Transformation Processes for Energy Production Alternatives from Different Biomass Sources in the Highlands and Semi-Desert Areas of Mexico
Abstract
:1. Introduction
2. Representative Biomass Resources for Energy Production in the Highlands and Semi-Arid Regions of Mexico
2.1. Agro-Industrial Wastes
N° | Biomass | Description of Residue Used | Residue Type | Residues Production (t/ha) | Proximate Analysis (%) | Higher Heating Value (MJ/kg) | References | ||
---|---|---|---|---|---|---|---|---|---|
Ash Content | Volatile Material | Fixed Carbon | |||||||
1 | Corn cob (a) | The central core or cylindrical part of a corn ear from which the kernels grow | Agroindustrial wastes | 0.66–2.41 | 1.6 | 78.9 | 10.8 | 17.4 | [17,18,19,20] |
2 | Corn husks (a) | The outer fibrous layers that surround a corn cob | 2.0 | 2.7 | 78.6 | 10.5 | 17.6 | [19,20] | |
3 | Bean straw | The dried stalks or stems of bean plants after the beans have been harvested | 1.39 | 6.8 | 69.1 | 24.1 | 17.6 | [21,22] | |
4 | Pecan nutshell | The hard, protective outer covering of a pecan nut | 0.25 | 3.3 | 66.0 | 30.8 | 20.8 | [23,24] | |
5 | Pecan nut branches | The woody, elongated branches, twigs, and stems sections of an apple tree that are pruned | Pruning waste | 0.99 | 4.1 | 19.2 | 75.7 | 16.5 | [25] |
6 | Apple branches | The woody, elongated branches, twigs, and stems sections of a pecan tree that are pruned. | 3.4 | 2.5 | 80.4 | 16.5 | 19.7 | [24] | |
7 | Quelite cenizo (Chenopodium album) | Annual plant with alternate leaves; the upper surface of the leaves is green, while the lower surface may have a whitish or grayish appearance | Weeds and bioenergy crops | 8.2 to 9.5 | 1.5 | 73.6 | 19.4 | 0.015 | [26] |
8 | Chicalote (Argemone mexicana and A. ochroleuca) (b,c) | This plant is commonly known as Mexican prickly poppy, it is a flowering plant with yellow flowers and spiny leaves. | 8.2 to 9.5 | 4.9 | 87.8 | 4.3 | 0.148 | [27] | |
27.39 | [28] | ||||||||
9 | Mostacilla (Sisymbrium irio) | This plant is commonly known as London rocket, it is a plant with small yellow flowers and lobed leaves. | 8.2 to 9.5 | 22.7 | 16.39 | [29] | |||
10 | Malva (Malva parviflora) | This plant is commonly known as small-flowered mallow, it is a plant with pink or purple flowers and rounded leaves | 8.2 to 9.5 | 7.2 | 0.019 | [30] | |||
11 | Fox tail (Reseda luteola) | This is commonly known as dyer’s rocket or weld, it is a plant with small yellow flowers and lance-shaped leaves. | 8.2 to 9.5 | [30] | |||||
12 | Sawdust (Pine spp.) | They are fine particles or shavings that are produced from cutting or milling pine wood. | Commercial plantations | 0.1 * | 0.3 | 88.3 | 11.9 | 18.9 | [31] |
13 | Maralfalfa (Pennisetum sp.) | This plant is commonly known as fountain grass, it is a plant with long, slender stalks and feathery plumes that resemble flowing water. | 11 to 46 | 9.7 | 71.9 | 18.4 | 18.2 | [32] | |
14 | Bagasse (Agave durangensis) | This is the fibrous residue left after extracting juice or pulp from the agave plant. | Bagasse wastes | 5.1 to 13.2 | 10.6 | 82.3 | 7.2 | 14.5 | [31] |
15 | Jarilla (Dodonaea viscosa) | This is a shrub with small, leathery leaves and clusters of inconspicuous flowers, native to arid regions and known for its medicinal properties. | Other biomass sources | 17.0 | 0.8 | 82.0 | 17.2 | 21.1 | [33,34] |
16 | Pink grass (Melinis repens) | 0.7 to 2.9 | [35] | ||||||
17 | Buffel grass (Cenchrus ciliaris) | This is a perennial grass with dense clumps of tufted leaves and cylindrical seedheads, commonly used for forage in arid and semi-arid regions. | 2.1 to 9.5 | [36] | |||||
18 | Acacia farnesiana (c) | This tree species is also known as sweet acacia or needle bush, it is a small tree with fragrant yellow flowers and feathery, fern-like leaves. | Firewood | 7.35 to 17.4 ** | 3.6 | 10.5 | 84.1 | 31.6 | |
19 | Prosopis spp. (a) | This species is commonly known as smooth mesquite, is a medium-sized tree with thorny branches and green, fern-like foliage. | 10.34 to 20.67 ** | 1.3 | 6.4 | 17.3 | 30.2 | [37] | |
20 | Ebenopsis ebano (c) | This is also known as Texas ebony; it is a dense, slow-growing tree with dark, heavy wood and small clusters of fragrant, white flowers. | 10.98 to 21.96 ** | 4.1 | 13.0 | 79.2 | 29.7 | [38] | |
21 | Quercus sideroxyla (a) | This tree is commonly known as Mexican blue oak, it is a medium-sized tree with distinctive blue-gray leaves and rugged bark. | 0.1 * | 1.0 | 83.1 | 16.0 | 20.4 | [32] |
2.2. Pruning Wastes
2.3. Weeds and Bioenergy Crops
2.4. Commercial Plantations
2.5. Bagasse Wastes from Mexican Semi-Arid Areas
2.6. Other Biomass Sources
2.7. Potential Use of the Common Species from the Mexican Highlands and Semi-Arid Areas
3. Particular Cases
3.1. Pecan Waste from Northeastern Mexico
3.2. Forest Wastes from the Mexican Semi-Arid Region
3.3. Wastes from Non-Timber Species
- Most of the conducted research considers lechuguilla leaves, which implies competition with the current use of the plant (fiber extraction). To avoid this competition, only guishe should be considered to obtain added value products. This is feasible since fresh guishe recovered from leaves carving for ixtle extraction contains several compounds. Thus, this waste could be used as a platform for a biorefinery scheme [4].
- The production of ethanol requires a pre-treatment of the biomass. This pre-treatment includes at least one step to obtain fermentable compounds which are required for ethanol production. The implementation of a pathway to valorize A. lechuguilla biomass requires solvents, specialized equipment, and significant investments. Moreover, currently, the ethanol yields are too low to supply the requirements [91,92]. Research is required to overcome the challenges imposed by ethanol production; this is one of the most relevant opportunity areas regarding the exploitation of A. lechuguilla.
- Biofuels other than ethanol need to be explored. Since the pre-treatment of A. lechuguilla biomass produces fermentable sugars [93], different microorganisms must be identified to obtain biofuels such as hydrogen and methane. Since anaerobic fermentation is a mature technology, it could be an adequate pathway to diversify biofuel production from non-timber resources [4].
- Thermochemical transformation is considered to obtain biochar, ash, and syngas [4,94], transforming solid material with low moisture content in high-value products. Leaves from A. lechuguilla and fresh guishe present a high moisture level; therefore, a drying period is required for the biomass used in a thermochemical process. These processes should be incorporated to transform lignocellulosic biomass from A. lechuguilla, since after the extraction of phytochemicals and fermentable sugars, large amounts of biomass are still available, which can feasibly be transformed by either gasification or pyrolysis [4]. Incineration transforms dried biomass to produce heat, which is an important source of energy during cold season.
- The technical and economic feasibility of biofuel production should be evaluated. Most experiments have been performed at lab scale for knowledge generation; however, it is important to determine the scaling up feasibility. Thus, economic, technical, and environmental feasibility need to be evaluated.
Guishe Fraction | Process | Product | Highlights | Ref |
---|---|---|---|---|
Liquid guishe | Fermentation | Ethanol | Simulation study in a biorefinery scheme | [4] |
Solid guishe | Gasification | Methane, hydrogen | Simulation study in a biorefinery scheme | [4] |
Heart with attached leaf bases | Fermentation | Ethanol | Autohydrolysis and enzymatic digestion before fermentation | [91] |
Heart with attached leaf bases | Fermentation | Ethanol | Autohydrolysis before fermentation. Different configurations of fermentation | [95] |
Heart with attached leaf bases | Fermentation | Ethanol | Acid pre-treatment before fermentation | [92] |
Solid guishe | Combustion | Heat | Secondary product | [96] |
Leaves | Fermentation | Ethanol | Biomass pre-treated with fungi | [97] |
Leaves | Anaerobic digestion | Hydrogen | Pre-treated by hydrolysis | [93] |
Leaves | Consolidated Bioprocessing | Hydrogen | Pre-treated by autohydrolysis and acid treatment | [95] |
Guishe | Physico-chemical treatment | Catalysis for biodiesel production | Biochar obtained by pyrolysis | [94] |
Candelilla Use | Process | Product | Highlights | Reference |
---|---|---|---|---|
Crop | Agriculture techniques | Petro-crop | Candelilla adaptation under degraded soils | [112] |
Crop | Catalytic cracking | Petroleum | Biofuel production | [115] |
Bagasse | Extraction, hydrolysis, TEMPO oxidation | Nanocrystalline cellulose | Industrial waste, lab scale experimentation | [110] |
Plant | Extraction | Hydrocarbons | Methanol and hexane used as extraction solvents | [113] |
Raw wax | Cracking-Fractioned distillation | Liquid biofuel | Candelilla-based biofuels | [114] |
Bagasse | Composting | Additive for plastics | Multiple candelilla-based products | [111] |
Stem residues | Combustion | Heat for wax extraction | Empirical knowledge | [106,107,108] |
4. Uses and Potential Transformation Processes of Selected Species for Energy Production in Mexican Highlands and Semi-Arid Areas
4.1. Firewood
4.2. Charcoal
4.3. Torrefacted Wood
4.4. Briquettes
4.5. Pellets
5. Final Remarks
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Alanís Torres, G.; Ballester Franzoni, C. El valor de nuestras plantas; Fondo Editorial de Nuevo León: Monterrey, Mexico, 2007; p. 151. ISBN 9709715267. [Google Scholar]
- González Medrano, F. Las zonas áridas y semiáridas de México y su vegetación; Secretaría de Medio Ambiente y Recursos Naturales (SEMARNAT): México D.F., Mexico, 2012; p. 173. ISBN 9786077908692. [Google Scholar]
- Torres Lima, P.A.; Martínez Cano, A.G.; Portes Vargas, L.; Rodríguez Sánchez, L.M.; Cruz Castillo, J.G. Construcción local de indicadores de sustentabilidad regional. Un estudio de caso en el semidesierto del noreste de México. Región Y Soc. 2016, 20, 25–60. [Google Scholar] [CrossRef]
- Díaz-Jiménez, L.; Carlos-Hernández, S.; Jasso de Rodríguez, D.; Rodríguez-García, R. Conceptualization of a biorefinery for guishe revalorization. Ind. Crops Prod. 2019, 138, 111441. [Google Scholar] [CrossRef]
- Biljana Bauer, P. Historical review of medicinal plants’ usage. Pharmacogn. Rev. 2012, 6, 1–5. [Google Scholar]
- Dar, R.A.; Shahnawaz, M.; Qazi, P.H. General overview of medicinal plants: A review. J. Phytopharm. 2017, 6, 349–351. [Google Scholar] [CrossRef]
- Halberstein, R.A. Medicinal plants: Historical and cross-cultural usage patterns. Ann. Epidemiol. 2005, 15, 686–699. [Google Scholar] [CrossRef]
- Vargas-Piedra, G.; Valdez-Cepeda, R.D.; López-Santos, A.; Flores-Hernández, A.; Hernández-Quiroz, N.S.; Martínez-Salvador, M. Current and future potential distribution of the xerophytic shrub candelilla (euphorbia antisyphilitica) under two climate change scenarios. Forests 2020, 11, 530. [Google Scholar] [CrossRef]
- Reyes, L.; Camacho, T.; Guevara, F. Rastrojos. Manejo, uso y mercado en el Centro y Sur de México; Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias (INIFAP): Aguascalientes, Mexico, 2013; Libro Técnico Núm. 7; p. 235. ISBN 9786073701709. [Google Scholar]
- McDaniel, C.; Jadeja, R. Pecan and walnut food safety concerns: A mini review. Adv. Nutr. Food Sci. 2021, 3, 1–15. [Google Scholar] [CrossRef]
- López, R.R.; Palafox, A.R.; Medina, S.M.; Ballesteros, F.G.; Rivera, M.M. Análisis de rentabilidad del cultivo de nogal pecanero en la costa de Hermosillo. Rev. Mex. Agronegocios 2014, 34, 872–882. [Google Scholar]
- Paist, A.; Kask, Ü.; Kask, L.; Vrager, A.; Muiste, P.; Padari, A.; Pärn, L. Potential of biomass fuels to substitute for oil shale in energy balance in estonian energy sector. Oil Shale 2006, 22, 369–379. [Google Scholar] [CrossRef]
- Pinheiro do Prado, A.C.; Aragão, A.M.; Fett, R.; Block, J.M. Antioxidant properties of pecan nut [Carya illinoinensis (Wangenh.) C. Koch] shell infusion. Grasas y Aceites 2009, 60, 330–335. [Google Scholar] [CrossRef]
- Bhuvaneshwari, S.; Hettiarachchi, H.; Meegoda, J.N. Crop residue burning in India: Policy challenges and potential solutions. Int. J. Environ. Res. Public Health 2019, 16, 832. [Google Scholar] [CrossRef] [PubMed]
- Lohan, S.K.; Jat, H.S.; Yadav, A.K.; Sidhu, H.S.; Jat, M.L.; Choudhary, M.; Peter, J.K.; Sharma, P.C. Burning issues of paddy residue management in north-west states of India. Renew. Sustain. Energy Rev. 2018, 81, 693–706. [Google Scholar] [CrossRef]
- Bonatti, M.; Karnopp, P.; Soares, H.M.; Furlan, S.A. Evaluation of Pleurotus ostreatus and Pleurotus sajor-caju nutritional characteristics when cultivated in different lignocellulosic wastes. Food Chem. 2004, 88, 425–428. [Google Scholar] [CrossRef]
- Córdoba, J.A.; Salcedo, E.; Rodríguez, R.; Zamora, J.F.; Manríquez, R.; Contreras, H.; Robledo, J.; Delgado, E. Caracterización y valoración química del olote: Degradación hidrotérmica bajo condiciones subcríticas. Rev. Latinoam. Quimica. 2013, 41, 171–184. [Google Scholar]
- SIAP (Servicio de Información Agroalimentaria y Pesquera). Anuario Estadístico de la Producción Agrícola, 2023. Available online: https://nube.siap.gob.mx/cierreagricola/ (accessed on 11 August 2023).
- Pordesimo, L.O.; Hames, B.R.; Sokhansanj, S.; Edens, W.C. Variations in corn stover composition and energy content with crop maturity. Biomass Bioenergy 2005, 28, 366–374. [Google Scholar] [CrossRef]
- Prasertpong, P.; Tippayawong, N.; Sittisun, P. Densification of corn residues for producing pelletized biomass fuels. In AIP Conference Proceedings; AIP Publishing LLC: Melville, NY, USA, 2022; Volume 2681, p. 020003. [Google Scholar]
- Romo, F.C.S.; López, C.; Kohashi, J.S.; Martínez, R.C.G.; Miranda, S.C.; Aguilar, V.H.R. Rendimiento de biomasa acumulada en frijol común bajo riego y secano. Rev. Mex. Cienc. Agrícolas 2021, 12, 1363–1376. [Google Scholar]
- Okot, D.K.; Bilsborrow, P.E.; Phan, A.N. Briquetting characteristics of bean straw-maize cob blend. Biomass Bioenergy 2019, 126, 150–158. [Google Scholar] [CrossRef]
- Orona, C.I.; Sangerman, J.D.M.; Fortis, H.M.; Vázquez, V.C.; Gallegos, R.M.A. Producción y comercialización de nuez pecanera (Carya illinoensis Koch) en el norte de Coahuila, México. Rev. Mex. Cienc. Agrícolas 2013, 4, 461–476. [Google Scholar] [CrossRef]
- Carrillo-Parra, A.; Núñez-Retana, V.D.; Prieto-Ruíz, J.A.; Garza-Ocañas, F. Potencial energético de residuos de ocho cultivos agrícolas en México. In Optimización de los Procesos de Extracción de Biomasa Sólida Para Uso Energético. Cuaderno de la Red Iberomasa; Velázquez Martí, B., Ed.; Programa Iberoamericano De Ciencia Y Tecnología Para El Desarrollo (CYTED): Valencia, España, 2020; ISBN 978-84-15413-44-8. [Google Scholar]
- Sierra-Zurita, D.; Santana-Espinoza, S.; Rosales-Serna, R.; Ríos-Saucedo, J.C.; Carrillo-Parra, A. Productivity and Characterization of Biomass Obtained from Pruning of Walnut Orchards in Mexico. Energies 2023, 16, 2243. [Google Scholar] [CrossRef]
- Pecha, D.B.; López-Díaz, D.A. Gaseificação de carvão, biomassa de Chenopodium album, e cogaseificação de uma mistura de carvão e biomassa mediante análise termogravimétrico de gases. Rev. Fac. Ing. 2019, 28, 53–77. [Google Scholar]
- Singh, D.; Singh, S.P. Low cost production of ester from non edible oil of Argemone mexicana. Biomass Bioenergy 2010, 34, 545–549. [Google Scholar] [CrossRef]
- Pandey, S.P.; Kumar, S. Valorisation of argemone mexicana seeds to renewable fuels by thermochemical conversion process. J. Environ. Chem. Eng. 2020, 8, 104271. [Google Scholar] [CrossRef]
- Shehata, H.F. Ecology and nutritive status of Sisymbrium irio L. in the Nile delta, Egypt. J. Exp. Biol. 2014, 10, 127–142. [Google Scholar]
- Rosales, S.R.; Ríos, S.J.C.; Jiménez, O.R.; Domínguez, M.P.A.; Santana, E.S. Importancia de la materia orgánica en el fortalecimiento de la fertilidad de suelos agrícolas en Durango. Desplegable para Productores; Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias (INIFAP): Durango, Mexico, 2018; 2p. [Google Scholar]
- Blancarte-Contreras, E.; Corral-Rivas, S.; Domínguez-Gómez, T.G.; Lujan-Soto, J.E.; Goche-Télles, J.R.; Montiel-Antuna, E. Improving the physical, mechanical and energetic characteristics of pine sawdust by the addition of up to 40% Agave durangensis gentry pellets. Energies 2022, 15, 3711. [Google Scholar] [CrossRef]
- Carrillo-Parra, A.; Rutiaga-Quiñones, J.G.; Ríos-Saucedo, J.C.; Ruiz-García, V.M.; Ngangyo-Heya, M.; Nava-Berumen, C.A.; Núñez-Retana, V.D. Quality of pellet made from agricultural and forestry waste in Mexico. BioEnergy Res. 2021, 15, 977–986. [Google Scholar] [CrossRef]
- Rosales, S.R.; Ríos, S.J.C.; Domínguez, M.P.A.; Jiménez, O.R.; Carrillo, P.A.; Santana, E.S.; Nava, B.C.A. Productividad y composición fibrosa de la biomasa en especies vegetales con potencial bioenergético en Durango. Agrofaz 2018, 18, 91–100. [Google Scholar]
- Ruiz-Aquino, F.; Jiménez-Mendoza, M.E.; Santiago-García, W.; Suárez-Mota, M.E.; Aquino-Vásquez, C.; Rutiaga-Quiñones, J.G. Energy Properties of 22 Timber Species from Oaxaca, Mexico. South-East Eur. For. SEEFOR 2022, 13, 107–113. [Google Scholar] [CrossRef]
- Díaz, R.A.; Flores, A.E.; de Luna, J.A.; Luna, R.J.J.; Frías, H.J.T.; Olalde, P.V. Biomasa aérea, cantidad y calidad de semilla de Melinis repens (Willd.) Zizka, en Aguascalientes, México. Rev. Mex. Cienc. Pecu. 2012, 3, 33–47. [Google Scholar]
- Beltrán, L.S.; Loredo, O.C.; Núñez, Q.T.; González, E.L.A.; García, D.C.A.; Hernández, A.J.A.; Urrutia, M.J.; Gámez, V.H.G. Buffel Titán y Buffel Regio, nueva variedad de pastos para el Altiplano de San Luis Potosí (Establecimiento y producción de semilla); Folleto Técnico Núm. 35; INIFAP-CIRNE-Campo Experimental San Luis: San Luis Potosí, Mexico, 2008; 36p. [Google Scholar]
- Carrillo-Parra, A.; Foroughbakhch-Pournavab, R.; Bustamante-García, V. Calidad del carbón de Prosopis laevigata (Humb. & Bonpl. ex Willd.) MC Johnst. y Ebenopsis ebano (Berland.) Barneby & JW Grimes elaborado en horno tipo fosa. Rev. Mex. Cienc. Forestales 2013, 4, 62–71. [Google Scholar]
- Ngangyo-Heya, M.; Pournavab, F.R.; Carrillo-Parra, A.; Colin-Urieta, S. Bioenergy potential of shrub from native species of northeastern Mexico. Int. J. Agric. Policy Res. 2014, 2, 475–483. [Google Scholar]
- Dupri, I. Estimación de los residuos agrícolas generados en la isla de Tenerife; Servicio Técnico de Agricultura y Desarrollo Rural: Tenerife, Spain, 2006; pp. 3–20. [Google Scholar]
- Gallino, A.; Castro, A.B.; Bernaus, M.; Gaioli, F. Estudio de potencial de mitigación—Biomasa y Biocombustibles de 2° y 3° generación. Tercera Comunicación Nacional sobre Cambio Climático, Secretaría de Ambiente y Desarrollo Sustentable de la Nación, Argentina. 2015, p. 41. Available online: http://3cn.cima.fcen.uba.ar/docs/3Com-Resumen-Ejecutivo-de-la-Tercera-Comunicacion-Nacional.pdf (accessed on 14 August 2023).
- Racovita, R.C.; Secuianu, C.; Ciuca, M.D.; Israel-Roming, F. Effects of smoking temperature, smoking time, and type of wood sawdust on polycyclic aromatic hydrocarbon accumulation levels in directly smoked pork sausages. J. Agric. Food Chem. 2020, 68, 9530–9536. [Google Scholar] [CrossRef] [PubMed]
- Emel, O.Z. Effects of smoking with different wood chips and barbecuing on some properties of salmon fish. Gıda 2020, 45, 1–8. [Google Scholar]
- Barrera, J.M.; Madrid, L.; Hernández, K. La producción forestal en México a lo largo del tiempo: Avances y retrocesos; Consejo Civil Mexicano para la Silvicultura Sostenible: Ciudad de México, Mexico, 2021; p. 47. [Google Scholar]
- SEMARNAT. Anuario Estadístico de la Producción Forestal; Secretaría de Medio Ambiente y Recursos Naturales: Ciudad de México, Mexico, 2018; p. 297. [Google Scholar]
- Brown, C. Perspectivas Mundiales del Suministro Futuro de Madera Procedente de Plantaciones Forestales; FAO: Roma, Italy, 2000; p. 161. [Google Scholar]
- Davis, S.C.; Kuzmick, E.R.; Niechayev, N.; Hunsaker, D.J. Productivity and water use efficiency of Agave americana in the first field trial as bioenergy feedstock on arid lands. GCB Bioenergy 2017, 9, 314–325. [Google Scholar] [CrossRef]
- Rosales-Serna, R.; Flores-Gallardo, H.; López-González, J.C.; Rubiños-Panta, J.E.; Ortiz-Sánchez, I.A.; Flores-Magdaleno, H.; Santana-Espinoza, S.; Domínguez-Martínez, P.A. Fenología y productividad del agua en variedades mejoradas de frijol pinto cultivadas en Durango, México. Rev. Fitotec. Mex. 2021, 44, 511. [Google Scholar] [CrossRef]
- Satyanarayana, K.G.; Flores-Sahagun, T.H.S.; Pereira-Dos-Santos, L.; Dos-Santos, J.; Mazzaro, I.; Mikowski, A. Characterization pf blue agave bagasse fibers of Mexico. Compos. Part A 2013, 45, 153–161. [Google Scholar]
- Salazar, L.M.; Rosales, R.; Jiménez, R.; Ríos, J.C.; Sigala, J.A.; Carrillo, A.; Dominguez, P.A.; Martínez, M. Optimización calorífica en especies vegetales con potencial para la producción de biomasa dendroenergética en Durango. Agrofaz 2015, 15, 147–154. [Google Scholar]
- Araujo de Medeiros, G.; Antonio Daniel, L.; Hashimoto Fengler, F. Growth, development, and water consumption of irrigated bean crop related to Growing Degree-Days on different soil tillage systems in Southeast Brazil. Int. J. Agron. 2016, 2016, 8065985. [Google Scholar] [CrossRef]
- Chaves de Oliveira, E.; Nogueira da Costa, J.M.; José de Paula Júnior, T.; Marques Ferreira, W.P.; Barbosa Justino, F.; de Oliveira Neves, L. Desempenho do modelo CROPGRO-Dry bean na simulação do rendimento de feijão (Phaseolus vulgaris L.). Acta Sci. Agron. 2012, 34, 239–246. [Google Scholar]
- Muñoz-Ruiz, C.V.; López-Díaz, S.; Covarrubias-Villa, F.; Villar-Luna, E.; Medina-Medrano, J.R.; Barriada-Bernal, L.G. Effect of abiotic stress conditions on the wax production in candelilla (Euphorbia antisy. philitica Zucc.). Rev. Latinoam. Química 2016, 44, 26–33. [Google Scholar]
- Aragón-Gastélum, J.L.; Flores, J.; Jurado, E.; Ramírez-Tobías, H.M.; Robles-Díaz, E.; Rodas-Ortiz, J.P.; Yáñez-Espinosa, L. Potential impact of global warming on seed bank, dormancy and germination of three succulent species from the Chihuahuan Desert. Seed Sci. Res. 2018, 28, 312–318. [Google Scholar] [CrossRef]
- González-Salvatierra, C.; Flores, J. Water-shortage tolerance and recovery after rehydration in the Chihuahuan Desert plant Yucca filifera (Asparagaceae). J. Torrey Bot. Soc. 2019, 146, 128–137. [Google Scholar] [CrossRef]
- Almendra-Paxtian, L.; García-Martínez, O.; Robles-Hernández, V.E.; Sánchez-Peña, S.R. Cicadomorpha1 in a vineyard at Parras, Coahuila, Mexico, and vectors of diseases. Southwest. Entomol. 2021, 46, 147–151. [Google Scholar] [CrossRef]
- Amaya-Chantaca, D.; Flores-Gallegos, A.C.; Iliná, A.; Aguilar, C.N.; Sepúlveda-Torre, L.; Ascacio-Vadlés, J.A.; Prado-Barragán, L.A.; Chávez-González, M.L. La industria vinícola como fuente de valiosos residuos agroindustriales. CienciaAbierta 2021, 1, 123–145. [Google Scholar]
- Gómez-García, R.; Martínez-Ávila, G.C.G.; Aguilar, C.N. Enzyme-assisted extraction of antioxidative phenolics from grape (Vitis vinifera L.) residues. 3 Biotech 2012, 2, 297–300. [Google Scholar] [CrossRef]
- Pinales-Quero, I.; González-Vázquez, V.M.; Castillo-Reyes, F.; Aguilar, C.N.; Reyes-Valdés, M.H.; Rodríguez Herrera, R. Genetic diversity of sotol (Dasylirion cedrosanum Trel.) at different elevations. Ecosistemas y Recur. Agropecu. 2017, 4, 201–211. [Google Scholar]
- De León-Zapata, M.A.; Aguilar, C.N. Extraction methods and common uses of candelilla wax. In Food Process Engineering and Quality Assurance; Apple Academic Press: Palm Bay, FL, USA, 2020; pp. 505–524. [Google Scholar]
- Reyes-Melo, K.Y.; Galván-Rodrigo, A.A.; Martínez-Olivo, I.E.; Núñez-Mojica, G.; Ávalos-Alanís, F.G.; García, A.; del Rayo Camacho-Corona, M. Larrea tridentata and its biological activities. Curr. Top. Med. Chem. 2021, 21, 2352–2364. [Google Scholar] [CrossRef]
- Jasso-de Rodríguez, D.; Rodríguez-García, R.; Hernández-Castillo, F.D.; Aguilar-González, C.N.; Sáenz-Galindo, A.; Villarreal-Quintanilla, J.; Moreno-Zuccolotto, L.E. In vitro antifungal activity of extracts of Mexican Chihuahuan Desert plants against postharvest fruit fungi. Ind. Crops Prod. 2011, 34, 960–966. [Google Scholar] [CrossRef]
- Ramírez-Moreno, A.; Delgadillo-Guzmán, D.; Bautista-Robles, V.; Marszalek, J.E.; Keita, H.; Kourouma, A.; Ramírez-García, S.A.; Rodríguez-Amado, J.R.; Tavares-Carvalho, J.C. Jatropha dioica, an Aztec plant with promising pharmacological properties: A systematic review. Afr. J. Pharm. Pharmacol. 2020, 14, 169–178. [Google Scholar]
- Moreno-Limon, S.; Gonzalez-Luna, R.; Garza-Aguirre, R.; Forughbackhch-Pournavab, R. Leaf, stem and root content of proline in Atriplex canescens and Suaeda nigra. Int. J. Bio-Resour. Stress Manag. 2014, 5, 82–85. [Google Scholar] [CrossRef]
- Mata-González, R.; Abdallah, M.A.B.; Trejo-Calzada, R.; Wan, C. Growth and leaf chemistry of Atriplex species from Northern Mexico as affected by salt stress. Arid Land Res. Manag. 2017, 31, 57–70. [Google Scholar] [CrossRef]
- Castro-López, C.; Rojas, R.; Martínez-Ávila, G.C.G. Screening of the Cassia Fistula phytochemical constituents by UPLC-ESI-QTOF-MS. Clin. Oncol. 2018, 3, 1477. [Google Scholar]
- Chávez-Moreno, C.K.; Tecante, A.; Casas, A. The Opuntia (Cactaceae) and Dactylopius (Hemiptera: Dactylopiidae) in Mexico: A historical perspective of use, interaction and distribution. Biodivers. Conserv. 2009, 18, 3337–3355. [Google Scholar] [CrossRef]
- Reynoso-Camacho, R.; González de Mejía, E. Nopal (Opuntia spp.) and other traditional Mexican plants. In Nutraceuticals Glycemic Health & Type 2 Diabetes; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2008; pp. 379–399. [Google Scholar] [CrossRef]
- Torres-Ponce, R.L.; Morales-Corral, D.; Ballinas-Casarrubias, M.D.; Nevárez-Moorillón, G.V. El nopal: Planta del semidesierto con aplicaciones en farmacia, alimentos y nutrición animal. Rev. Mex. Ciencias Agrícolas Mex. Cienc. Agríc. 2015, 6, 1129–1142. [Google Scholar] [CrossRef]
- Pinal, L.; Cornejo, E.; Arellano, M.; Herrera, E.; Nuñez, L.; Arrizon, J.; Gschaedler, A. Effect of Agave tequilana age, cultivation field location and yeast strain on tequila fermentation process. J. Ind. Microbiol. Biotechnol. 2009, 36, 655–661. [Google Scholar] [CrossRef] [PubMed]
- Puente-Garza, C.A.; Gutiérrez-Mora, A.; García-Lara, S. Micropropagation of Agave salmiana: Means to production of antioxidant and bioactive principles. Front. Plant Sci. 2015, 6, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Prieto-Ruiz, J.Á.; Rosales-Mata, S.; Sigala-Rodríguez, J.Á.; Madrid-Aispuro, R.E.; Mejía-Bojorques, J.M. Producción de Prosopis laevigata (Humb. et Bonpl. ex Willd.) M.C. Johnst. con diferentes mezclas de sustrato. Rev. Mex. Ciencias For. 2018, 4, 50–57. [Google Scholar]
- Dewi, R.K.; Zuhroh, S.T.; Zulaikha, S. Delignification of chandlenut shell waste with alkali pretreatment method as an alternative fuel feedstock. Int. J. Mech. Eng. Technol. 2018, 9, 271–278. [Google Scholar]
- Berberi, R.O.; Smoisman, S.; Sandoval, D.; Rey, N.; Arenas, M.; Killy, N.; Piatti, L.F. Potencia térmica en un quemador experimental utilizando cáscaras de nuez Pecan como biocombustible. Extensionismo Innovación y Transferencia Tecnológica Claves para el desarrollo 2019, 5, 196–202. [Google Scholar] [CrossRef]
- Atuesta, L.E.; Vargas, F.S. Caracterización fisicoquímica de pellets producidos a partir de mezclas 50/50 carbón bituminoso/madera residual. Inf. Técnico 2015, 79, 18–25. [Google Scholar] [CrossRef]
- Quiñones-Reveles, M.A.; Ruiz-García, V.M.; Ramos-Vargas, S.; Vargas-Larreta, B.; Masera-Cerutti, O.; Ngangyo-Heya, M.; Carrillo-Parra, A. Assessment of pellets from three forest species: From raw material to end use. Forests 2021, 12, 447. [Google Scholar] [CrossRef]
- Amezcua-Allieri, M.; Torres, E.; Eguía-Lis, J.; Magdalenno, M.; Melgarejo, L.; Palmerín, E.; Rosas, A.; López, D.; Aburto, J. Valorization of residues from forest industry for the generation of energy. Int. J. Energy Environ. Eng. 2018, 5, 1–6. [Google Scholar]
- Villalón-Mendoza, H.; Carrillo-Parra, A. Plantas productoras de leña y carbón. In De la lechuguilla a las biopelículas vegetales. Las plnatas útiles de Nuevo León; Alvarado-Vázquez, M.A., Rocha-Estrada, A., Moreno-Limón, S., Eds.; Universidad Autónoma de Nuevo León: Monterrey, Mexico, 2010; pp. 267–280. [Google Scholar]
- Amenaghawon, A.N.; Anyalewechi, C.L.; Okieimen, C.O.; Kusuma, H.S. Biomass pyrolysis technologies for value-added products: A state-of-the-art review. Environ. Dev.Sustain. 2021, 23, 14324–14378. [Google Scholar] [CrossRef]
- Dhyani, V.; Bhaskar, T.A. Comprehensive review on the pyrolysis of lignocellulosic biomass. Renew. Energy 2018, 129, 695–716. [Google Scholar] [CrossRef]
- Batista, R.R.; Gomes, M.M. Effects of chemical composition and pyrolysis process variables on biochar yields: Correlation and Principal Component Analysis. Floresta Ambient. 2021, 28, 1–12. [Google Scholar] [CrossRef]
- Lee, J.H.; Lee, I.G.; Jeon, W.; Ha, J.H.; Lee, K.Y. Catalytic upgrading of bio-tar over a MgNiMo/activated charcoal catalyst under supercritical ethanol conditions. Catal. Today 2018, 316, 237–243. [Google Scholar] [CrossRef]
- Yang, X.; Kang, K.; Qiu, L.; Zhao, L.; Sun, R. Effects of carbonization conditions on the yield and fixed carbon content of biochar from pruned apple tree branches. Renew. Energy 2020, 146, 1691–1699. [Google Scholar] [CrossRef]
- Villavicencio-Gutiérrez, E.E.; Cano-Pineda, A.; Castillo-Quiroz, D.; Hernández-Ramos, A.; Martínez-Burciaga, O.U. Manejo forestal sustentable de los recursos no maderables en el semidesierto del norte de México. Rev. Mex. Ciencias For. 2021, 12, 31–63. [Google Scholar] [CrossRef]
- Reyes-Agüero, J.A.; Aguirre-Rivera, J.R.; Peña-Valdivia, C.B. Biología y aprovechamiento de Agave lechuguilla Torrey. Boletín Soc. Botánica México 2000, 67, 75–88. [Google Scholar] [CrossRef]
- Tezer, Ö.; Karabağ, N.; Öngen, A.; Çolpan, C.Ö.; Ayol, A. Biomass gasification for sustainable energy production: A review. Int. J. Hydrogen Energy 2022, 47, 15419–15433. [Google Scholar] [CrossRef]
- Molino, A.; Chianese, S.; Musmarra, D. Biomass gasification technology: The state of the art overview. J. Energy Chem. 2016, 25, 10–25. [Google Scholar] [CrossRef]
- Behera, S.S.; Ray, R.C.; Das, U.; Panda, S.K.; Saranraj, P. Microorganisms in fermentation. In Essentials in Fermentation Technology; Berenjian, A., Ed.; Springer: Hamilton, New Zealand, 2020; pp. 1–40. ISBN 978-3-030-16230-6. [Google Scholar]
- Dashko, S.; Zhou, N.; Compagno, C.; Piškur, J. Why, when, and how did yeast evolve alcoholic fermentation? FEMS Yeast Res. 2014, 14, 826–832. [Google Scholar] [CrossRef] [PubMed]
- Zamora, F. Biochemistry of alcoholic fermentation. In Wine Chemistry and Biochemistry; Moreno-Arribas, M.V., Polo, M.C., Eds.; Springer: Berlin/Heidelberg, Germany, 2009; pp. 3–25. ISBN 9780387741161. [Google Scholar]
- Mears, L.; Stocks, S.M.; Albaek, M.O.; Sin, G.; Gernaey, K.V. Mechanistic fermentation models for process design, monitoring, and control. Trends Biotechnol. 2017, 35, 914–924. [Google Scholar] [CrossRef] [PubMed]
- Ortiz-Méndez, O.H.; Morales-Martínez, T.K.; Rios-González, L.J.; Rodríguez-de la Garza, J.A.; Quintero, J.; Aroca, G. Bioethanol production from Agave lechuiguilla biomass pretreated by autohydrolysis. Rev. Mex. Ing. Química 2017, 16, 467–476. [Google Scholar]
- Díaz-Blanco, D.I.; de La Cruz, J.R.; López-Linares, J.C.; Morales-Martínez, T.K.; Ruiz, E.; Rios-González, L.J.; Romero, I.; Castro, E. Optimization of dilute acid pretreatment of Agave lechuguilla and ethanol production by co-fermentation with Escherichia coli MM160. Ind. Crops Prod. 2018, 114, 154–163. [Google Scholar] [CrossRef]
- Rios-González, L.J.; Morales-Martínez, T.K.; Hernández-Enríquez, G.G.; De la Garza, J.A.R.; Moreno-Dávila, M. Hydrogen Production by anaerobic digestion from Agave lechuguilla hydrolysates. BioResources 2018, 13, 7766–7779. [Google Scholar] [CrossRef]
- Figueroa-Díaz, A.B.; Carlos-Hernández, S.; Díaz-Jiménez, L. Crude glycerol/guishe based catalysts for biodiesel production: Conforming a guishe biorefinery. Catalysts 2021, 11, 3. [Google Scholar] [CrossRef]
- Morales-Martínez, T.K.; Medina-Morales, M.A.; Ortíz-Cruz, A.L.; Rodríguez-De la Garza, J.A.; Moreno-Dávila, M.; López-Badillo, C.M.; Ríos-González, L. Consolidated bioprocessing of hydrogen production from agave biomass by Clostridium acetobutylicum and bovine ruminal fluid. Int. J. Hydrogen Energy 2020, 45, 13707–13716. [Google Scholar] [CrossRef]
- Villarreal Sanchez, J.A.; Diaz Jimenez, L.; Escobedo Bocardo, J.C.; Carenas Palomo, J.O.; Guerra Escamilla, N.E.; Luna Alvarez, J.S. Effect of marine microorganisms on limestone as an approach for calcareous soil. Sustainability 2018, 10, 2078. [Google Scholar] [CrossRef]
- Reyna Martínez, R.; Morales Martínez, T.K.; Castillo Quiroz, D.; Contreras Esquivel, J.C.; Ríos Gonzalez, L.J. Fungal pretreatment of Agave lechiguilla Torr. biomass to produce ethanol. Rev. Mex. Cienc. For. 2018, 10, 86–106. [Google Scholar]
- Aranda-Ledesma, N.E.; Bautista-Hernández, I.; Rojas, R.; Aguilar-Zárate, P.; del Pilar Medina-Herrera, N.; Castro-López, C.; Martínez-Ávila, G.C. Candelilla wax: Prospective suitable applications within the food field. LWT 2022, 159, 1–13. [Google Scholar] [CrossRef]
- Martínez-Ballesté, A.; Mandujano, M.C. The consequences of harvesting on regeneration of a non-timber wax producing species (Euphorbia antisyphilitica Zucc.) of the Chihuahuan Desert. Econ. Bot. 2013, 67, 121–136. [Google Scholar] [CrossRef]
- Saucedo-Pompa, S.; Martínez-Ávila, G.C.G. National and international candelilla wax market. In Food Process Engineering and Quality Assurance; Taylor & Francis: New York, NY, USA, 2018; pp. 561–582. [Google Scholar]
- Aguirre-Joya, J.A.; Rojas, R.; Ventura-Sobrevilla, J.M.; Aguilar-Gonzalez, M.A.; De La Garza, H.; Belmares, R.E.; Rodríguez-Herrera, R.; Aguilar, C.N. Candelilla plant (Euphorbia antisiphylitica Zucc.) approach and market. In Food Process Engineering and Quality Assurance; Taylor & Francis: New York, NY, USA, 2018; pp. 461–472. [Google Scholar]
- Barsch, F. Candelilla (Euphorbia antisyphillitica): Utilisation in Mexico and international trade. Med. Plant Conserv. 2004, 9, 45–50. [Google Scholar]
- Rojas, R.; Tafolla-Arellano, J.C.; Martínez-Ávila, G.C.G. Euphorbia antisyphilitica Zucc: A source of phytochemicals with potential applications in industry. Plants 2021, 10, 8. [Google Scholar] [CrossRef]
- Buenrostro-Figueroa, J.; Ascacio-Valdés, A.; Sepúlveda, L.; De La Cruz, R.; Prado-Barragán, A.; Aguilar-González, M.A.; Rodríguez, R.; Aguilar, C.N. Potential use of different agroindustrial by-products as supports for fungal ellagitannase production under solid-state fermentation. Food Bioprod. Process. 2014, 92, 376–382. [Google Scholar] [CrossRef]
- CITES. Evaluación del estatus de Euphorbia antisyphilitica en México dentro de los apéndices de la CITES: Decimoctava reunión del Comité de Flora, Buenos Aires, Argentina, 17–21 de marzo de 2009. Available online: https://cites.org/sites/default/files/common/com/pc/18/X-PC18-Inf10.pdf (accessed on 24 October 2022).
- Rocha-Estrada, A.; Pournavab, R.F.; Guzmán-Lucio, M.A.; Alvarado-Vázquez, M.A. Candelilla (Euphorbia antisyphilitica Zucc.), Aprovechamiento tradicional en el norte de México. Cienciauanl 2021, 24, 1–23. [Google Scholar]
- Martínez-Ávila, G.C.G.; Aguilar, C.N.; Sanchez-Alejo, E.J.; Ascacio-Valdes, J.A.; Aguilera-Carbó, A.F.; Rojas, R. Extraction of bioactive compounds, characterization, and its use. In Food Process Engineering and Quality Assurance; CRC Press: Boca Raton, FL, USA, 2020; pp. 541–550. [Google Scholar]
- Ascacio-Valdés, J.A.; Aguilera-Carbó, A.; Martínez-Hernández, J.L.; Rodríguez-Herrera, R.; Aguilar, C.N. Euphorbia antisyphilitica residues as a new source of ellagic acid. Chem. Pap. 2010, 64, 528–532. [Google Scholar] [CrossRef]
- Bautista-Hernández, I.; Aranda-Ledesma, N.E.; Rojas, R.; Tafolla-Arellano, J.C.; Martínez-Ávila, G.C.G. Antioxidant activity of polyphenolic compounds obtained from Euphorbia antisyphilitica by-products. Heliyon 2021, 7, e06734. [Google Scholar] [CrossRef] [PubMed]
- Pulido-Barragán, E.U.; Morales-Cepeda, A.B.; Castro-Guerrero, C.F.; Koschella, A.; Heinze, T. Upgrading Euphorbia antisyphilitica fiber compost: A waste material turned into nanocrystalline cellulose. Ind. Crops Prod. 2021, 160, 113111. [Google Scholar] [CrossRef]
- Rojas Molina, R.; Saucedo Pompa, S.; De León Zapata, M.A.; Jasso Cantú, D.; Aguilar, C.N. Pasado, Presente y futuro de la candelilla. Rev. Mex. Ciencias For. 2019, 2, 7–18. [Google Scholar] [CrossRef]
- Dagar, J.C.; Yadav, R.K.; Ahamad, S. Euphorbia antisyphilitica: A potential petro-crop for degraded calcareous soils and saline water irrigation in dry regions of India. J. Soil Salin. Water Qual. 2012, 4, 86–91. [Google Scholar]
- Kumari, A.; Kumar, A. Some potential biofuel plants for semi-arid and arid region and improving their growth and productivity. In Proceedings of the 14th European Biomass Conference, Paris, France, 17–21 October 2005; pp. 279–281. [Google Scholar]
- Torres Castro, A.; Garza Navarro, M.; Ortiz Méndez, U.; González González, V. Candelilla del semidesierto mexicano como fuente de biocombustible. Ingenierías 2015, 18, 22–29. [Google Scholar]
- Garg, J.; Kumar, A. Some potential biofuel plants for production of biodiesel in semi-arid and arid conditions: A review. Afr. J. Plant Sci. 2013, 7, 124–127. [Google Scholar] [CrossRef]
- Schueftan, A.; Sommerhoff, J.; González, A.D. Firewood demand and energy policy in south-central Chile. Energy Sustain. Dev. 2016, 33, 26–35. [Google Scholar] [CrossRef]
- Molina, C.; Toro, A.R.; Morales, S.R.G.; Manzano, C.; Leiva-Guzmán, M.A. Particulate matter in urban areas of south-central Chile exceeds air quality standards. Air Qual. Atmos. Health 2017, 10, 653–667. [Google Scholar] [CrossRef]
- Cruz-Montelongo, C.D.L.; Herrera-Gamboa, J.; Ortiz-Sánchez, I.A.; Ríos-Saucedo, J.C.; Rosales-Serna, R.; Carrillo-Parra, A. Caracterización energética del carbón vegetal producido en el Norte-Centro de México. Madera Bosques 2020, 26, e2621971. [Google Scholar] [CrossRef]
- García-Quezada, J.; Musule-Lagunes, R.; Prieto-Ruíz, J.A.; Vega-Nieva, D.J.; Carrillo-Parra, A. Evaluation of four types of kilns used to produce charcoal from several tree species in Mexico. Energies 2023, 16, 333. [Google Scholar] [CrossRef]
- Bustamante García, V.; Carrillo Parra, A.; Prieto Ruíz, J.Á.; Corral-Rivas, J.J.; Hernández Díaz, J.C. Química de la biomasa vegetal y su efecto en el rendimiento durante la torrefacción: Revisión. Rev. Mex. Cienc. Forestales 2016, 7, 5–23. [Google Scholar] [CrossRef]
- Chen, W.H.; Peng, J.; Bi, X.T. A state-of-the-art review of biomass torrefaction, densification and applications. Renew. Sustain. Energy Rev. 2015, 44, 847–866. [Google Scholar] [CrossRef]
- Rousset, P.; Fernandes, K.; Vale, A.; Macedo, L.; Benoist, A. Change in particle size distribution of torrefied biomass during cold fluidization. Energy 2013, 51, 71–77. [Google Scholar] [CrossRef]
- Ngangyo-Heya, M.; Romo-Hernández, A.L.; Foroughbakhch-Pournavab, R.; Ibarra-Pintor, L.F.; Díaz-Jiménez, L.; Heya, M.S.; Salas-Cruz, L.R.; Carrillo-Parra, A. Physicochemical characteristics of biofuel briquettes made from pecan (Carya illinoensis) pericarp wastes of different particle sizes. Molecules 2022, 27, 1035. [Google Scholar] [CrossRef]
- Nunes, L.J.R. Biomass gasification as an industrial process with effective proof-of-concept: A comprehensive review on technologies, processes and future developments. Results Eng. 2022, 14, 100408. [Google Scholar] [CrossRef]
- Peng, J.H.; Bi, H.T.; Lim, C.J.; Sokhansanj, S. Study on density, hardness, and moisture uptake of torrefied wood pellets. Energy Fuels 2013, 27, 967–974. [Google Scholar] [CrossRef]
- Peng, J.H.; Bi, X.T.; Sokhansanj, S.; Lim, C.J. Torrefaction and densification of different species of softwood residues. Fuel 2013, 111, 411–421. [Google Scholar] [CrossRef]
Species | Current Product/Use | Waste |
---|---|---|
Agave lechuguilla | Ixtle/ropes, mats, bags, brushes [4] | Guishe |
Euphorbia antisyphilitica | Wax [8,52] | Bagasse |
Yucca filifera | Plant, flowers, fruits/food, saponins [53,54] | Bagasse |
Vitis vinifera | Wine/alcoholic beverage [55,56,57] | Stem, bagasse, seed |
Dasylirion wheeleri | Ethanol (Sotol)/alcoholic beverage [58] | Foliage, bagasse |
Larrea tridentata | Extracts/medicinal usage [59,60] | Bagasse |
Lippia graveolens | Thymol, carvacrol/essential oils, cooking [61] | Bagasse |
Jathopha dioica | Extracts/medicinal usage [62] | Bagasse |
Acacia tortuosa | Biochar, firewood | Foliage |
Atriplex canescens | Extracts [63,64] | Bagasse |
Cassia fistula | Extracts [65] | Bagasse |
Opuntia | Prickly pear, leaves/food, fodder [66,67,68] | Husk |
Agave tequilana, A. salmiana | Ethanol/alcoholic beverage [59,69,70] | Bagasse |
Propopis laevigata | Firewood, biochar/fuel [71] | |
Crops | Vegetables, fruits, fodder | Foliage, fodder wastes |
Non-timber | Firewood | Foliage |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carlos-Hernández, S.; Carrillo-Parra, A.; Díaz-Jiménez, L.; Salas-Cruz, L.R.; Rosales-Serna, R.; Ngangyo-Heya, M. Transformation Processes for Energy Production Alternatives from Different Biomass Sources in the Highlands and Semi-Desert Areas of Mexico. Resources 2023, 12, 103. https://doi.org/10.3390/resources12090103
Carlos-Hernández S, Carrillo-Parra A, Díaz-Jiménez L, Salas-Cruz LR, Rosales-Serna R, Ngangyo-Heya M. Transformation Processes for Energy Production Alternatives from Different Biomass Sources in the Highlands and Semi-Desert Areas of Mexico. Resources. 2023; 12(9):103. https://doi.org/10.3390/resources12090103
Chicago/Turabian StyleCarlos-Hernández, Salvador, Artemio Carrillo-Parra, Lourdes Díaz-Jiménez, Lidia Rosaura Salas-Cruz, Rigoberto Rosales-Serna, and Maginot Ngangyo-Heya. 2023. "Transformation Processes for Energy Production Alternatives from Different Biomass Sources in the Highlands and Semi-Desert Areas of Mexico" Resources 12, no. 9: 103. https://doi.org/10.3390/resources12090103
APA StyleCarlos-Hernández, S., Carrillo-Parra, A., Díaz-Jiménez, L., Salas-Cruz, L. R., Rosales-Serna, R., & Ngangyo-Heya, M. (2023). Transformation Processes for Energy Production Alternatives from Different Biomass Sources in the Highlands and Semi-Desert Areas of Mexico. Resources, 12(9), 103. https://doi.org/10.3390/resources12090103