Hydrological Model Performance in the Verde River Basin, Minas Gerais, Brazil
Abstract
:1. Introduction
2. Material and Methods
2.1. Study Area
2.2. Hydrology Models
2.3. Observed Data
2.4. Application, Calibration, and Validation of the Hydrological Models
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Pacheco, F.A.L. Regional Groundwater flow in hard rocks. Sci. Total Environ. 2015, 506–507, 182–195. [Google Scholar] [CrossRef] [PubMed]
- Alvarenga, L.A.; Mello, C.R.; Colombo, A.; Cuartas, L.A.; Chou, S.C. Hydrological responses to climate changes in a headwater watershed. Ciênc. Agrotec. 2016, 40, 647–657. [Google Scholar] [CrossRef] [Green Version]
- Alvarenga, L.A.; Mello, C.R.; Colombo, A.; Cuartas, L.A. Performance of a distributed hydrological model based on soil and moisture zone maps. Rev. Bras. Cienc. Solo 2017, 41, e0160551. [Google Scholar] [CrossRef] [Green Version]
- Martínez-Santiago, S.; López-Santos, A.; González-Cervantes, G.; Esquivel-Arriaga, G. Evaluating the impacts of climate change on soil erosion rates in central Mexico. AIMS Geosci. 2017, 3, 327–351. [Google Scholar] [CrossRef]
- Carvalho, V.S.O.; da Cunha, Z.A.; Alvarenga, L.A.; Beskow, S.; de Mello, C.R.; Martins, M.A.; Oliveira, C.M.M. Assessment of land use changes in the Verde River basin using two hydrological models. J. S. Am. Earth Sci. 2022, 118, 103954. [Google Scholar] [CrossRef]
- Orth, R.; Staudinger, M.; Seneviratne, S.I.; Seibert, J.; Zappa, M. Does model performance improve with complexity? A case study with three hydrological models. J. Hydrol. 2015, 523, 147–159. [Google Scholar] [CrossRef] [Green Version]
- Alvarenga, L.A.; Carvalho, V.S.O.; Oliveira, V.A.; Mello, C.R.; Colombo, A.; Tomasella, J.; Melo, P.A. Hydrological simulation with SWAT and VIC Models in the Verde River Watershed, Minas Gerais. Rev. Ambient. Água 2020, 15, e2492. [Google Scholar] [CrossRef]
- Arnold, J.G.; Srinivasan, R.; Muttiah, R.S.; Williams, J.R. Large area hydrologic modeling and assessment part I: Model development. J. Am. Water Resour. Assoc. 1998, 34, 73–89. [Google Scholar] [CrossRef]
- Neitsch, S.L.; Arnold, J.G.; Kiniry, J.R.; Williams, J.R. Soil and Water Assessment Tool Theoretical Documentation Version 2009; Texas Water Resources Institute: College Station, TX, USA, 2011. [Google Scholar]
- Liang, X.; Lettenmaier, D.P.; Wood, E.F.; Burges, S.J. A simple hydrologically based model of land surface water and energy fluxes for general circulation models. J. Geophys. Res. 1994, 99, 14415–14428. [Google Scholar] [CrossRef]
- Liang, X.; Wood, E.F.; Lettenmaier, D.P. Surface soil moisture parameterization of the VIC-2L model: Evaluation and modification. Glob. Planet. Chang. 1996, 13, 195–206. [Google Scholar] [CrossRef]
- Liang, X.; Xie, Z. A new surface runoff parameterization with subgrid-scale soil heterogeneity for land surface models. Adv. Water Resour. 2001, 24, 1173–1193. [Google Scholar] [CrossRef]
- Viola, M.R.; De Mello, C.R.; Chou, S.C.; Yanagi, S.N.; Gomes, J.L. Assessing climate change impacts on Upper Grande River basin hydrology, southeast Brazil. Int. J. Climatol. 2015, 35, 1054–1068. [Google Scholar] [CrossRef]
- Mello, C.R.; Vieira, N.P.; Guzman, J.A.; Viola, M.R.; Beskow, S.; Alvarenga, L.A. Climate change impacts on water resources of the largest hydropower plant reservoir in Southeast Brazil. Water. 2021, 13, 1560. [Google Scholar] [CrossRef]
- Beskow, S.; Mello, C.R.; Norton, L.D. Development, sensitivity and uncertainty analysis of LASH model. Sci. Agric. 2011, 68, 265–274. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez, D.A.; Tomasella, J. On the ability of largescale hydrological models to simulate land use and land cover change impacts in Amazonian basins. Hydrol. Sci. J. 2016, 61, 1831–1846. [Google Scholar] [CrossRef] [Green Version]
- Falck, A.S.; Maggioni, V.; Tomasella, J.; Vila, D.A.; Diniz, F.L. Propagation of satellite precipitation uncertainties through a distributed hydrologic model: A case study in the Tocantins-Araguaia basin in Brazil. J. Hydrol. 2015, 527, 943–957. [Google Scholar] [CrossRef]
- Mohor, G.S.; Rodriguez, D.A.; Tomasella, J.; Júnior, J.L.S. Exploratory analyses for the assessment of climate change impacts on the energy production in an Amazon run-of-river hydropower plant. J. Hydrol. Reg. Stud. 2015, 4, 41–59. [Google Scholar] [CrossRef] [Green Version]
- Melo, P.A.; Alvarenga, L.A.; Tomasella, J.; Santos, A.C.; Mello, C.R.; Colombo, A. On the performance of conceptual and physically based modelling approach to simulate a headwater catchment in Brazil. J. S. Am. Earth Sci. 2022, 114, 103683. [Google Scholar] [CrossRef]
- Zákhia, E.M.S.; Alvarenga, L.A.; Tomasella, J.; Martins, M.A.; Santos, A.C.N.; Melo, P.A. Impactos das mudanças climáticas em uma bacia hidrográfica no Sul do Estado de Minas Gerais. Rev. Bras. Meteorol. 2022, 36, 667–681. [Google Scholar] [CrossRef]
- Oliveira, K.D.; Tomasella, J.; de Oliveira Caram, R.; Falck, A.S. Impacts of sugarcane expansion on water availability in a river basin in southeastern Brazil. Catena 2022, 216, 106437. [Google Scholar] [CrossRef]
- Mello, C.R.; Norton, L.D.; Curi, N.; Yanagi, S.N.M. Sea surface temperature (SST) and rainfall erosivity in the Upper Grande River Basin, Southeast Brazil. Ciênc. Agrotec. 2012, 36, 53–59. [Google Scholar] [CrossRef] [Green Version]
- Alvares, C.A.; Stape, J.L.; Sentelhas, P.C.; de Moraes Gonçalves, J.L.; Sparovek, G. Köppen’s climate classification map for Brazil. Meteorol. Z. 2013, 22, 711–728. [Google Scholar] [CrossRef] [PubMed]
- Mapbiomas. O Projeto. 2019. Available online: https://mapbiomas.org/o-projeto (accessed on 24 April 2022).
- Junqueira Júnior, J.A. Escoamento de Nascentes Associado à Variabilidade Espacial de Atributos Físicos e Uso do solo em uma Bacia Hidrográfica de Cabeceira do Rio Grande, MG. Ph.D Thesis, Federal University of Lavras, Lavras, Brazil, 2006. [Google Scholar]
- Viola, M.R. Simulação Hidrológica na Cabeceira da Bacia Hidrográfica do Rio Grande de Cenários de usos do solo e Mudanças Climáticas A1B. Ph.D Thesis, Federal University Federal of Lavras, Lavras, Brazil, 2011. [Google Scholar]
- Mishra, S.K.; Tyagi, J.V.; Singh, V.P.; Singh, R. SCS-CN-based modeling of sediment yield. J. Hydrol. 2006, 324, 301–322. [Google Scholar] [CrossRef]
- Mello, C.D.; Viola, M.R.; Norton, L.D.; Silva, A.M.; Weimar, F.A. Development and application of a simple hydrologic model simulation for a Brazilian headwater basin. Catena 2008, 75, 235–247. [Google Scholar] [CrossRef]
- Lohmann, D.; Nolte-Holube, R.; Raschke, E. Um modelo de roteamento horizontal em larga escala a ser acoplado a esquemas de parametrização da superfície terrestre. Tellus 1996, 48, 708–721. [Google Scholar] [CrossRef]
- Lohmann, D.; Raschke, E.; Nijssen, B.; Lettenmaier, D.P. Hidrologia em escala regional: II. Aplicação do modelo VIC-2L ao rio Weser, Alemanha. Rev. Hidrol. Cienc. 1998, 43, 143–158. [Google Scholar]
- Siqueira Júnior, J.L.; Tomasella, J.; Rodriguez, D.A. Impacts of future climatic and land cover changes on the hydrological regime of the Madeira River basin. Clim. Chang. 2015, 129, 117–129. [Google Scholar] [CrossRef]
- INMET. Webpage. 2019. Available online: http://www.inmet.gov.br/portal (accessed on 24 April 2022).
- Santos, H.G.; Jacomine, P.K.T.; Anjos, L.H.C.; Oliveira, V.A.; Lumbreras, J.F.; Coelho, M.R.; Almeida, J.A.; Araujo Filho, J.C.; Oliveira, J.B.; Cunha, T.J.F. Sistema Brasileiro de Classificação de Solos; EMBRAPA Solos: Rio de Janeiro, Brazil, 2018. [Google Scholar]
- Beskow, S.; Norton, L.D.; Mello, C.R. Previsão Hidrológica em uma bacia hidrográfica dominada por Oxisols usando um modelo hidrológico distribuído. Water Res. 2013, 27, 341–363. [Google Scholar]
- Caldeira, T.L.; Mello, C.R.; Beskow, S.; Timm, L.C.; Viola, M.R. LASH hydrological model: An analysis focused on spatian discretization. Catena 2019, 173, 183–193. [Google Scholar] [CrossRef]
- Marques Filho, A.O.; Dallarosa, R.G.; Pachêco, V.B. Radiação solar e distribuição vertical de área foliar em floresta: Reserva biológica do Cuieiras, ZF2, Manaus. Acta Amaz. 2005, 35, 427–436. [Google Scholar] [CrossRef]
- Miranda, A.C.; Miranda, H.S.; Lloyd, J.; Grace, J.; Mcyntire, J.A.; Meir, P.; Riggan, P.; Lockwood, R.; Brass, J. O dióxido de carbono fluxes sobre um cerrado sensu stricto no centro do Brasil. In Desmatamento Amazônico e Clima; Gash, J.H.C., Nobre, C.A., Roberts, J.M., Victoria, R.L., Eds.; Scariot & Sevilha: New York, NY, USA, 1996; pp. 353–364. [Google Scholar]
- Almeida, A.C.; Soares, J.V. Comparação entre uso de água em plantações de eucalipto grandis e floresta ombrófila densa (mata Atlântica) na costa leste do Brasil. Rev. Arvore 2003, 27, 159–170. [Google Scholar] [CrossRef] [Green Version]
- Shuttleworth, W.J. Evaporation. In Handbook of Hydrology; Maidment, D.R., Ed.; McGraw-Hill: New York, NY, USA, 1993; pp. 1–53. [Google Scholar]
- Tomasella, J.; Sene Gonçalves, A.; Schneider Falck, A.; Oliveira Caram, R.; Rodrigues Diniz, F.L.; Rodriguez, D.A.; Chagas Siquiera, G. Probabilistic flood forecasting in the Doce Basin in Brazil: Effects of the basin scale and orientation and the spatial distribution of rainfall. J. Flood Risk Manag. 2019, 12, e12452. [Google Scholar] [CrossRef] [Green Version]
- Duan, Q.; Sorooshian, S.; Gupta, V. Otimização global eficaz e eficiente para modelos conceituais de escoamento de chuvas. Pesq. Recur. Hídr. 1992, 28, 1015–1031. [Google Scholar]
- Gao, H.; Tang, Q.; Shi, X.; Zhu, C.; Bohn, T.; Su, F.; Sheffield, J.; Pan, M.; Lettenmaier, D.; Wood, E.F. Registro de Orçamento de Água da Capacidade de Infiltração Variável (VIC). In Algorithm Theoretical Basis Document; Universidade de Washington: Seattle, WA, USA, 2010; pp. 120–173. [Google Scholar]
- Zitzler, E.; Laumanns, M.; Thiele, L. SPEA2: Improving the strength Pareto evolutionary algorithm. TIK-Rep. 2001, 103, 1–21. [Google Scholar] [CrossRef]
- Nash, J.E.; Sutcliffe, J.V. River flow forecasting through conceptual models part I—A discussion of principles. J. Hidrol. 1970, 10, 282–290. [Google Scholar] [CrossRef]
- Yapo, P.O.; Gupta, H.V.; Sorooshian, S. Automatic calibration of conceptual rainfall-runoff models: Sensitivity to calibration data. J. Hydrol. 1996, 181, 23–48. [Google Scholar] [CrossRef]
- Gupta, H.V.; Sorooshian, S.; Yapo, P.O. Estado de calibração automática para modelos hidrológicos: Comparação com calibração de especialistas multinível. Diário do Eng. Hidrol. 1999, 4, 135–143. [Google Scholar]
- Gupta, H.V.; Kling, H.; Yilmaz, K.K.; Martinez, G.F. Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modelling. J. Hydrol. 2009, 377, 80–91. [Google Scholar] [CrossRef] [Green Version]
- Moriasi, D.N.; Gitau, M.W.; Pai, N.; Daggupati, P. Hydrologic and water quality models: Performance measures and evaluation criteria. Trans. ASABE 2015, 58, 1763–1785. [Google Scholar] [CrossRef] [Green Version]
- Viola, M.R.; de Mello, C.R.; Beskow, S.; Norton, L.D. Applicability of the LASH model for hydrological simulation of the Grande River Basin, Brazil. J. Hydrol. Eng. 2013, 18, 1639–1652. [Google Scholar] [CrossRef]
- Singh, S.K.; Marcy, N. Comparison of Simple and Complex Hydrological Models for Predicting Catchment Discharge Under Climate Change. AIMS Geosci. 2017, 3, 467–497. [Google Scholar] [CrossRef]
Soil Class | Depth (cm) | θs (m3m−3) | θpwp (m3m−3) |
---|---|---|---|
Cambisol (CX) | 100 | 0.597 | 0.171 |
Latosol (LVA) | 110 | 0.555 | 0.240 |
Argisol (PVAD) | 80 | 0.45 | 0.19 |
Neosol (RY) | 20 | 0.574 | 0.183 |
Rock (AR) | 0 | 0 | 0 |
Vegetation | LAI m2m−2 | Height (m) | Albedo | Surface Resistance (sm−1) | Rooting Depth (mm) |
---|---|---|---|---|---|
Agriculture | 0.3–7.0 | 0–1.52 | 0.15–0.20 | 40 | 500 |
Pasture | 1.86–3.99 | 0.5 | 0.20–0.26 | 70 | 600 |
Florest | 6.25 | 10 | 0.13–0.18 | 100 | 2000 |
Cerrado | 1.9 | 5 | 0.13–0.18 | 150 | 2000 |
Eucalyptus | 3.5 | 5 | 0.13–0.18 | 100 | 1500 |
RockField | 0 | 0 | 0.10–0.35 | 545.3 | 500 |
Statistical Indices | Range | Performance Classification | |||
---|---|---|---|---|---|
Very Good | Good | Satisfactory | Unsatisfactory | ||
NASH and LNASH | −∞–1 | >0.80 | 0.70–0.80 | 0.50–0.70 | ≤0.50 |
R2 | 0–1 | >0.85 | 0.75–0.85 | 0.60–0.75 | <0.60 |
PBIAS | −∞–100 | <±5% | ±5–±10% | ±10–±15% | >±15% |
Parameter | Description | Unit | Range | Final Values |
---|---|---|---|---|
VIC | ||||
bi | Variable Infiltration Curve | - | 0.001–0.4 | 0.35 |
DS | Fraction of maximum velocity of baseflow where non-linear baseflow begins | Fraction | 0.001–0.99 | 0.01 |
WS | Fraction of maximum soil moisture where non-linear baseflow occurs | Fraction | 0.001–0.99 | 0.05 |
H3 | Thickness of the third layer | m | 0.05–2 | 0.5 |
C | Kinematic wave celerity | m s−1 | 0.5–3 | 0.5 |
D | Kinematic wave diffusion coefficient | S m−1 | 200–400 | 2200 |
LASH | ||||
λ | Initial abstraction coefficient | - | 0.01–0.5 | 0.07 |
KB | Hydraulic conductivity of shallow saturates zone reservoir | mm day−1 | 0.0–6 | 3.33 |
KSS | Hydraulic conductivity of subsurface reservoir | mm day−1 | 0–250 | 245.41 |
KCR | Maximum flow returning to soil via capillary rise | mm day−1 | 0–5 | 1.03 |
CS | Response time parameter of the surface reservoir | - | - | 84.45 |
CSS | Response time parameter of the sub-surface reservoir | - | - | 16,677.22 |
CB | Baseflow recession time | day | - | 105.46 |
MDH-INPE | ||||
D1 | Thickness of the upper layer | m | 0–10 | 3.8 |
D2 | Thickness of the intermediate layer | m | 0–10 | 0.35 |
D3 | Thickness of the bottom layer | m | 0–30 | 0.09 |
KSS | Saturated of hydraulic conductivity | mm day−1 | 0.01–10 | 0.37 |
Tsub | Maximum transmissivity of the bottom layer | m2 day−1 | 0.01–1000 | 0.48 |
µ | Decay of transmissivity with the thickness of the saturated zone | - | 0.01–4 | 0.0005 |
Csup | Routing water storage parameter for surface and subsurface flows | day | 0.001–10 | 25.39 |
Csub | Routing water storage parameter for baseflow | day | 0.001–2000 | 272.4252 |
Ratio of field capacity to porosity | - | |||
α | Coefficient of anisotropy | - | 1–10,000 | 394.7182 |
Statistical Indices | Calibration | Validation | ||||
---|---|---|---|---|---|---|
LASH | VIC | MHD | LASH | VIC | MHD | |
NASH (CNS) | 0.85 | 0.79 | 0.79 | 0.80 | 0.77 | 0.87 |
LNASH (logCNS) | 0.89 | 0.22 | 0.84 | 0.81 | 0.35 | 0.86 |
R2 | 0.85 | 0.85 | 0.79 | 0.85 | 0.85 | 0.88 |
PBIAS | 0.60 | −14.85 | 0.80 | 6.80 | −14.48 | −7.30 |
YEAR | P (mm) | LASH | VIC | MHD | ||||||
---|---|---|---|---|---|---|---|---|---|---|
ET (mm) | P-ET (mm) | ET/P (mm) | ET (mm) | P-ET (mm) | ET/P (mm) | ET (mm) | P-ET (mm) | ET/P (mm) | ||
1993 | 1451.60 | 733.93 | 717.67 | 0.51 | 841.37 | 610.23 | 0.58 | 764.67 | 686.93 | 0.53 |
1994 | 1348.97 | 653.72 | 695.26 | 0.48 | 888.92 | 460.05 | 0.66 | 754.17 | 594.80 | 0.56 |
1995 | 1504.59 | 744.24 | 760.35 | 0.49 | 995.91 | 508.67 | 0.66 | 772.98 | 731.61 | 0.51 |
1996 | 1843.76 | 846.76 | 997.00 | 0.46 | 1081.74 | 762.02 | 0.59 | 844.41 | 999.36 | 0.46 |
1997 | 1419.88 | 754.78 | 665.10 | 0.53 | 1009.85 | 410.03 | 0.71 | 825.20 | 594.68 | 0.58 |
1998 | 1318.14 | 795.86 | 522.29 | 0.60 | 1033.46 | 284.68 | 0.78 | 842.22 | 475.92 | 0.64 |
1999 | 1468.56 | 640.74 | 827.82 | 0.44 | 861.59 | 606.97 | 0.59 | 773.43 | 695.12 | 0.53 |
2000 | 1672.63 | 750.00 | 922.63 | 0.45 | 979.26 | 693.37 | 0.59 | 812.50 | 860.13 | 0.49 |
2001 | 1336.06 | 757.36 | 578.70 | 0.57 | 998.82 | 337.25 | 0.75 | 820.93 | 515.14 | 0.61 |
2002 | 1383.37 | 734.38 | 648.99 | 0.53 | 952.58 | 430.79 | 0.69 | 791.17 | 592.20 | 0.57 |
2003 | 1295.67 | 664.15 | 631.52 | 0.51 | 922.92 | 372.74 | 0.71 | 784.95 | 510.71 | 0.61 |
2004 | 1621.56 | 795.08 | 826.48 | 0.49 | 1001.45 | 620.11 | 0.62 | 818.89 | 802.68 | 0.50 |
2005 | 1596.35 | 753.36 | 842.99 | 0.47 | 847.35 | 749.00 | 0.53 | 591.49 | 1004.86 | 0.37 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Oliveira, C.d.M.M.; Alvarenga, L.A.; Beskow, S.; da Cunha, Z.A.; Vargas, M.M.; Melo, P.A.; Tomasella, J.; Santos, A.C.N.; Carvalho, V.S.O.; Silva, V.O. Hydrological Model Performance in the Verde River Basin, Minas Gerais, Brazil. Resources 2023, 12, 87. https://doi.org/10.3390/resources12080087
de Oliveira CdMM, Alvarenga LA, Beskow S, da Cunha ZA, Vargas MM, Melo PA, Tomasella J, Santos ACN, Carvalho VSO, Silva VO. Hydrological Model Performance in the Verde River Basin, Minas Gerais, Brazil. Resources. 2023; 12(8):87. https://doi.org/10.3390/resources12080087
Chicago/Turabian Stylede Oliveira, Conceição de M. M., Lívia A. Alvarenga, Samuel Beskow, Zandra Almeida da Cunha, Marcelle Martins Vargas, Pâmela A. Melo, Javier Tomasella, Ana Carolina N. Santos, Vinicius S. O. Carvalho, and Vinicius Oliveira Silva. 2023. "Hydrological Model Performance in the Verde River Basin, Minas Gerais, Brazil" Resources 12, no. 8: 87. https://doi.org/10.3390/resources12080087
APA Stylede Oliveira, C. d. M. M., Alvarenga, L. A., Beskow, S., da Cunha, Z. A., Vargas, M. M., Melo, P. A., Tomasella, J., Santos, A. C. N., Carvalho, V. S. O., & Silva, V. O. (2023). Hydrological Model Performance in the Verde River Basin, Minas Gerais, Brazil. Resources, 12(8), 87. https://doi.org/10.3390/resources12080087