System Dynamics Modelling: Integrating Empty Fruit Bunch Biomass Logistics to Reduce GHG Emissions
Abstract
:1. Introduction
2. Literature Review
2.1. Biomass Supply Chain
2.2. Application of Computer Simulation in Biomass Supply Chain
3. Materials and Methods
3.1. Problem Identification
3.2. Data Collection
3.3. Results
3.3.1. Causal Loop Diagram
Negative and Positive Feedback Loop
3.3.2. Stock and Flow Model of Integrated Biomass Logistics
4. Conclusions and Recommendation
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lüthi, D.; Le Floch, M.; Bereiter, B.; Blunier, T.; Barnola, J.-M.; Siegenthaler, U.; Raynaud, D.; Jouzel, J.; Fischer, H.; Kawamura, K.; et al. High-resolution carbon dioxide concentration record 650,000–800,000 years before present. Nature 2008, 453, 379–382. [Google Scholar] [CrossRef] [PubMed]
- Collins, M.; Knutti, R.; Arblaster, J.; Dufresne, J.-L.; Fichefet, T.; Friedlingstein, P.; Gao, X.; Gutowski, W.J.; Johns, T.; Krinner, G.; et al. Long-Term Climate Change: Projections, Commitments and Irreversibility. In Climate Change 2013: The Physical Science Basis. IPCC Working Group I Contribution to AR5; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar]
- Rahman, H.A. Climate change scenarios in Malaysia: Engaging the public. Int. J. Malay-Nusant. Stud. 2018, 1, 55–77. [Google Scholar]
- Bin Ujang, D.S.I.D.Z. Green Technology Master Plan Malaysia (2017–2030); Ministry of Energy, Green Technology and Water (KeTTHA): Putrajaya, Malaysia, 2017. [Google Scholar]
- Farouk, H.; Zahraee, S.M.; Atabani, A.E.; Mohd Jaafar, M.N.; Alhassan, F.H. Optimization of the esterification process of crude jatropha oil (CJO) containing high levels of free fatty acids: A Malaysian case study. Biofuels 2020, 11, 655–662. [Google Scholar] [CrossRef]
- Umar, T.; Jennings, M.S.; Urmee, P. Generating renewable energy from oil palm biomass in Malaysia: The Feed-in Tariff policy framework. Biomass Bioenergy 2014, 62, 37–46. [Google Scholar] [CrossRef]
- Agensi Inovasi Malaysia. National Biomass Strategy 2020: New Wealth Creation for Malaysia’s Palm Oil Industry; Agensi Inovasi Malaysia: Cyberjaya, Malaysia, 2011. [Google Scholar]
- Guo, X.; Voogt, J.; Annevelink, B.; Snels, J.; Kanellopoulos, A. Optimizing Resource Utilization in Biomass Supply Chains by Creating Integrated Biomass Logistics Centers. Energies 2020, 13, 6153. [Google Scholar] [CrossRef]
- Zahraee, S.M.; Golroudbary, S.R.; Shiwakoti, N.; Stasinopoulos, P.; Kraslawski, A. Transportation system analysis of empty fruit bunches biomass supply chain based on delivery cost and greenhouse gas emissions. Procedia Manuf. 2020, 51, 1717–1722. [Google Scholar] [CrossRef]
- Malladi, K.T.; Sowlati, T. Biomass logistics: A review of important features, optimization modeling and the new trends. Renew. Sustain. Energy Rev. 2018, 94, 587–599. [Google Scholar] [CrossRef]
- Zahraee, S.M.; Golroudbary, S.R.; Shiwakoti, N.; Kraslawski, A.; Stasinopoulos, P. An investigation of the environmental sustainability of palm biomass supply chains via dynamic simulation modeling: A case of Malaysia. J. Clean. Prod. 2019, 237, 117740. [Google Scholar] [CrossRef]
- Zahraee, S.M.; Assadi, M.K. Applications and challenges of the palm biomass supply chain in Malaysia. ARPN J. Eng. Appl. Sci. 2017, 12, 5789–5793. [Google Scholar]
- Hamzah, N.; Tokimatsu, K.; Yoshikawa, K. Solid fuel from oil palm biomass residues and municipal solid waste by hydrothermal treatment for electrical power generation in Malaysia: A review. Sustainability 2019, 11, 1060. [Google Scholar] [CrossRef]
- Yue, D.; You, F.; Snyder, S.W. Biomass-to-bioenergy and biofuel supply chain optimization: Overview, key issues and challenges. Comput. Chem. Eng. 2014, 66, 36–56. [Google Scholar] [CrossRef]
- Kushairi, A.; Loh, S.K.; Azman, I.; Hishamuddin, E.; Ong-Abdullah, M.; Izuddin, Z.B.M.N.; Razmah, G.; Sundram, S.; Parveez, G.K.A. Oil palm economic performance in Malaysia and R&D progress in 2017. J. Oil Palm. Res. 2018, 30, 163–195. [Google Scholar]
- United Nations Industrial Development Organization. Industrial Steam System Optimization (SSO) Experts Training; United Nations Industrial Development Organization: Vienna, Austria, 2012. [Google Scholar]
- Zahraee, S.M.; Golroudbary, S.R.; Hashemi, A.; Afshar, J.; Haghighi, M. Simulation of manufacturing production line based on Arena. Adv. Mater. Res. 2014, 933, 744–748. [Google Scholar] [CrossRef]
- Shahpanah, A.; Hashemi, A.; Nouredin, G.; Zahraee, S.M.; Helmi, S.A. Reduction of ship waiting time at port container terminal through enhancement of the tug/pilot machine operation. J. Teknol. 2014, 68, 63–66. [Google Scholar] [CrossRef]
- Shahpanah, A.; Zahraee, S.M.; Shiwakoti, N. Optimization of ship traffic at berthing areas of maritime container terminals via Simulation Experiment. Logist. Res. 2019, 12, 2. [Google Scholar]
- Ravula, P.P.; Grisso, R.D.; Cundiff, J.S. Cotton logistics as a model for a biomass transportation system. Biomass Bioenergy 2008, 32, 314–325. [Google Scholar] [CrossRef]
- Zhang, F.; Johnson, D.M.; Johnson, M.A. Development of a simulation model of biomass supply chain for biofuel production. Renew. Energy 2012, 44, 380–391. [Google Scholar] [CrossRef]
- Windisch, J.; Röser, D.; Mola-Yudego, B.; Sikanen, L.; Asikainen, A. Business process mapping and discrete-event simulation of two forest biomass supplychains. Biomass Bioenergy 2013, 56, 370–381. [Google Scholar] [CrossRef]
- Bleijenbergh, I.; Korzilius, H.; Verschuren, P. The validity and utility of participatory versus databased research strategies. In Proceedings of the 27th International Conference of the System Dynamics Society, Albuquerque, NM, USA, 26–30 July 2009. [Google Scholar]
- Forrester, J.W. Information sources for modeling the national economy. J. Am. Stat. Assoc. 1980, 75, 555–574. [Google Scholar] [CrossRef]
- Schlüter, M.; Hirsch, D.; Pahl-Wostl, C. Coping with change: Responses of the Uzbek water management regime to socio economic transition and global change. Environ. Sci. Policy 2010, 13, 620–636. [Google Scholar] [CrossRef]
- Hovelynck, J.; Dewulf, A.; Francois, G.; Taillieu, T. Interdisciplinary knowledge integration through group model building: Recognizing dualities and triadizing the conversation. Environ. Sci. Policy 2010, 13, 582–591. [Google Scholar] [CrossRef]
- Ryan, G. Guidance Notes on Planning a Systematic Review; James Hardiman Library: Galway, Ireland, 2010. [Google Scholar]
- Zurynski, Y. Writing a Systematic Literature Review, Resources for Students and Trainees; APSU: Clarksville, TN, USA, 2014. [Google Scholar]
- Maani, K.E.; Cavana, R.Y. Systems Thinking, System Dynamics: Managing Change and Complexity; Pearson Education: Auckland, New Zealand, 2007. [Google Scholar]
Steps | Method | Objectives |
---|---|---|
Systematic literature review | To identify the problem. | |
Document-based modelling approach | To determine the key variables. | |
1. Causal loop through mental modelling 2. Stock and flow model | To develop an integrated logistic supply chain model. |
Stock | Flow |
---|---|
Biomass fields | Incoming material |
Processing hub | Transportation |
Biomass products | Processing rate |
Logistics centers | Delivery rate |
Shipped quantity (Shipped QTY) | Shipment rate |
Biomass industry demand | Demand rate |
Power plants | GHG biomass |
GHG emissions due to biomass | Electricity generation rate due to diesel |
GHG emissions due to diesel | Electricity generation rate due to biomass |
Reduction |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abbasi, I.A.; Ashari, H.; Yusuf, I. System Dynamics Modelling: Integrating Empty Fruit Bunch Biomass Logistics to Reduce GHG Emissions. Resources 2023, 12, 53. https://doi.org/10.3390/resources12040053
Abbasi IA, Ashari H, Yusuf I. System Dynamics Modelling: Integrating Empty Fruit Bunch Biomass Logistics to Reduce GHG Emissions. Resources. 2023; 12(4):53. https://doi.org/10.3390/resources12040053
Chicago/Turabian StyleAbbasi, Iffat Abbas, Hasbullah Ashari, and Ijaz Yusuf. 2023. "System Dynamics Modelling: Integrating Empty Fruit Bunch Biomass Logistics to Reduce GHG Emissions" Resources 12, no. 4: 53. https://doi.org/10.3390/resources12040053
APA StyleAbbasi, I. A., Ashari, H., & Yusuf, I. (2023). System Dynamics Modelling: Integrating Empty Fruit Bunch Biomass Logistics to Reduce GHG Emissions. Resources, 12(4), 53. https://doi.org/10.3390/resources12040053