Quality Assessment and Classification of Feedstock for Bioenergy Applications Considering ISO 17225 Standard on Solid Biofuels
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples Description, Collection, and Preparation
2.2. Laboratory Analysis
2.3. Statistical Analysis
- -
- Matlab rel. 2020b, developed by Mathworks;
- -
- Minitab ver 16, developed by Minitab, LLC;
- -
- R-studio ver. 1.4.1106, an integrated development environment (IDE) for software R, distributed with the GPU license.
3. Results
3.1. Descriptive Analysis and the Kruskal–Wallis Test
3.2. Diagrams Based on Elementary Analysis (C/N, van Krevelen)
3.3. Principal Component Analysis and Pearson Correlation Map
3.4. Violin Plots
3.4.1. Violin Plots for Woody Biomasses (WB)
3.4.2. Violin Plots for Herbaceous Biomasses (HB)
3.4.3. Violin Plots for Fruit Biomasses (FB)
4. Discussion
5. Conclusions
- (1)
- For all the biomasses analyzed, positive correlation was found between ash content and chlorine/sulfur.
- (2)
- In general terms, woody biomasses have a higher atomic carbon/nitrogen ratio (higher carbon content), while agricultural residual biomasses, and, to some extent, herbaceous biomasses, have a higher nitrogen content. Woody biomasses would seem more suitable for feeding thermochemical systems (power plants), and agricultural and herbaceous biomasses would be better for feeding biochemical systems (biogas plants).
- (3)
- The study confirms the general correctness of the classification criteria of the ISO 17225-1 standard. In some cases, however, the variability is so high as to suggest that the classes identified by the standard are recognizable only through an accurate traceability process (not always possible and economically advantageous).
- (4)
- Finally, for OC and OS, results would suggest the possibility of introducing an additional level to the classes of ISO 17225-1. However, an effective revision of the standard in this sense could be very expensive given the complexity of the topic. The results obtained represent the overview of the different types of biomasses used by Italian thermal energy plants.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
M | moisture |
A | ash |
GCV | gross calorific value |
C | carbon |
H | hydrogen |
N | nitrogen |
O | oxygen |
Cl | chlorine |
S | sulphur |
WB | woody biomass |
WC | woodchip |
Brk | bark |
OrR | orchard residues |
Brn | branches |
PrUG | pruning from urban greenery |
SW | stemwood residues |
FB | fruit biomass |
OS | olive stone |
OC | oilseed cake |
FR | fruit residues |
OP | olive pomace |
GM | grape marc |
HB | herbaceous biomass |
RS | rapeseed straw |
SCS | sunflower flower head and stalks |
CS | corn stalks |
WS | wheat straw |
SP | sorghum plant |
SS | sorghum stalks |
References
- Jafri, N.; Wong, W.Y.; Doshi, V.; Yoon, L.W.; Cheah, K.H. A Review on Production and Characterization of Biochars for Application in Direct Carbon Fuel Cells A review on production and characterization of biochars for application in direct carbon fuel cells. Process Saf. Environ. Prot. 2018, 118, 152–166. [Google Scholar] [CrossRef]
- Toscano, G.; Feliciangeli, G.; Rossini, G.; Fabrizi, S.; Foppa Pedretti, E.; Duca, D. Engineered solid biofuel from herbaceous biomass mixed with inorganic additives. Fuel 2019, 256, 115895. [Google Scholar] [CrossRef]
- Gowman, A.C.; Picard, M.C.; Rodriguez-Uribe, A.; Misra, M.; Khalil, H.; Thimmanagari, M.; Mohanty, A.K. Physicochemical analysis of apple and grape pomaces. BioResources 2019, 14, 3210–3230. [Google Scholar] [CrossRef]
- Loomis, R.S. On the utility of nitrogen in leaves. Proc. Natl. Acad. Sci. USA 1997, 94, 13378–13379. [Google Scholar] [CrossRef] [PubMed]
- USDA, Natural Resources Conservation Service of U.S. Department of Agriculture. Carbon to Nitrogen Ratios in Cropping Systems. Available online: https://bwsr.state.mn.us/sites/default/files/2019-07/C_N_ratios_cropping_systems.pdf (accessed on 25 January 2023).
- Agostinho, D.; Eloy, E.; Caron, B.O.; Trugilho, P.F. Elemental Chemical Composition of Forest Biomass at Different Ages for Energy Purposes. In Biomass Volume Estimation and Valorization for Energy; Tumuluru, J.S., Ed.; IntechOpen: London, UK, 2017; Volume 26. [Google Scholar]
- Murphy, D.J. Engineering oil production in rapeseed and other oil crops. Tibtech 1996, 14, 206–213. [Google Scholar] [CrossRef]
- Doan, L.P.; Nguyen, T.T.; Pham, M.Q.; Tran, Q.T. Extraction Process, Identification of Fatty Acids, Tocopherols, Sterols and Phenolic Constituents, and Antioxidant Evaluation of Seed Oils from Five Fabaceae Species. Processes 2019, 7, 456. [Google Scholar] [CrossRef]
- Rutkowska, J. Effects of fatty acid composition of liquid margarines on sensory quality of cakes. Acta Aliment. 2010, 39, 125–137. [Google Scholar] [CrossRef]
- Scott, E.; Peter, F.; Sanders, J. Biomass in the manufacture of industrial products—The use of proteins and amino acids. Appl. Microbiol. Biotechnol. 2007, 75, 751–762. [Google Scholar] [CrossRef]
- Wyman, C.E.; Decker, S.R.; Himmel, M.E.; Brady, J.W.; Skopec, C.E. Hydrolysis of Cellulose and Hemicellulose. In Polysaccharides: Structural Diversity and Functional Versatility; Marcel Dekker: New York, NY, USA, 2005. [Google Scholar]
- Rutkowski, P.; Waliszewska, B.; Mleczek, M.; Zborowska, M.; Golin, P.; Szentner, K. Changes in the chemical composition and the structure of cellulose and lignin in elm wood exposed to various forms of arsenic. Cellulose 2019, 26, 6303–6315. [Google Scholar] [CrossRef]
- Balan, V.; Rogers, C.A.; Chundawat, S.P.S.; da Costa Sousa, L.; Slininger, P.J.; Gupta, R.; Dale, B.E. Conversion of Extracted Oil Cake Fibers into Bioethanol Including DDGS, Conversion of Extracted Oil Cake Fibers into Bioethanol Including DDGS, Canola, Sunflower, Sesame, Soy, and Peanut for Integrated Biodiesel Processing. J. Am. Oil Chem. Soc. 2009, 86, 157–165. [Google Scholar] [CrossRef]
- Iqbal, Y.; Lewandowski, I. Biomass composition and ash melting behaviour of selected miscanthus genotypes in Southern Germany. Fuel 2016, 180, 606–612. [Google Scholar] [CrossRef]
- Silberberg, M.S. Chemistry: The Molecular Nature of Matter and Change; McGraw-Hill: New York, NY, USA, 2006. [Google Scholar]
- IEA. Renewables 2022; IEA: Paris, France, 2022. [Google Scholar]
- Mancini, M.; Toscano, G.; Feliciangeli, G.; Leoni, E.; Duca, D. Investigation on woodchip quality with respect to ISO standards and relationship among quality parameters. Fuel 2020, 279, 118559. [Google Scholar] [CrossRef]
- Duca, D.; Toscano, G.; Pizzi, A.; Rossini, G.; Fabrizi, S.; Lucesoli, G.; Servili, A.; Mancini, V.; Romanazzi, G.; Mengarelli, C. Evaluation of the characteristics of vineyard pruning residues for energy applications: Effect of different copper-based treatments. J. Agric. Eng. 2016, 47, 22–27. [Google Scholar] [CrossRef]
- Ilari, A.; Toscano, G.; Pedretti, E.F.; Fabrizi, S.; Duca, D. Environmental sustainability of heating systems based on pellets produced in mobile and stationary plants from vineyard pruning residues. Resources 2020, 9, 94. [Google Scholar] [CrossRef]
- Ilari, A.; Foppa Pedretti, E.; De Francesco, C.; Duca, D. Pellet Production from Residual Biomass of Greenery Maintenance in a Small-Scale Company to Improve Sustainability. Resources 2021, 10, 122. [Google Scholar] [CrossRef]
- Pizzi, A.; Foppa Pedretti, E.; Duca, D.; Rossini, G.; Mengarelli, C.; Ilari, A.; Mancini, M.; Toscano, G. Emissions of heating appliances fuelled with agropellet produced from vine pruning residues and environmental aspects. Renew. Energy 2018, 121, 513–520. [Google Scholar] [CrossRef]
- Toscano, G.; Riva, G.; Foppa Pedretti, E.; Duca, D. Effect of the carbon oxidation state of biomass compounds on the relationship between GCV and carbon content. Biomass Bioenergy 2013, 48, 231–238. [Google Scholar] [CrossRef]
- Mckendry, P. Energy production from biomass (part 1): Overview of biomass. Bioresour. Technol. 2002, 83, 37–46. [Google Scholar] [CrossRef]
- Koppejan, J.; Van Loo, S. The Handbook of Biomass Combustion & Co-Firing; Earthscan Publishing House: London, UK, 2007; ISBN 978-1-84407-249-1. [Google Scholar]
- University of Stanford. An Assessment of Biomass Feedstock and Conversion Research Opportunities; University of Stanford: Stanford, CA, USA, 2006. [Google Scholar]
- Williams, C.L.; Emerson, R.M.; Emerson, R.M. Biomass Compositional Analysis for Conversion to Renewable Fuels and Chemicals. In Biomass Volume Estimation and Valorization for Energy; Tumuluru, J.S., Ed.; IntechOpen: London, UK, 2017; ISBN 978-953-51-2938-7. [Google Scholar]
- Tumuluru, J.S. Comparison of Chemical Composition and Energy Property of Torrefied Switchgrass and Corn Stover. Front. Energy Res. 2015, 3, 46. [Google Scholar] [CrossRef]
- Tan, C.P.; Man, Y.B.C. Differential scanning calorimetric analysis of palm oil, palm oil based products and coconut oil: Effects of scanning rate variation. Food Chem. 2002, 76, 89–102. [Google Scholar] [CrossRef]
- Duca, D.; Riva, G.; Foppa Pedretti, E.; Toscano, G. Wood pellet quality with respect to en 14961-2 standard and certifications. Fuel 2014, 135, 9–14. [Google Scholar] [CrossRef]
- Toscano, G.; Riva, G.; Foppa Pedretti, E.; Corinaldesi, F.; Mengarelli, C.; Duca, D. Investigation on wood pellet quality and relationship between ash content and the most important chemical elements. Biomass Bioenergy 2013, 56, 317–322. [Google Scholar] [CrossRef]
- Toscano, G.; Duca, D.; Foppa Pedretti, E.; Pizzi, A.; Rossini, G.; Mengarelli, C.; Mancini, M. Investigation of woodchip quality: Relationship between the most important chemical and physical parameters. Energy 2016, 106, 38–44. [Google Scholar] [CrossRef]
- Vivoli, F.P. Energia Dalle Biomasse—Tecnologie e Prospettive; Regione Siciliana Assessorato Industria: Palermo, Italy, 2008. [Google Scholar]
- Faravelli, T.; Frassoldati, A.; Granata, S.; Ranzi, E.; Cuoci, A. Fenomenologia Della Combustione di Biomasse; Politecnico di Milano: Milan, Italy, 2006. [Google Scholar]
- Sohaib, Q.; Habib, M.; Fawad, S.; Shah, A.; Habib, U.; Ullah, S. Fast pyrolysis of locally available green waste at different residence time and temperatures. Energy Sources Part A Recovery Util. Environ. Eff. 2017, 39, 1639–1646. [Google Scholar] [CrossRef]
- Phyllis2—Database for Biomass and Waste. Biomass Unit of Energy Research Centre of the Netherlands (ECN). Available online: https://phyllis.nl/ (accessed on 12 January 2023).
- Easterly, J.L.; Burnham, M. Overview of Biomass and Waste Fuel for Power Production. Biomass Bioenergy 1996, 10, 79–92. [Google Scholar] [CrossRef]
- Adamovics, A.; Platace, R.; Gulbe, I.; Ivanovs, S. The content of carbon and hydrogen in grass biomass and its influence on heating value. Eng. Rural Dev. 2018, 1, 1277–1281. [Google Scholar] [CrossRef]
- Pizzi, A.; Duca, D.; Rossini, G.; Fabrizi, S.; Toscano, G. Biofuel, Bioenergy and Feed Valorization of By-Products and Residues from Hevea brasiliensis Cultivation to Enhance Sustainability. Resources 2020, 9, 114. [Google Scholar] [CrossRef]
- Pedretti, E.F.; Del Gatto, A.; Pieri, S.; Mangoni, L.; Ilari, A.; Mancini, M.; Feliciangeli, G.; Leoni, E.; Toscano, G. Experimental Study to Support Local Sunflower Oil Chains: Production of Cold Pressed Oil in Central Italy. Agriculture 2019, 9, 231. [Google Scholar] [CrossRef]
- Senneca, O. Kinetics of pyrolysis, combustion and gasification of three biomass fuels. Fuel Process. Technol. 2007, 88, 87–97. [Google Scholar] [CrossRef]
- Jankovi, B.; Jovanovi, V.; Stojiljkovi, D. Comparative pyrolysis kinetics of various biomasses based on model-free and DAEM approaches improved with numerical optimization procedure. PLoS ONE 2018, 13, e0206657. [Google Scholar] [CrossRef]
- Yap, B.W.; Sim, C.H. Comparisons of various types of normality tests. J. Stat. Comput. Simul. 2011, 81, 2141–2155. [Google Scholar] [CrossRef]
- MacFarland, T.W.; Yates, J.M. Nonparametric Statistics for the Biological Sciences. In Introduction to Nonparametric Statistics for the Biological Sciences Using R; Springer: Cham, Switzerland, 2016. [Google Scholar]
- Jiang, Y.; Park, K.H.; Jeon, C.H. Feasibility Study of Co-Firing of Torrefied Empty Fruit Bunch and Coal Through Boiler Simulation. Energies 2020, 13, 3051. [Google Scholar] [CrossRef]
- Eduardo, C.; Braz, M.; Crnkovic, P.M. Physical–Chemical Characterization of Biomass Samples for Application in Pyrolysis Process. Chem. Eng. Trans. 2014, 37, 523–528. [Google Scholar] [CrossRef]
- Vassilev, S.V.; Baxter, D.; Andersen, L.K.; Vassileva, C.G. An overview of the chemical composition of biomass. Fuel 2010, 89, 913–933. [Google Scholar] [CrossRef]
- Ancuta, P.; Sonia, A. Oil Press-Cakes and Meals Valorization through Circular Economy Approaches: A Review. Appl. Sci. 2020, 10, 7432. [Google Scholar] [CrossRef]
- Lomascolo, A.; Uzan-Boukhris, E.; Sigoillot, J.C.; Fine, F. Rapeseed and sunflower meal: A review on biotechnology status and challenges. Appl. Microbiol. Biotechnol. 2012, 95, 1105–1114. [Google Scholar] [CrossRef]
ISO Standard | Biofuel | Raw Material (ISO 17225-1:2021, Table 1) | Quality Classes | Ash Limit % in Dry Mass | |
---|---|---|---|---|---|
ISO 17225-2 | Wood pellet. | 1.1 | Forest, plantation, and other virgin wood | A1 | 0.7 |
1.2 | By-products and residues from wood processing industry | A2 | 1.2 | ||
1.3.1 | Chemically untreated used wood | B | 2.0 | ||
ISO 17225-3 | Wood briquettes. | 1.1 | Forest, plantation, and other virgin wood | A1 | 1.0 |
1.2 | By-products and residues from wood processing industry | A2 | 3.0 | ||
1.3.1 | Chemically untreated used wood | B | 5.0 | ||
ISO 17225-4 | Wood chips. | 1.1 | Forest, plantation, and other virgin wood | A1–A2 | 1.5 |
1.2 | By-products and residues from wood processing industry | ||||
1.3.1 | Chemically untreated used wood | B1–B2 | 3.0 | ||
ISO 17225-5 | Firewood. | 1.1.1 | Whole trees without roots | A1 | |
1.1.3 | Stem wood | ||||
1.1.4 | Logging residues | A2 | |||
1.2.1 | Chemically untreated by-products and residues from wood processing industry | B | |||
ISO 17225-6 | Non-woody pellets. | 2 | Herbaceous biomass | A | 6.0 |
3 | Fruit biomass | ||||
4 | Aquatic biomass | B | 10.0 | ||
5 | Biomass blends and mixtures | ||||
ISO 17225-7 | Non-woody briquettes. | 2 | Herbaceous biomass | A1 | 3.0 |
3 | Fruit biomass | ||||
4 | Aquatic biomass | A2 | 6.0 | ||
5 | Biomass blends and mixtures | B | 10.0 | ||
ISO/TS 17225-8 | Graded thermally treated and densified biomass fuel. | 1.1 | Forest, plantation and other virgin wood | TW1H-TW1L | 1.2 |
1.2 | By-products and residues from wood processing industry | ||||
1.3.1 | Chemically untreated used wood | TW2H-TW2L | 3.0 | ||
2 | Herbaceous biomass | ||||
3 | Fruit biomass | TW3H-TW3L | 5.0 | ||
4 | Aquatic biomass | ||||
ISO 17225-9 | Hog fuel and wood chips for industrial use. | 1.1 | Forest, plantation and other virgin wood | I1 | 3.0 |
1.2 | By-products and residues from wood processing industry | I2 | 5.0 | ||
1.3 | Used wood | I3 | 6.0 | ||
1.4 | Blends and mixtures | I4 | 7.0 |
Main Groups | Subgroups | Description/Origin | Abbrev | Corresponding ISO Code | N. Samples |
---|---|---|---|---|---|
Herbaceous biomass—HB (378 samples) | Wheat straw | Dry stalks of cereal plants after the grain and chaff have been removed. | WS | 2.1.1.2 | 34 |
Corn stalks | Corn from dedicated culture, straw parts. | CS | 2.1.1.2 | 28 | |
Sorghum plant | Sorghum from dedicated culture of cereal crops, whole plant. | SP | 2.1.1.1 | 38 | |
Sorghum stalks | Sorghum from dedicated culture, straw parts. | SS | 2.1.1.2 | 36 | |
Rapeseed straw | From dedicated culture of rapeseed for oil extraction. | RS | 2.1.3.2 | 81 | |
Sunflower flower head and stalks | From dedicated culture of sunflower for oil extraction. | SCS | 2.1.3.2 | 161 | |
Food processing industry/fruit biomass—FB (226 samples) | Grape marc | Berries of chemically untreated grape residues. | GM | 3.2.1.1 | 25 |
Fruit Residues | Stone/kernel fruits/fruit fibre. | FR | 3.2.1.2 | 27 | |
Oilseed cake | Cake from oilseed plat such as rapeseed or sunflower. | OC | 3.2.1.4 | 55 | |
Olive pomace | Crude olive cake obtained after extraction of oil from olive. | OP | 3.2.1.4 | 108 | |
Oilve stone | Kernel/stone coming obtained by extraction of oil from olive. | OS | 3.2.1.2 | 11 | |
Woody biomass—WB (325 samples) | Branches | From forestry operations. | Brn | 1.1.4 | 21 |
Orchard residues | Orchard pruning residue subjected to the first coarse grinding before being transported to the plant—d95 > 100 mm. | OrR | 1.1.7 | 27 | |
Bark | From forestry operations. | Brk | 1.1.6 | 18 | |
Woodchip | Forest, plantation, logging residues. | WC | 1.1.3 | 188 | |
Pruning from urban greenery | Segregated wood from gardens, parks, roadside maintenance, plant waste removal. | PrUG | 1.1.7 | 17 | |
Stem wood residues | From sawdust and related industrial wastes from the milling of lumber, manufacture of wood products and furniture, and construction. | SW | 1.2.1 | 54 |
Parameter/Procedure | Unit | Standard | Instruments | Methodology |
---|---|---|---|---|
Sampling | - | ISO 18135:2017 | - | Withdrawal of 10 increments of 10 L from every 100 t biomass batch. Quartering procedure to reduce the sample size. |
Sample preparation | - | ISO 14780:2017 | Ventilated stove “MPM Instruments” + Cutting mill RETSCH SM 2000 | Stabilization: in oven at 40 °C for about 24 h Milling: <1 mm particle size distribution. |
Moisture content (M) | % a.r. | ISO 18134-2:2015 | Ventilated stove + Electronic Scale | After weighing in and drying (105 °C for 24 h) of about 400 g material specimen in duplicate, they are weighed again. |
Gross Calorific Value (GCV) | J/g d.m. | ISO 18125:2017 | Calorimeter IKA c2000 | Combustion of about 1 g material through a calorimeter equipped with a stainless steel Mahler bomb filled with 3 MPa Oxygen. The energy released from the process is related to the increase in temperature of a known mass of water placed in contact with the bomb. |
Ash content (A) | % d.m. | ISO 18122:2015 | Ash analyzer TGA 701 LECO | Incineration through three steps—105, 250 and 550 °C—in air of 1 g of milled material weighed in duplicate until reaching a constant weight. The percentage of remaining mass after the process represents the ash content. |
Chlorine and Sulfur content (Cl, S) | % d.m. | ISO 16994:2015 | Water collected through Mahler Bomb + Ion Chromatographer METROHM 761 Compact IC | After analysis of gross calorific value, combustion water condenses inside the bomb and captures these elements. It is then recovered, appropriately diluted and analyzed by anion-exchange chromatography. |
Carbon, Hydrogen and Nitrogen content (C, H, N O *) | % d.m. | ISO 16948:2015 | CHN Analyzer 2400 Perkin Elmer | Gaseous CO2, H2O and N2 were obtained by the complete combustion and subsequent reduction of about 4 mg sample measured by a thermal conductivity detector. |
M | A | GCV | C | H | N | O | Cl | S | |
---|---|---|---|---|---|---|---|---|---|
1—HB | |||||||||
Median | 10.6 c | 9.5 a | 17,720 c | 44.4 c | 5.6 c | 0.9 b | 39.2 b | 0.32 a | 0.12 a |
Mean | 11.9 | 10.0 | 17,645 | 44.3 | 5.6 | 1.0 | 38.7 | 0.44 | 0.15 |
St. dev. | 4.5 | 3.0 | 697 | 1.6 | 0.3 | 0.3 | 2.6 | 0.36 | 0.11 |
Max | 59.3 | 17.2 | 21,617 | 48.6 | 6.3 | 2.3 | 45.8 | 1.56 | 0.59 |
Min | 7.8 | 4.3 | 14,693 | 37.8 | 4.7 | 0.1 | 30.7 | 0.03 | 0.01 |
2—FB | |||||||||
Median | 28.8 b | 3.2 b | 22,507 a | 52.8 a | 6.6 a | 1.5 a | 34.8 c | 0.04 b | 0.10 b |
Mean | 30.7 | 3.8 | 22,294 | 52.7 | 6.5 | 2.2 | 34.7 | 0.05 | 0.16 |
St. dev. | 20.9 | 2.3 | 1015 | 2.1 | 0.7 | 1.7 | 4.2 | 0.06 | 0.17 |
Max | 74.1 | 10.4 | 24,277 | 57.2 | 7.7 | 5.9 | 48.5 | 0.34 | 0.65 |
Min | 5.0 | 0.4 | 18,523 | 42.1 | 0.7 | 0.1 | 25.3 | 0.01 | 0.01 |
3—WB | |||||||||
Median | 34.2 a | 2.3 c | 19,724 b | 49.3 b | 5.8 b | 0.3 c | 42.2 a | 0.01 c | 0.02 c |
Mean | 31.2 | 3.2 | 19,628 | 49.0 | 5.7 | 0.4 | 41.7 | 0.04 | 0.03 |
St. dev. | 15.2 | 3.1 | 798 | 2.1 | 0.3 | 0.5 | 2.7 | 0.13 | 0.04 |
Max | 77.7 | 20.5 | 21,937 | 54.5 | 6.5 | 3.9 | 48.9 | 1.19 | 0.31 |
Min | 4.6 | 0.2 | 16,438 | 38.6 | 4.4 | 0.0 | 28.4 | 0.01 | 0.01 |
M | A | GCV | C | H | N | O | Cl | S | |
---|---|---|---|---|---|---|---|---|---|
1—Wheat straw | |||||||||
Median | 9.7 d | 7.7 c | 18,222 a | 45.1 a | 5.6 c | 0.7 c | 40.3 b | 0.49 a | 0.13 b |
Mean | 10.8 | 7.7 | 18,216 | 45.2 | 5.6 | 0.7 | 40.2 | 0.50 | 0.13 |
St. dev. | 3.3 | 0.7 | 166 | 0.6 | 0.2 | 0.2 | 1.0 | 0.21 | 0.04 |
Max | 24.3 | 9.2 | 18,665 | 46.6 | 6.0 | 1.1 | 41.9 | 1.20 | 0.21 |
Min | 7.8 | 5.7 | 17,832 | 44.0 | 5.4 | 0.4 | 37.6 | 0.15 | 0.07 |
2—Corn stalks | |||||||||
Median | 11.8 bc | 7.2 c | 17,986 b | 44.3 bc | 5.4 d | 0.7 c | 42.1 a | 0.24 b | 0.07 c |
Mean | 12.8 | 7.8 | 17,869 | 43.8 | 5.4 | 0.7 | 42.0 | 0.27 | 0.07 |
St. dev. | 3.3 | 2.4 | 554 | 2.4 | 0.2 | 0.2 | 1.3 | 0.11 | 0.02 |
Max | 20.7 | 13.0 | 18,986 | 48.6 | 5.8 | 0.9 | 44.1 | 0.58 | 0.11 |
Min | 8.6 | 4.7 | 16,550 | 38.4 | 4.7 | 0.1 | 38.3 | 0.12 | 0.04 |
3—Sorghum plant | |||||||||
Median | 18.4 a | 7.9 c | 18,045 b | 45.0 b | 5.4 d | 0.9 b | 40.2 bc | 0.40 a | 0.08 c |
Mean | 20.6 | 8.8 | 18,047 | 44.6 | 5.4 | 1.0 | 39.8 | 0.41 | 0.08 |
St. dev. | 8.4 | 2.3 | 395 | 1.2 | 0.2 | 0.3 | 1.9 | 0.13 | 0.02 |
Max | 59.3 | 14.9 | 18,942 | 46.3 | 5.9 | 2.0 | 42.7 | 0.74 | 0.14 |
Min | 10.2 | 5.7 | 17,068 | 42.0 | 4.9 | 0.6 | 34.0 | 0.18 | 0.05 |
4—Sorghum stalks | |||||||||
Median | 12.1 b | 10.3 b | 17,608 c | 43.2 d | 5.3 e | 0.7 c | 39.8 bc | 0.43 b | 0.08 c |
Mean | 12.7 | 10.6 | 17,506 | 43.0 | 5.3 | 0.7 | 39.8 | 0.50 | 0.09 |
St. dev. | 3.3 | 2.1 | 438 | 1.5 | 0.2 | 0.2 | 1.8 | 0.30 | 0.04 |
Max | 22.3 | 16.1 | 18,377 | 45.7 | 5.6 | 1.2 | 43.8 | 1.37 | 0.23 |
Min | 4.9 | 7.5 | 16,476 | 39.2 | 4.8 | 0.3 | 36.5 | 0.08 | 0.01 |
5—Rapeseed straw | |||||||||
Median | 9.0 e | 8.1 c | 18,037 b | 45.7 a | 5.9 a | 0.9 b | 39.4 c | 0.42 a | 0.22 a |
Mean | 9.1 | 8.5 | 18,005 | 45.3 | 5.9 | 1.0 | 39.3 | 0.61 | 0.27 |
St. dev. | 0.6 | 2.5 | 537 | 1.4 | 0.2 | 0.3 | 1.4 | 0.50 | 0.17 |
Max | 10.2 | 13.2 | 19,178 | 48.2 | 6.2 | 1.9 | 42.6 | 1.55 | 0.59 |
Min | 8.0 | 4.3 | 16,889 | 41.8 | 5.4 | 0.6 | 36.2 | 0.05 | 0.06 |
6—Sunflowers flower head and stalks | |||||||||
Median | 11.3 c | 12.2 a | 17,281 d | 44.0 c | 5.7 c | 1.1 a | 36.7 d | 0.28 b | 0.15 b |
Mean | 11.2 | 11.7 | 17,242 | 44.0 | 5.7 | 1.1 | 37.0 | 0.36 | 0.13 |
St. dev. | 1.3 | 2.8 | 719 | 1.4 | 0.2 | 0.3 | 2.7 | 0.33 | 0.06 |
Max | 14.2 | 17.2 | 21,617 | 46.7 | 6.3 | 2.3 | 45.8 | 1.56 | 0.24 |
Min | 8.3 | 5.5 | 14,693 | 37.8 | 5.1 | 0.4 | 30.7 | 0.03 | 0.03 |
M | A | GCV | C | H | N | O | Cl | S | |
---|---|---|---|---|---|---|---|---|---|
7—Grape marc | |||||||||
Median | 35.2 b | 5.7 a | 22,287 b | 53.5 b | 6.0 c | 2.5 b | 30.8 c | 0.01 bc | 0.18 b |
Mean | 35.2 | 5.9 | 22,143 | 53.3 | 6.0 | 2.5 | 32.1 | 0.02 | 0.19 |
St. dev. | 20.2 | 2.2 | 970 | 1.8 | 0.5 | 0.6 | 2.6 | 0.02 | 0.09 |
Max | 66.1 | 10.4 | 23,656 | 57.0 | 7.6 | 4.2 | 37.1 | 0.09 | 0.60 |
Min | 8.0 | 2.8 | 19,730 | 49.8 | 5.0 | 1.1 | 28.7 | 0.01 | 0.13 |
8—Fruit residues | |||||||||
Median | 12.5 c | 2.3 b | 20,692 c | 50.4 c | 5.9 c | 0.6 d | 40.8 a | 0.01 c | 0.03 d |
Mean | 24.3 | 2.4 | 20,707 | 50.7 | 5.9 | 0.8 | 40.2 | 0.01 | 0.05 |
St. dev. | 18.2 | 1.2 | 1225 | 2.2 | 0.5 | 0.6 | 3.0 | 0.01 | 0.05 |
Max | 59.5 | 5.1 | 24,277 | 56.1 | 7.0 | 2.6 | 43.4 | 0.02 | 0.17 |
Min | 6.2 | 1.0 | 18,523 | 46.2 | 4.5 | 0.3 | 30.4 | 0.01 | 0.01 |
9—Oilseed cake | |||||||||
Median | 7.9 d | 6.5 a | 22,386 b | 51.7 c | 7.1 a | 5.1 a | 30.1 d | 0.02 b | 0.46 a |
Mean | 7.9 | 6.2 | 22,332 | 51.3 | 7.1 | 5.1 | 30.3 | 0.02 | 0.40 |
St. dev. | 1.5 | 0.7 | 376 | 1.9 | 0.4 | 0.4 | 2.2 | 0.01 | 0.18 |
Max | 13.1 | 7.1 | 22,864 | 55.2 | 7.7 | 5.9 | 41.2 | 0.04 | 0.65 |
Min | 5.0 | 4.9 | 21,065 | 42.1 | 5.4 | 4.3 | 25.3 | 0.01 | 0.09 |
10—Olive pomace | |||||||||
Median | 48.9 a | 2.3 b | 22,891 a | 53.9 a | 6.6 b | 1.3 c | 35.5 b | 0.06 a | 0.08 c |
Mean | 44.3 | 2.7 | 22,870 | 53.9 | 6.6 | 1.2 | 35.4 | 0.08 | 0.08 |
St. dev. | 15.8 | 1.7 | 518 | 1.3 | 0.3 | 0.4 | 2.3 | 0.07 | 0.04 |
Max | 74.1 | 8.3 | 24,024 | 57.2 | 7.2 | 2.7 | 40.1 | 0.34 | 0.17 |
Min | 8.9 | 1.0 | 21,042 | 50.4 | 5.8 | 0.5 | 27.1 | 0.01 | 0.02 |
11—Olive stone | |||||||||
Median | 16.2 c | 0.7 c | 20,601 c | 51.8 c | 5.7 c | 0.2 e | 41.7 a | 0.01 bc | 0.02 d |
Mean | 16.4 | 0.9 | 20,688 | 51.4 | 5.3 | 0.2 | 42.1 | 0.01 | 0.02 |
St. dev. | 3.3 | 0.6 | 340 | 0.9 | 1.6 | 0.1 | 2.3 | 0.01 | 0.01 |
Max | 21.7 | 2.0 | 21,143 | 52.8 | 6.5 | 0.6 | 48.5 | 0.03 | 0.05 |
Min | 10.2 | 0.4 | 20,289 | 50.1 | 0.7 | 0.1 | 39.9 | 0.01 | 0.01 |
M | A | GCV | C | H | N | O | Cl | S | |
---|---|---|---|---|---|---|---|---|---|
12—Branches | |||||||||
Median | 22.3 b | 3.7 b | 19,073 c | 48.0 cd | 5.6 c | 0.7 a | 42.2 b | 0.05 a | 0.06 a |
Mean | 23.5 | 4.8 | 19,171 | 47.8 | 5.6 | 0.7 | 41.2 | 0.06 | 0.07 |
St. dev. | 11.5 | 2.3 | 652 | 2.3 | 0.3 | 0.2 | 3.8 | 0.04 | 0.04 |
Max | 45.8 | 10.0 | 20,928 | 52.3 | 6.2 | 1.0 | 47.9 | 0.12 | 0.14 |
Min | 8.5 | 2.8 | 18,280 | 43.2 | 5.0 | 0.4 | 31.4 | 0.01 | 0.03 |
13—Orchard residues | |||||||||
Median | 28.6 b | 1.8 d | 19573 b | 49.0 bc | 5.6 c | 0.3 c | 43.5 a | 0.00 c | 0.01 d |
Mean | 29.7 | 1.9 | 19,639 | 49.0 | 5.6 | 0.3 | 43.2 | 0.01 | 0.01 |
St. dev. | 4.9 | 0.6 | 235 | 0.9 | 0.1 | 0.1 | 1.1 | 0.01 | 0.01 |
Max | 39.4 | 3.3 | 20,177 | 51.8 | 5.8 | 0.5 | 44.9 | 0.03 | 0.06 |
Min | 21.2 | 1.1 | 19,265 | 47.3 | 5.3 | 0.1 | 40.3 | 0.01 | 0.01 |
14—Bark | |||||||||
Median | 39.5 a | 8.8 a | 18,595 c | 47.3 cd | 5.4 c | 0.5 b | 38.2 c | 0.01 c | 0.06 b |
Mean | 37.7 | 8.8 | 18,837 | 47.6 | 5.4 | 0.5 | 37.6 | 0.01 | 0.05 |
St. dev. | 15.4 | 3.4 | 1098 | 3.1 | 0.5 | 0.2 | 3.1 | 0.00 | 0.03 |
Max | 56.3 | 13.1 | 21,371 | 52.6 | 6.2 | 0.8 | 42.6 | 0.01 | 0.11 |
Min | 9.6 | 3.5 | 17,633 | 42.1 | 4.6 | 0.1 | 30.2 | 0.01 | 0.01 |
15—Wood chips | |||||||||
Median | 38.1 a | 2.4 c | 19,738 b | 49.3 b | 5.8 b | 0.3 c | 42.1 b | 0.01 b | 0.02 c |
Mean | 37.5 | 2.7 | 19,714 | 49.3 | 5.7 | 0.3 | 42.0 | 0.02 | 0.02 |
St. dev. | 9.4 | 1.4 | 606 | 1.6 | 0.3 | 0.2 | 1.5 | 0.02 | 0.02 |
Max | 57.7 | 8.4 | 21,937 | 54.5 | 6.4 | 1.6 | 46.2 | 0.17 | 0.18 |
Min | 12.2 | 0.6 | 17,408 | 40.4 | 4.6 | 0.1 | 36.7 | 0.01 | 0.01 |
16—Pruning of urban greenery | |||||||||
Median | 35.1 a | 10.4 a | 18,052 c | 44.7 d | 5.5 c | 1.6 a | 36.7 c | 0.35 a | 0.11 a |
Mean | 42.6 | 10.7 | 18,281 | 45.3 | 5.4 | 1.7 | 36.4 | 0.44 | 0.14 |
St. dev. | 20.6 | 5.1 | 1175 | 3.7 | 0.5 | 0.7 | 4.8 | 0.39 | 0.08 |
Max | 77.7 | 20.5 | 20,282 | 50.1 | 6.0 | 2.8 | 43.9 | 1.19 | 0.31 |
Min | 11.4 | 2.6 | 16,438 | 38.6 | 4.4 | 0.5 | 28.4 | 0.01 | 0.03 |
17—Stem wood residues | |||||||||
Median | 6.5 c | 0.5 e | 20,304 a | 50.5 a | 6.0 a | 0.1 d | 42.9 a | 0.01 b | 0.01 c |
Mean | 6.8 | 0.5 | 20,187 | 50.2 | 6.0 | 0.3 | 43.0 | 0.01 | 0.02 |
St. dev. | 1.3 | 0.2 | 620 | 1.1 | 0.2 | 0.6 | 1.3 | 0.00 | 0.01 |
Max | 10.8 | 1.0 | 20,846 | 51.8 | 6.5 | 3.9 | 48.9 | 0.04 | 0.08 |
Min | 4.6 | 0.2 | 16,458 | 44.6 | 5.6 | 0.0 | 39.7 | 0.01 | 0.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Toscano, G.; De Francesco, C.; Gasperini, T.; Fabrizi, S.; Duca, D.; Ilari, A. Quality Assessment and Classification of Feedstock for Bioenergy Applications Considering ISO 17225 Standard on Solid Biofuels. Resources 2023, 12, 69. https://doi.org/10.3390/resources12060069
Toscano G, De Francesco C, Gasperini T, Fabrizi S, Duca D, Ilari A. Quality Assessment and Classification of Feedstock for Bioenergy Applications Considering ISO 17225 Standard on Solid Biofuels. Resources. 2023; 12(6):69. https://doi.org/10.3390/resources12060069
Chicago/Turabian StyleToscano, Giuseppe, Carmine De Francesco, Thomas Gasperini, Sara Fabrizi, Daniele Duca, and Alessio Ilari. 2023. "Quality Assessment and Classification of Feedstock for Bioenergy Applications Considering ISO 17225 Standard on Solid Biofuels" Resources 12, no. 6: 69. https://doi.org/10.3390/resources12060069
APA StyleToscano, G., De Francesco, C., Gasperini, T., Fabrizi, S., Duca, D., & Ilari, A. (2023). Quality Assessment and Classification of Feedstock for Bioenergy Applications Considering ISO 17225 Standard on Solid Biofuels. Resources, 12(6), 69. https://doi.org/10.3390/resources12060069