineral processing plants with a remote water supply. J. Clean. Prod. 2018, 177, 34–51. [Google Scholar] [CrossRef]
- Suyantara, G.P.W.; Hirajima, T.; Miki, H.; Sasaki, K. Floatability of molybdenite and chalcopyrite in artificial seawater. Miner. Eng. 2018, 115, 117–130. [Google Scholar] [CrossRef]
- Li, Y.; Zhu, H.; Li, W.; Zhu, Y. A fundamental study of chalcopyrite flotation in sea water using sodium silicate. Miner. Eng. 2019, 139, 105862. [Google Scholar] [CrossRef]
- Ramirez, A.; Rojas, A.; Gutierrez, L.; Laskowski, J.S. Sodium hexametaphosphate and sodium silicate as dispersants to reduce the negative effect of kaolinite on the flotation of chalcopyrite in seawater. Miner. Eng. 2018, 125, 10–14. [Google Scholar] [CrossRef]
- Hirajima, T.; Suyantara, G.P.W.; Ichikawa, O.; Elmahdy, A.M.; Miki, H.; Sasaki, K. Effect of Mg2+ and Ca2+ as divalent seawater cations on the floatability of molybdenite and chalcopyrite. Miner. Eng. 2016, 96–97, 83–93. [Google Scholar] [CrossRef]
- Peng, Y.; Seaman, D. The flotation of slime-fine fractions of Mt. Keith pentlandite ore in de-ionised and saline water. Miner. Eng. 2011, 24, 479–481. [Google Scholar] [CrossRef]
- Castellón, C.I.; Piceros, E.C.; Toro, N.; Robles, P.; López-Valdivieso, A.; Jeldres, R.I. Depression of pyrite in seawater flotation by guar gum. Metals 2020, 10, 239. [Google Scholar] [CrossRef] [Green Version]
- Zhong, H.; Huang, Z.X.; Zhao, G.; Wang, S.; Liu, G.; Cao, Z. The collecting performance and interaction mechanism of sodium diisobutyl dithiophosphinate in sulfide minerals flotation. J. Mater. Res. Technol. 2015, 4, 151–161. [Google Scholar] [CrossRef] [Green Version]
- Chandra, A.P.; Gerson, A.R. A review of the fundamental studies of the copper activation mechanisms for selective flotation of the sulfide minerals, sphalerite and pyrite. Adv. Colloid Interface Sci. 2009, 145, 97–110. [Google Scholar] [CrossRef]
- Uddin, S.; Li, Y.; Mirnezami, M.; Finch, J.A. Effect of particles on the electrical charge of gas bubbles in flotation. Miner. Eng. 2012, 36–38, 160–167. [Google Scholar] [CrossRef]
- Chu, P.; Mirnezami, M.; Finch, J.A. Quantifying particle pick up at a pendant bubble: A study of non-hydrophobic particle-bubble interaction. Miner. Eng. 2014, 55, 162–164. [Google Scholar] [CrossRef]
- Nikolaev, A.A.; Konyrova, A.; Goryachev, B.E. A study on the mineralization kinetics of an air bubble in a suspension of activated and non-activated sphalerite. Obogashchenie Rud. 2020, 1, 26–31. [Google Scholar] [CrossRef]
- Nikolaev, A.A. Flotation recovery of toner containing iron oxide from water suspension. Miner. Eng. 2019, 144, 106027. [Google Scholar] [CrossRef]
- Nikolaev, A.A.; Batkhuyag, A.; Goryachev, B.E. Mineralization kinetics of air bubble in pyrite slurry under dynamic conditions. J. Min. Sci. 2018, 54, 840–844. [Google Scholar] [CrossRef]
- Nikolaev, A.A.; Soe, T.; Goryachev, B.E. Criterion of collector’s selectivity in sulfide ores bulk-selective flotation circuits. Obogashchenie Rud. 2016, 4, 23–28. [Google Scholar] [CrossRef]
- Nikolaev, A.A.; Petrova, A.A.; Goryachev, B.E. Pyrite grain and air bubble attachment kinetics in agitated pulp. J. Min. Sci. 2016, 52, 352–359. [Google Scholar] [CrossRef]
- Nikolaev, A.A.; Soe, T.; Goryachev, B.E. Upon bubble-mineral attachment kinetics with sphalerite under the conditions of application of thiol collectors and mixtures of these collectors. Obogashchenie Rud. 2016, 5, 14–18. [Google Scholar] [CrossRef]
- Song, S.; Lopez-Valdivieso, A.; Reyes-Bahena, J.L.; Lara-Valenzuela, C. Floc flotation of galena and sphalerite fines. Miner. Eng. 2001, 14, 87–98. [Google Scholar] [CrossRef]
- Boulton, A.; Fornasiero, D.; Ralston, J. Characterisation of sphalerite and pyrite flotation samples by XPS and ToF-SIMS. Int. J. Miner. Process 2003, 70, 205–219. [Google Scholar] [CrossRef]
- Wang, P.; Reyes, F.; Cilliers, J.J.; Brito-Parada, P.R. Evaluation of collector performance at the bubble-particle scale. Min. Eng. 2020, 147, 106140. [Google Scholar] [CrossRef]
- Rao, F.; Lázaro, I.; Ibarra, L.A. Solution chemistry of sulphide mineral flotation in recycled water and sea water: A review. T. I. Min. Metall. C 2017, 126, 139–145. [Google Scholar] [CrossRef]
- Houot, R.; Raveneau, P. Activation of sphalerite flotation in the presence of lead ions. Int. J. Miner. Process 1992, 35, 253–271. [Google Scholar] [CrossRef]
- Klassen, V.I.; Mokrousov, V.A. An Introduction to the Theory of Flotation; Butterworths: London, UK, 1963. [Google Scholar]
- Jeldres, R.I.; Forbes, L.; Cisternas, L.A. Effect of Seawater on Sulfide Ore Flotation: A Review. Min. Proc. Ext. Met. Rev. 2016, 37, 369–384. [Google Scholar] [CrossRef]
- Peng, Y.; Bradshaw, D. Mechanisms for the improved flotation of ultrafine pentlandite and its separation from lizardite in saline water. Miner. Eng. 2012, 36–38, 284–290. [Google Scholar] [CrossRef]
- Nikolaev, A.A.; Konyrova, A.; Goryachev, B.E. Wetting of sphalerite, chalcopyrite and pyrite in treatment with sulfhydryl collectors in saltish and sea water. J. Min. Sci. 2020, 56, 654–662. [Google Scholar] [CrossRef]
- Wang, J.; Xie, L.; Liu, Q.; Zeng, H. Effects of salinity on xanthate adsorption on sphalerite and bubble–sphalerite interactions. Miner. Eng. 2015, 77, 34–41. [Google Scholar] [CrossRef]
Mineral | Formula | Content % |
---|---|---|
Sphalerite | ZnS | 95.72 |
Galena | PbS | 3.43 |
Quartz | SiO2 | 0.85 |
Total | - | 100 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nikolaev, A.A. Flotation Recovery of Sphalerite in Sea Water: A Feasibility Study. Resources 2023, 12, 51. https://doi.org/10.3390/resources12040051
Nikolaev AA. Flotation Recovery of Sphalerite in Sea Water: A Feasibility Study. Resources. 2023; 12(4):51. https://doi.org/10.3390/resources12040051
Chicago/Turabian StyleNikolaev, Alexander A. 2023. "Flotation Recovery of Sphalerite in Sea Water: A Feasibility Study" Resources 12, no. 4: 51. https://doi.org/10.3390/resources12040051
APA StyleNikolaev, A. A. (2023). Flotation Recovery of Sphalerite in Sea Water: A Feasibility Study. Resources, 12(4), 51. https://doi.org/10.3390/resources12040051