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Abstract: To achieve Sustainable Development Goal 7 (SDG7) and improve energy management
efficiency, it is essential to develop models and methods to forecast and enhance the process accurately.
These tools are crucial in shaping the national policymakers’ strategies and planning decisions. This
study utilizes data envelopment analysis (DEA) and bootstrap computational methods to evaluate
Brazil’s energy efficiency from 2004 to 2023. Additionally, it compares seasonal autoregressive inte-
grated moving average (SARIMA) models and autoregressive integrated moving average (ARIMA)
forecasting models to predict the variables’ trends for 2030. One significant contribution of this study
is the development of a methodology to assess Brazil’s energy efficiency, considering environmental
and economic factors to formulate results. These results can help create policies to make SDG7 a
reality and advance Brazil’s energy strategies. According to the study results, the annual energy
consumption rate is projected to increase by an average of 2.1% by 2030, which is accompanied by
a trend of GDP growth. By utilizing existing technologies in the country, it is possible to reduce
electricity consumption costs by an average of 30.58% while still maintaining the same GDP value.
This demonstrates that sustainable development and adopting alternatives to minimize the increase
in energy consumption can substantially impact Brazil’s energy sector, improving process efficiency
and the profitability of the Brazilian industry.

Keywords: data envelopment analysis (DEA); energy; forecasting; supply; time series

1. Introduction

Integrating renewable energy sources is a global trend in energy distribution systems.
It enables them to (i) address the unresolved energy challenges posed by traditional
centralized power plants, (ii) reduce global CO2 emissions, and (iii) increase the long-term
supply of sustainable energy [1]. Distributed energy resources (DERs), particularly wind
and photovoltaic solar energy, play an increasingly important role in the energy sector [2].

In Brazil, a large part of the energy matrix comprises renewable sources, especially
energy of hydraulic origin. In 2022, hydraulic sources were responsible for the production
of 427.1 TWh, representing around 61.9% of the total production in the country, while
photovoltaic solar energy sources had a production value of 30.1 TWh (4.4%), thermal
solar energy of 11.6 TWh (1.7%), and wind energy source of 81.6 TWh (11.8%). Of all end
consumers, the industry is responsible for electricity consumption, which was 218.7 TWh
(31.7%) in 2022. If operational losses are ignored, the industry, in general, is responsible for
the consumption of 37.3% of the country’s electrical energy [3]. This shows that making the
energy matrix efficient encompasses sustainable factors to achieve SDG 7 and economic
factors to make the Brazilian industry more competitive internationally.
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Understanding the demand for electrical energy is crucial to efficiently allocate and
manage energy resources within a system with limited production capacity. This under-
standing can also help to achieve sustainable development goals, particularly Sustainable
Development Goal 7 (SDG 7) and related goals. This goal ensures everyone has reliable,
sustainable, modern, and affordable access to energy. It is important to note that energy rep-
resents a significant economic cost for a country and must be considered when measuring
the gross domestic product (GDP). This highlights the importance of efficient management
in this sector [4].

Sustainable Development Goals encompass a wide range of targets and guidelines,
which include the following: ensuring universal access to modern, viable, and afford-
able energy services (7.1), increasing the share of renewable energy in the global energy
mix (7.2), doubling the global rate of improvement in energy efficiency (7.3), strengthen-
ing measures of international cooperation for clean energy research and technology (7.4),
and improving the infrastructure for sustainable energy services in developing countries
(7.5) [5]. In addition, Table A1 (Appendix A) shows Brazil’s action to reach these targets.
An understanding of energy production, as shown in the various matrices that comprise
the national electricity grid of Brazil, as well as an ability to forecast future energy demand,
are critical features for public services, policymakers, and stakeholders, as they allow them
to make informed decisions about sustainable development objectives [6].

The use of forecasting techniques has attracted significant interest in the literature
and has been explored in several contexts. These include their practical applicability,
effectiveness in different industrial sectors, suitability to assist organizations of various
sizes, use for temporal horizons, and degrees of precision [7].

Considering this, it is important to understand how the country is progressing toward
achieving sustainable development goals. However, the lack of planning and knowledge
about the current state of the energy sector is a gap in the literature on the development
of the Brazilian industry. Therefore, the study aims to (i) measure the efficiency of energy
resources in Brazil concerning the country’s gross domestic product (GDP), (ii) compare
the suitability of ARIMA and SARIMA models for forecasting energy demand and GDP
using the Akaike and Bayesian information criteria and check the models’ forecast error
metrics (RMSE, MAE, MAPE, MASE), (iii) verify the time-series trends in a forecast scenario
up to 2030, and (iv) propose a step-by-step approach to analyzing the Brazilian energy
scenario to support the proposal of public policies in line with SDG7, serving as a basis for
strategic planning.

The study aims to utilize data envelopment analysis (DEA) to analyze the energy
efficiency in Brazil and identify opportunities for enhancing efficiency in the country’s
energy resources. It also seeks to compare the performance of ARIMA and SARIMA
models using the structured dataset to determine the most suitable model for this case
study. In addition, the study aims to utilize the chosen model to make predictions and
provide valuable information on the future behavior of the variables. Furthermore, the
study proposes a methodology for evaluating Brazilian energy efficiency and supporting
strategic planning in achieving Sustainable Development Goal 7.

This study proposes a methodology to assess a country’s energy efficiency, combin-
ing environmental and economic factors. We apply this methodology to the Brazilian
context, thus revealing the energy characteristics of a developing country with abundant
natural resources.

The study employs data envelopment analysis and bootstrap computational methods
to evaluate energy usage efficiency statistically, providing valuable findings for decision-
makers and the academic community. Also, the results provide a basis for future research,
which can further explore alternative methodologies and expand the analysis to other
regions or sectors.

Additionally, it contributes to the forecasting domain by comparing SARIMA and
ARIMA models to predict future trends, projecting a 2.1% annual increase in energy
consumption by 2030. The study also identifies a potential 30.58% reduction in electricity
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consumption costs through existing technologies without compromising GDP growth,
emphasizing the role of sustainable practices in advancing Brazil’s energy strategies. These
findings have significant implications for achieving Sustainable Development Goal 7.

The structure of the paper is organized as follows. Section 2 reviews the literature
on time-series forecasting models and their applicability in energy resources. This section
gathers the most recent studies on the subject and critically analyzes the findings. The
following Section 3 will provide an overview of the materials and methods used in this
study, detailing the methodology utilized, and explaining the structure of Sections 4–7.
These sections offer a detailed explanation of the mathematical models and procedures
applied, including the implementation of the bootstrap-DEA and the use of ARIMA and
SARIMA forecasts to analyze the energy resources in Brazil. Section 8 discusses the main
findings and results of our application of bootstrap-DEA. The calculations of the efficiency
index and their respective 95% confidence intervals are also presented. In addition, the
application of the SARIMA model is discussed to forecast the time series of energy demand
and gross domestic product (GDP) in Brazil. Finally, Section 9 concludes the paper by
summarizing the main contributions of the research.

2. Literature Review

The need to develop a sustainable energy plan and the emphasis placed on forecasting
energy demand emphasize the importance of effectively managing this demand, which is
aligned with the long-term objectives of the environmental, social, and economic sustainabil-
ity goals [8]. By integrating energy demand forecasting into sustainable energy planning,
societies can move toward a future that is both sustainable and equitable—combining
knowledge about productivity, sustainability, and industry [9].

Therefore, forecasting energy demand is fundamental for energy planning and man-
agement, enabling stakeholders to make informed decisions regarding resource alloca-
tion, infrastructure development, policy formulation, and its impact on GDP. Energy
demand forecasting methods can be broadly categorized into qualitative and quantitative
approaches. As documented by [10], time-series models are widely used for energy de-
mand forecasting because they capture the temporal patterns and trends inherent in energy
consumption data.

Table 1 presents a comparison between this paper and previous works. This work
updates the data envelopment analysis on Brazil’s energy consumption by incorporating
more recent data and advanced forecasting techniques. While a previous study from 2012
applied DEA [11], and another from 2024 utilized SARIMA for forecasting [8], our research
combines both DEA and SARIMA models to provide a more comprehensive analysis of
energy efficiency and future consumption trends. Additionally, we update a 2022 study
that applied DEA using data from 2015 [12].

Table 1. Comparison between works that use DEA or ARIMA/SARIMA applied to energy consumption.

Reference Year Targeted Country ARIMA/SARIMA DEA

[11] 2012 Brazil ✗ ✓
[13] 2015 BRICS ✗ ✓
[14] 2022 India ✓ ✗
[8] 2024 Brazil ✓ ✗

This work 2024 Brazil ✓ ✓

2.1. Predictive Models Using Machine Learning Techniques

Several studies have compared the performance of time-series models in different
contexts and for various applications. A comprehensive review of forecasting methods,
including classical and modern approaches, was conducted [15]. The study showed that
the most generic deep learning models, such as LSTM and GRU, performed better than
simpler models, such as DeepAR and DeepState. However, these gains were not significant,
and the result is worse when looking at more extended scenarios. Similarly, Ref. [16] used
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a non-linear autoregressive neural network (NAR) to predict the next decade of energy
demand based on a publicly available dataset for global energy consumption; however, the
model that performed best (FB prophet) is challenging to apply [8].

Energy demand forecasting has been a significant area of research with several meth-
ods proposed for accurate forecasting. Neural networks, such as non-linear autoregressive
neural networks, can deal with statistical, empirical and theoretical problems effectively,
as presented by [17]; however, similarly to the study of [16], the best forecasting model,
which in this case will be NAR, also proves to have limitations in terms of application
due to the complexity of the model, resulting in various errors. Convolution neural net-
works (CNNs) and conditional random fields (CRFs) have been used to predict energy
consumption, achieving high accuracy, according to [18], although it is highly accurate that
in a real scenario where there is a vast amount of data, a considerable amount of GPUs
will be needed to run the models. The forecast of electricity prices is also relevant in this
context [19].

Developing countries face challenges in achieving sustainable economic growth with
low carbon emissions. Still, for [10], hybridized artificial neural networks (ANNs) with
metaheuristic techniques are superior at load prediction, although they are naturally more
complex. Probabilistic forecasting models, such as DeepAR and deep state space, perform
better for longer forecast horizons, as conducted by [15].

Machine learning (ML) techniques are widely used, especially for short-term electricity
forecasts, while engineering-based models cover long time horizons and household appli-
ance consumption; according to [20], essential issues raised by the study point to the need
to have industrial energy demand models, as well as the fact that different models perform
differently when applied to other scenarios. In power generation, forecasting models have
also been used to predict electricity supply and production parameters, such as wind
speed [21]. However, this approach is interesting to be applied in scenarios considering
wind energy; it does not help evaluate an energy matrix with a predominance of hydro and
solar generation, as in Brazil [8].

2.2. Econometric Models: ARIMA and SARIMA

In this way, it is understood that the most recent studies dealing with energy demand
forecasting have focused on using machine learning techniques. Despite presenting good
results compared to more conventional methods, they have come up against the fact that
they are complex for practical application. Therefore, traditional models found in the
literature, like ARIMA and SARIMA, are more suitable for countries such as Brazil because
they are simple to apply and interpret.

In contrast, the ARIMA model is based on adjusting the observed values to reduce the
difference between the values produced in the model and the observed values to near zero.
For the construction of ARIMA models, Box–Jenkins suggested the following iterative steps;
according to Bayer, the ARIMA model (p, d, q) consists of combining an autoregressive
(AR) model of order p with a time series differenced d times (number of differences needed
to make the series stationary) and a moving average (MA) model of order q. Thus, it has
the following form: ϵ is white noise; f (B) and q(B) are the autoregressive polynomial and
moving average polynomial, respectively. The seasonal ARIMA model, or SARIMA, follows
this presentation format: SARIMA (p, d, q)(P, D, Q), where the parameters (P, D, Q) are
the seasonal equivalents of (p, d, q). The seasonal part is represented by three additional
similar parameters; thus, it is called SARIMA. The SARIMA model is defined by a simple
part of parameters (p, d, q) and a seasonal part composed of parameters (P, D, Q) [22].
Table 2 presents a brief conceptual comparison between these two models [23].
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Table 2. Strengths and limitations of predicting models.

Model Strengths Limitations Gaps in the Literature

ARIMA Enables the measurement of promis-
ing results in the forecasted values
of the variable (yt). It outperforms
the autoregressive and moving average
(ARMA) model. Considers autoregres-
sive (AR), integrated (I), and moving av-
erage (MA) terms to account for lags in
non-stationary time series.

ARIMA models will
only deal with non-
stationary time series
through differentiation.
Does not consider sea-
sonal factors in time
series.

Explain the future with
past knowledge and are
subject to inaccuracies
caused by events outside
the norm, which have
a strong impact on the
values (yt).

SARIMA Considers not only the previous period
for future forecasting but also a season-
ality term (s). Considers autoregressive
(AR), integrated (I), and moving average
(MA) terms with seasonality (P, D, Q). It
outperforms ARIMA when seasonality
is present.

Challenges
with irregular
seasonal components.

Instability of seasonal
measures of supply and
demand, as the con-
cept of seasonality as-
sumes that the seasonal-
ity term (s) is standard-
ized and represents a
specific time period.

2.3. Comparative of Machine Learning and Classical Econometric Forecasting Models

Several studies have thoroughly explored the conceptual and technical aspects of
weather forecasting models, such as ARIMA and SARIMA, highlighting their reliability
and robustness across various forecasting scenarios [24]. These models are beneficial for
time series analysis, as they can effectively model temporal dependencies and seasonality.
By capturing patterns in historical data, they provide accurate short- and medium-term
forecasts. Researchers have applied these models to various weather-related datasets, vali-
dating their performance in predicting temperature, precipitation, and other meteorological
variables [25]. In addition, these models are known for their interpretability, making them
accessible and widely used in academic research and practical forecasting applications [26].
Furthermore, they are a benchmark for comparing newer machine-learning techniques in
weather forecasting.

Many studies compared traditional and deep learning models. Some studies have
indicated the superiority of conventional statistical models over artificial intelligence (AI),
which states that traditional models have interpretable parameters and vast theoretical and
empirical literature and are usually suitable for smaller datasets with relatively simple rela-
tionships [24]. They do not require large volumes of data to generate effective predictions,
and finally, there is an ease of diagnosis and adjustments that facilitate model validation. In
contrast, others have demonstrated the better performance of AI-based forecasting models,
which can capture complex non-linear patterns and interactions between variables that
traditional models cannot identify [27]. These models are also suitable for working with
large volumes of data (big data), including structured and unstructured data, such as
images, text, or audio, which makes them ideal for modern applications in fields such
as marketing, finance, and demand forecasting [28]. Their high precision in predicting
different values also stands out [29].

Several studies have demonstrated that there are no significant performance differ-
ences between traditional statistical models, such as ARIMA and SARIMA, and AI-based
models in certain forecasting scenarios [30]. This indicates that despite the advancements
in machine learning techniques, traditional models continue to perform competitively,
particularly in structured data environments with well-defined temporal patterns [31]. Fur-
thermore, the choice between these approaches often depends on the specific characteristics
of the dataset and the complexity of the relationships between variables [31].

Section 3 delves deeper into the mathematical frameworks underpinning these models,
providing detailed explanations of the statistical tests and assumptions involved. It also
elaborates on how ARIMA and SARIMA models are constructed and applied to time
series data, focusing on their capacity to model seasonal and non-seasonal components.
The section compares these traditional methods with more recent AI-driven approaches,
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evaluating their effectiveness in various forecasting contexts and providing insights into
their advantages and limitations.

3. Materials and Methods

This section outlines the methodology employed for this research, detailing the statis-
tical tools and the dataset used. The structure used to implement the research methodology
is illustrated in Figure 1.

START

DATABASE
CONSOLIDATION

IDENTIFICATION OF
OUTLIERS

DO YOU
HAVE

OUTLIERS?
YESNO REMOVES OUTLIERS

APPLY BOOTSTRAP
METHOD WITH

JACKSTRAP

APPLY BOOTSTRAP FOR
CALCULATIONS THE
EFFICIENCY INDEX

FINISH

CALCULATION
BENCHMARKING

USING DATASET
ORIGINAL

TRANSFORMS INTO A
TIME SERIES

APPLY ACF AND PACF
TEST

APPLY ADF TEST

IS THE SERIES
SEASONAL?

IDENTIFY SEASONALITY

USE AUTO.ARIMA TO
DEFINE THE

PARAMETERS
ARIMA(P,D,Q)

NO

USE AUTO.ARIMA TO
DEFINE THE

PARAMETERS
SARIMA(P,D,Q)(P,D,Q)

CALCULATE TEST 
AIC AND BIC

CALCULATES ERRORS
(ME, RMSE, MAE, MPE,

MAPE AND MASE)

YES

DIAGNOSTIC
CHECKING

STEP 1

STEP 2 STEP 3

STEP 5

STEP 4

EFFICIENCY AND
FORECAST RESULTS

Figure 1. Structure for executing the research.

Figure 1 presents the methodology used during the research.
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The first step (Step 1) involves consolidating the database, which includes
pre-processing and structuring the data for subsequent analysis. The information is ob-
tained from two primary sources: electricity demand data, provided by the Energy Research
Company (EPE) [3], and GDP data, provided by the Institute of Applied Economic Re-
search (IPEA). The dataset covers the period from 2004 to 2023 with monthly granularity.
Section 4 describes the complete database consolidation process.

The second step (Step 2) aims to measure Brazil’s energy efficiency
between 2004 and 2023. Data envelopment analysis (DEA) is used, which is a non-parametric
methodology commonly applied to measure the relative efficiency of decision-making units
(DMUs) based on multiple inputs and outputs [32].

Thus, data envelopment analysis (DEA) compares the efficiency of DMUs using inputs
and outputs [33]. The steps and principles adopted in DEA are as follows. First, selecting
input and output variables is crucial to assessing efficiency. Typical inputs may include
resources such as energy consumed or capital invested, while outputs may be the value
of output or service generated. These indicators are selected according to their relevance
to the energy sector and economy. Next, the Efficiency Frontier is constructed, in which
the DEA model identifies the most efficient DMUs and constructs an “efficiency frontier”,
representing the benchmark for best practices [34]. DMUs operating on the frontier are
considered 100% efficient (score 1), while those below the frontier receive scores less than 1,
indicating inefficiency. Next, the Relative Efficiency is calculated, in which the efficiency
of each DMU is calculated by solving a series of linear programming models, which seek
to maximize the ratio between outputs and inputs. DMUs that reach the frontier are
considered efficient, and those that fall below are compared with efficient units to identify
room for improvement. Finally, there is identification of inefficiencies, which will occur after
calculating the efficiency scores: the model allows the identification of the specific causes
of inefficiency in each DMU [35]. Based on this, suggestions can be made for adjustments
in inputs or outputs, allowing DMUs to improve their performance.

To increase the robustness of the analysis and ensure that the results are not affected by
outliers, Jackknife [36] is used, which is a statistical technique that consists of recalculating
the efficiency by iteratively removing one DMU at a time, helping to identify outliers
that may disproportionately influence the results. After applying DEA, the bootstrap
method is used to improve the reliability of the results and estimate confidence intervals
for the efficiency scores. Bootstrapping is a resampling technique widely used to assess
the variability of estimators. In bootstrapping, a series of new samples (simulations) are
created from the original sample of DMUs with replacement. This means some DMUs may
appear more than once in a sample, while others may be excluded. This process is repeated
thousands of times (1000 or 10,000 times, for example), generating efficiency distributions
for each DMU.

By applying DEA to each bootstrap sample generated via resampling, DEA is reap-
plied to calculate the corresponding efficiency scores, resulting in a distribution of efficiency
scores for each DMU rather than a single value. Confidence interval construction is also
performed, which takes these efficiency score distributions and constructs confidence inter-
vals for the original scores, allowing the uncertainty associated with the efficiency estimates
to be quantified, providing a more accurate and robust assessment of the performance of
the DMUs. Confidence intervals indicate the extent to which the efficiency scores vary,
providing greater confidence in interpreting the results. Thus, applying bootstrapping
makes it possible to check the stability of the efficiency scores. DMUs with large bootstrap
score variations indicate low confidence in the original efficiency estimate, while smaller
variations suggest that the efficiency is robust. These details about DEA and the boot-
strap process help ensure the methodology is transparent and replicable, allowing other
researchers to reproduce the analysis and check the robustness of the results. The steps and
rationale behind applying these techniques are described in Section 5.

The third step (Step 3) applies the first two phases of the Box–Jenkins method to time
series modeling and energy demand forecasting. This involves identifying the parameters
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of an ARIMA (autoregressive integrated moving average) model using the autocorrelation
function (ACF) and partial autocorrelation function (PACF), along with stationarity tests
such as ADF, KPSS, and Phillips–Perron. The methodology is described in Section 6.

The fourth step (Step 4) involves checking the ARIMA modeling results, ensuring
that the identified parameters are adequate. If not, the parameter identification process is
repeated until the results are acceptable. This analysis includes the evaluation of the model
residuals, as described in Section 7.

Finally, the fifth step (Step 5) presents and discusses the results of the energy efficiency
indices and the chosen prediction model. The conclusions are presented in Section 8,
emphasizing the practical application of the results.

4. Database Consolidation

This section details Step 1 of the methodology shown in Figure 1.
The research database comprises 240 rows with two columns representing variables

(demand and GDP) for each month from 2004 to 2023.
For the efficiency analysis, consider the value of x1, which represents energy demand

as input, and y1, which means the gross domestic product as output.
Similarly, energy demand and gross domestic product are also considered in the

forecast analysis. To evaluate whether the variables are subject to seasonal behavior during
forecasts, the values would have to be every month, which is why monthly values were
chosen. The complete database is available on figshare [37].

Table 3 shows the statistical summaries of the variables in the study, including the
minimum, 1st quartile, median, mean, 3rd quartile, and maximum for demand and GDP.

Table 3. Statistical summary of electricity supply and demand and GDP. The considered time range
is between 2004 and 2023.

Demand (GWh) GDP (Millions of R$)

Min 26,508 142,861
1st Qu. 32,234 267,691
Median 37,866 459,337
mean 36,622 457,192

3rd Qu 40,269 582,831
Max 46,407 954,063

The R 4.3.3 software was used for the database structure, outlier removal, efficiency
calculation, and forecasting. In this way, R software offered several advantages for conduct-
ing simulations and data analysis, making it an ideal tool for complex research. First, R
has a wide range of specialized packages, such as deaR and forecast, which facilitate the
implementation of advanced methodologies, such as data envelopment analysis (DEA)
and ARIMA/SARIMA modeling, with high flexibility and accuracy. In addition, the ability
to perform bootstrap resampling with the boot package ensures the robustness of the
results, generating reliable confidence intervals. Another important advantage is the ease
of automation and reproducibility through scripts and automatic reports with R Mark-
down, which increases the transparency and credibility of the research. R also excels in
data visualization with packages such as ggplot2, allowing effective communication of
results. Finally, its computational efficiency, support for big data, and ability to integrate
with statistical methods and machine learning make R a powerful and versatile tool for
large-scale simulations.

5. Estimation of Energy Efficiency

This section explains the DEA methodology, the outlier removal procedures, and the
calculation of bootstrap confidence intervals for the energy efficiency index. Therefore, this
section presents the methods and procedures related to Step 2, as shown in Figure 1.
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5.1. Data Envelopment Analysis (DEA)

Data envelopment analysis (DEA) is a mathematical model based on econometrics
and operations research. The model originates from the productivity concepts introduced
by [38], where productivity is defined as the relationship between products and inputs
of a specific production process. Previous measures and metrics were overly specific
and impractical, especially when dealing with numerous variables. Building upon this
productivity concept, Ref. [39] proposed the relative efficiency model, aiming to optimally
utilize both outputs and inputs while considering the constant returns to scale of the
decision-making units (DMUi) through mathematical programming problems [40]. DMUi
refers to the units being compared, such as hospitals, schools, organizations, companies,
and countries, among others [41].

The DEA model is a non-parametric approach, which does not require specific knowl-
edge of the problem’s nature. This inherent flexibility makes it more applicable and robust
than parametric models like stochastic frontier analysis (SFA), simplifying its applica-
tion in various scenarios. This advantage is particularly evident in the business sector,
where non-parametric models outperform parametric ones. As a result, the DEA model
has been widely applied in the literature in different fields, including industrial [42],
energy [43], economic [44], mining, environmental, water industry [45], public policies [46],
and agribusiness [47].

Measuring energy productivity in underdeveloped regions can be challenging due to
various factors, such as limited data availability. This study, however, uses data published
by governmental institutions within Brazil to conduct the analysis.

5.2. Bootstrap Method for Outlier Removal

Outliers are data points that are considered abnormal within a dataset because they
significantly differ from the other observations. Several factors can cause this behavior.
The main factors identified as causing outliers in the data are (i) errors in the database that
occur during data collection and organization of the data frame, (ii) accurate and highly
atypical data, and (iii) actual and deficient data. Depending on the model’s sensitivity to
outliers, these factors can cause significant distortions and bias the results, making their
removal necessary [41].

The presence of outliers in the DEA model creates a problematic situation when
dealing with the frontier of a set of efficient production units, as deterministic measures and
values are sensitive to errors. Therefore, removing outliers is necessary to avoid biasing the
analysis and to produce more robust results for the model [32].

One approach is to use the Jack-knife leverage technique [36]. This technique assesses
the impact of removing each data point from the dataset. In this application, the effect of
the removed data on the efficiency values of other DMUi is observed in combination with
the bootstrap resampling technique to remove outliers.

The procedure is as follows:

i Calculate the efficiency scores of all DMUi by the classical model [39], generating a
set of efficiencies given by {θi | i = 1, . . . , n};

ii Randomly select a subset K with (K = 1, . . . , k) corresponding to 10% of the original
sample of DMUi, which results in a set of DMUK;

iii Calculate the efficiency scores of all selected DMUK {θK | K = 1, . . . , k} by bootstrap
resampling B times, where B takes values from (B = 1, . . . , b);

iv Assesses the impact using a statistical measure to analyze if there were significant
changes in the efficiency scores through the leverage of each selected DMUK in B,
storing the leverage information in lKS;

v Repeat Steps 2, 3, and 4 S times with (S = 1, . . . , s);
vi Calculate the local leverage lK from the sum of the leverages of lKS divided by nK,

which corresponds to approximately nK ≈ S×B
K ;
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vii Calculate the global leverage through the standard deviation of the efficiency measures
before and after removing the data; for more details on calculating leverage, please
refer to the provided reference [36].

Using leverage minimizes the probability of selecting outliers for random resampling.
This probability is determined using the Heaviside function, which is used in outlier
removal based on a step function that assumes binary values (0 or 1). This function is used
to identify and remove outliers that distort the efficiency analysis results. The main reason
for the effectiveness of the Heaviside pattern lies in its simplicity and ability to detect
extreme deviations in the behavior of the data more sensitively and directly compared to
other techniques [48]. Therefore, any DMU with a leverage value significantly greater than
the overall leverage will be eliminated [36].

Two methods were used to detect outliers in the data. The first method, the Kolmogorov–
Smirnov (K-S) test, identified 2.08% of the data as anomalous. The second method, the
Heaviside criterion, detected 5.42% outliers. Using the Heaviside standard was more
effective in this study because it was more sensitive to significant and extreme deviations
in the data, which is crucial for a robust energy efficiency analysis. It offers a simple and
effective approach to detect and remove outliers, thus contributing to the reliability and
accuracy of the DEA results. Therefore, the authors continued with the Heaviside standard
instead of the Kolmogorov–Smirnov test. We proceeded with this method and removed the
outliers from the original dataset, resulting in a consolidated data frame of 227 observations.
The statistical summary of the model input and output data without outliers can be found
in Table 4.

Table 4. Statistical summary of demand and GDP data without outliers between 2004 and 2023.

Demand (GWh) GDP (Millions of R$)

Min 27,657 156,954
1st Qu. 32,480 273,200
Median 37,867 458,517
mean 36,722 452,982

3rd Qu 40,078 573,219
Max 46,407 950,791

When comparing the values in Tables 3 and 4, notice a difference in the mean values
of demand and GDP. While the demand values are close to the original values (36.622 to
36.722), there is a more noticeable difference in gross domestic product (GDP) (457.192
to 452.982). To better understand the potential negative impact of these observations, the
efficiency measure for each month was calculated before and after the outlier removal
process. This information can be found in Figures 2 and 3.

Figure 2. Box plot for the efficiency index for the data with and without outliers.

Figure 2 depicts the shift in the median value, and Figure 3 illustrates the density
distribution of the data. When the database is cleaned, the values shift toward higher
values. The complete dataset had a median value of 0.888, while the values without outliers
have a median value close to 0.912, representing a difference of 0.024.

A Wilcoxon test was conducted to determine if this difference is statistically significant.
V = 25.878 and p-value < 2.2e−16, indicating that this difference is substantial and should
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be considered relevant. The data were then parameterized. This is because R tends to
produce errors with null and non-parameterized data.

Figure 3. Density of the efficiency index for the data with and without outliers.

5.3. Confidence Interval Construction with Bootstrap

Due to the absence of statistical inference tools for classical non-parametric models,
we can use bootstrap-based methods to compute DEA efficiency, including statistical
inferences, hypothesis tests, and confidence intervals.

This model is a stochastic DEA model. It introduces the bootstrap concept and, later, in-
troduces descriptive methods to identify influential data for non-parametric
calculations [35]. These methods allow the use of statistical inferences without compromis-
ing the non-parametric nature of the problem [49].

The authors [35] have applied bootstrapping to estimate the confidence intervals of the
efficiency measures given by the DEA. Bootstrap simulates a sample by using the original
estimator and making the simulation results replicate the original through a resampling
process, which is repeated W times (usually W = 2000). This process can be described in
four steps:

i For each observation (xi, yi), i = 1, . . . , n, calculate the corresponding DEA efficiency
score θ̂i using linear programming;

ii Draw a dataset from the original sample randomly using bootstrap, generating a
random sample of size P, where P is the same size as the original sample. For this
sample, obtain θ̂∗r , r = 1, . . . , p;

iii From this random sample θ̂∗r , construct {x∗r = [x∗1 , . . . , x∗p], x∗r = [x∗1 , . . . , x∗p], where for

θ̂i with orientation input x∗r =
(

θ̂i
θ̂∗r

)
xi and for θ̂i with orientation output y∗r =

(
θ̂∗r
θ̂i

)
yi

with r = 1, . . . , p;
iv Calculate the estimated bootstrap θ̂∗(r,w) by solving the linear problem with DEA

constraints using θ̂∗(r,w), which is given by Equation (1) [32].

θ̂∗(r,w) = min
{

θ̂ | ∑
p
r=1 λrx∗r ≤ θ̂x∗o , ∑

p
r=1 λry∗r ≥ y∗o , ∑

p
r=1 λr = 1, λr ≥ 0, ∀r

}
(1)

Here, x∗o is the virtual input, and y∗o is the virtual output. λr represents the weights.
Then, we repeated Steps 2, 3, and 4 W times to obtain the result for each observation
r = 1, . . . , p, resulting in a set of bootstrap estimates {θ̂∗r,w, w = 1, . . . , W}.

With the bootstrap number of repetitions W, we obtained the result with a 95%
confidence interval for each observation from the set of estimates [32].
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All of these values are calculated using a function provided by the FEAR package in R
with the function boot.sw98

After applying the bootstrap–DEA computational method, the adjusted values were
compared to analyze the data’s return to scale. The estimated result is θE = 1.010459, and
the critical value is Cα = 0.9350187. As a result, no significant differences are observed in
the technological frontiers (T), indicating a consistent scaling behavior.

This aligns with economic theory because the analysis examines Brazil at various times.
In theory, the output–input relationship’s return should remain constant since Brazil’s size
does not change over time, preventing cost variations due to size. As a result, a continual
return to the scale can be assumed.

Thus, the values given by the CRS model using the bootstrap computational method
with 2000 replications were used. A box plot graph is plotted in Figure 4 to visualize the
values with and without correction.

Figure 4. Box plot for the efficiency index for the data without and with correction.

Visually, from Figure 4, small changes in efficiency scores can be observed. Therefore, it
was decided to evaluate the results using the Wilcoxon test to verify whether the differences
in scores with and without correction are significant. The null hypothesis (H0) stated no
significant differences in the medians. The test returned a p-value < 2.2e−16; thus, H0 is
rejected.

The statistical summary of the data is presented in Table 5.

Table 5. Statistical summary of the data without and with correction with a 95% confidence interval.

Min. 1st Qu. Median Mean 3rd Qu. Max.

No correction 0.4703 0.5971 0.6813 0.6987 0.7823 1.0000
With correction 0.4672 0.5933 0.6770 0.6942 0.7773 0.9936

Max. 95% 0.4702 0.5970 0.6813 0.6986 0.7822 0.9999
Min. 95% 0.4593 0.5832 0.6655 0.6825 0.7641 0.9768

Table 5 shows that the efficiency scores without correction resulted in higher efficiency
values (0.6813 and 0.6770). Hence, the difference between the models without and with
correction is significant and should be considered.

6. Identification of Parameters (p,d,q)

This section explains the functioning of the ARIMA and SARIMA models and the
procedures used to carry out the initial stage of the Box–Jenkins methodology to identify the
parameters (p, d, q). This section refers to Step 3 of the methodology presented in Figure 1.
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6.1. Autoregressive Integrated Moving Average (ARIMA) Models and Seasonal (SARIMA)

A time series is determined by a variable (yt) with quantitative values over a period (t).
Therefore, a time series analysis aims to explain future behaviors based on the variable’s
past behaviors. It is a logical procedure based on historical facts, and it is essential to
understand how stochastic processes work because variables are subject to random vari-
ables, which can arise from points, events, or phenomena observed over time. Time series
forecasting involves various areas of knowledge (multidisciplinary), and its implementa-
tion is not complex, mainly because it only requires the variable under analysis with its
historical data [50]. For this purpose, there are autoregressive (AR), moving average (MA),
autoregressive moving average (ARMA), and autoregressive integrated moving average
(ARIMA) models, which will be described in detail in Section 6.1.

The autoregressive model is based on the concept that the values (yt) are explained
by the (m) previous values given by (yt−1, yt−2, yt−3, ..., yt−m). Thus, for an autoregressive
model of order (p) AR(p), it will be given by Equation (2) [22].

yt = α1yt−1 + α2yt−2 + ... + αpyt−p + et (2)

Here, µ is the mean of the variable (y), αt is the proportion given the period (t − 1),
and (et) represents the random error of values that are uncorrelated with the mean (µ) but
cause changes due to unknown and uncontrollable reasons in the values of (yt − µ), being
random disturbances of the period (t). Therefore, the values involved in the preceding
models consider their current and previous values, demonstrating that the AR(p) model is
explained by its values and independent of its regressors.

The moving average model considers the values of the error term (et) in terms of the
present and past as well as a constant (c) to explain (yt). Therefore, for a moving average
process of order q MA(q), it can be expressed by Equation (3) in a general way [22].

yt = c + β0et + β1et−1 + β2et−2 + ... + βqet−q (3)

Therefore, the moving average model will be a forecast based on the linear combination
of white noise. This is feasible because the AR and MA models assume they are based on a
series of linear systems with random error, a mean of zero, a constant standard deviation,
and no autocorrelation.

The autoregressive and moving average models, which result in the ARMA model, are
the autoregressive terms and the moving average term ARMA gives (p,q). For simplicity,
the ARMA(1,1) model is presented in Equation (4) [22].

yt = w + α1yt−1 + ... + αpyt−p + et + β0et + ... + βqet−q (4)

Here, w represents a constant term.
The AR, MA, and ARMA models described assume that the time series involved in

the analysis are (weakly) stationary, meaning a series with constant mean, variance, and
autocovariance, not varying over time, where the measurements given by the variable
(yt) will have variations with more or less constant amplitudes, and their values tend to
return to their mean. However, many time series are non-stationary and do not exhibit this
continuous behavior. One way to deal with these cases is by differencing (d) the time series
according to the order of differencing, usually with a value of (d) being 1 or 2 [50]. Thus,
a non-stationary time series of order (d = 1) must be divided once to become stationary.
Therefore, a time series ARIMA (1,2,1), differenced twice (d = 2), can be analyzed by the
ARMA (1,0,1) model, as already presented by Equation (4) of the ARMA model [22].

In cases with a seasonal behavior of the variable (yt), the seasonal autoregressive
integrated moving average model, also known as SARIMA, is used. The SARIMA model
can be represented by Equation (5).

yt = c +
p

∑
n=1

αnyt−n +
q

∑
n=1

βnet−n + et−1

P

∑
n=1

αnyt−sn +
Q

∑
n=1

βnet−sn + et (5)
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It consists of including seasonal autoregressive terms (P), seasonal differencing (D), a
seasonal moving average (Q), and the seasonal component (S).

6.2. Transforming Variables into Time Series

For data analysis on demand and GDP, the data are transformed into a time series
from 2004 to 2023 using the logarithm of the variables. These historical data series can be
viewed in Figures 5 and 6, respectively. Their respective data are summarized in Table 6.

Figure 5. Energy demand time series from 2004 to 2023.

Figure 6. GDP time series from 2004 to 2023.

Table 6. Statistical summary for the electric energy demand and GDP time series.

Min. 1st Qu. Median Mean 3rd Qu. Max.

Demand 10.19 10.38 10.54 10.50 10.60 10.75
GDP 11.87 12.50 13.04 12.92 13.28 13.77

Figures 5 and 6 do not visually demonstrate stationary behavior, which is a prerequisite
for using AR, MA, or ARIMA models. These models are based on dealing with data
that have a constant mean and variance over time. Therefore, the trend of the data in a
preliminary analysis tends to be non-stationary, and the volatility of the data suggests a
seasonal behavior, indicating that the SARIMA model may be appropriate for analyzing
data forecasts. However, these conclusions must undergo statistical testing to obtain reliable
results and projections corresponding to reality.
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The autocorrelation function is used to identify non-stationary time series and observe
the presence of unit roots and trends in the data. The autocorrelation function can be
visualized in Figures 7 and 8.

Figure 7. Autocorrelation function of energy demand, illustrating the correlation of the time series
with its own past values.

Figure 8. GDP autocorrelation function, illustrating the correlation of the GDP time series with its
own past values.

From the ACF plots, both the demand and GDP exhibit trends in the data and the
presence of unit roots, and there is no evidence of ergodicity in the models. In the ACF test,
if the lags decay very slowly, it indicates non-stationarity in the model’s data. The blue
dotted lines indicate the significance limits for the autocorrelation coefficients, showing
whether the autocorrelation values at different lags are significantly different from zero.

For a model to be considered stationary, it must exhibit constant mean, variance, and
autocorrelation, thus showing no changes over time. However, values may fluctuate above
and below but converge to the same mean. One of the stationarity tests is the augmented
Dickey–Fuller (ADF) test, where the null hypothesis (H0) indicates the presence of a unit
root, suggesting that the model is not stationary.

The ADF test on demand yielded a p-value of 0.2599, which suggests an acceptance of
H0, indicating that the market is not stationary. The ADF test in GDP returned a p-value of
0.7107, which suggests that the GDP time series is also not stationary.

6.3. Time Series Seasonality Test

To visualize the seasonal series, the series is decomposed to identify patterns through
trend components (analysis of the series plot), seasonality (analysis of the seasonal index
plot), cycles (analysis of the seasonal index plot and irregularities), and residuals (analysis of
the irregularities plot). This advances the study of time series since it isolates a specific term
determined by the series. The decomposition of the series can be seen in Figures 9 and 10.

The energy demand and GDP data show a growth trend over time, requiring one
difference to achieve stationarity. A seasonal variation behavior caused by external factors
is observed concerning the seasonal index. To understand whether this seasonal variation
is significant and should be considered, the range of variation of the seasonal component
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was examined. In both cases, it is important to indicate that the seasonal component is
present in the series and is substantial enough to be considered in the forecast.

2005 2010 2015 2020 2025

Time

0.02

0.00

-0.02

0.05

0.00

-0.05

10.7

10.5

10.3

10.6

10.4

10.2
D
em

an
d

Figure 9. Decomposition of the energy demand time series, revealing its trend, seasonal, and
residuals components.
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Figure 10. Decomposition of the GDP time series, highlighting its trend, seasonal, and
residuals components.

There are no irregular cycles with systematic alternation or long low and high values
periods. Instead, there is regularity in the data distribution. Thus, to confirm the analyses
made using the decomposition graphs, autocorrelation and partial autocorrelation graphs
of the series were created, as shown in Figures 11 and 12.

The ACF graph also shows demand and GDP trends over time, and the PACF graph
demonstrates the absence of data seasonality, as most of the partial autocorrelation values
vary within the range represented by the blue dashed line. However, as the series exhibits
a trend and non-stationarity, logarithmized and differenced series were used to re-examine
the ACF and PACF functions. The series decomposition indicated a possible seasonality,
which can be visualized in Figures 13 and 14.
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Figure 11. Energy demand first autocorrelation (FAC) and partial autocorrelation (FACP), showing
immediate past correlations.

Figure 12. GDP first autocorrelation (FAC) and partial autocorrelation (FACP), showing immediate
past correlations.

Thus, by removing the data trends through the first differencing, it is possible to
identify a seasonal behavior given by the ACF and PACF functions, as there are several
periods where the autocorrelation values exceed the intervals given by the dashed blue line.
Significant intensity extrapolations are observed every 12 lags in demand and GDP with
moderate intensity extrapolations every four lags in demand and every six lags in GDP.

Therefore, the SARIMA model is more suitable for applying forecasts than the ARIMA
model because it considers the seasonal factors present in these series.
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Figure 13. Energy demand first autocorrelation (FAC) and partial autocorrelation (FACP) with one
difference, illustrating correlations with the first lag after differencing.

Figure 14. GDP first autocorrelation (FAC) and partial autocorrelation (FACP) with one difference,
illustrating correlations with the first lag after differencing.

One option is to use the auto.arima function to determine the best model by adjusting
the parameters and evaluating the model’s performance with the AICc indices. This
dynamic process involves several dependencies and can help select parameters.

6.4. Parameters Test with Auto Arima

The Box–Jenkins methodology will define the parameters (p, d, q). This methodology
involves fitting autoregressive integrated moving average models, ARIMA(p, d, q), to a
dataset. For model construction, an algorithm is structured in which the choice of model
structure is based on the data itself.

The R function auto.arima performs most of this process by testing different parame-
ter combinations (p, 1, q) and comparing AICc metrics to determine the best model. The
auto.arima algorithm is an automated technique for identifying the most suitable ARIMA
model for a time series. It consists of three key components. The autoregressive (AR)
component uses past values of the time series to predict future values, the integrated com-
ponent (I) represents the number of differences needed to make the time series stationary
by removing trends, and the moving average (MA) component uses forecast errors of past
values to correct future forecasts.

The auto.arima model offers several advantages, including automation, which reduces
the need for manual intervention in selecting model parameters and increases efficiency,
saving time and effort by automating the model search process. Additionally, the model
provides flexibility to handle complex time series data, including trends and seasonality.
However, the auto.arima algorithm has some limitations, such as the default presence of a
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stepwise approach to improve the model’s potential range, so the stepwise function can
be disabled to explore a more expansive model space. In addition, there is the option of
deactivating the approximation function to improve model accuracy, although this may
slow down the adjustment process.

The models defined as the best parameters by auto.arima for demand were SARIMA
(1,1,1) (0,1,2), and for the adjusted model, it was SARIMA (1,1,1) (1,1,1). For GDP, the
parameters were SARIMA (1,1,3) (0,1,2), and for the adjusted model, it was SARIMA (0,1,2)
(2,1,1). The AIC, AICc and BIC test values, as well as the error parameters, can be seen in
Tables 7 and 8.

Table 7. AIC, AICc, and BIC values for different parameters used in auto.arima.

Variable SARIMA AIC AICc BIC

Demand (1,1,1) (0,1,2) −1164.68 −1164.41 −1147.56
(1,1,1) (1,1,1) −1164.68 −1164.41 −1147.56

GDP (1,1,3) (0,1,2) −1079.2 −1078.69 −1055.23
(0,1,2) (2,1,1) −1078.71 −1078.33 −1058.16

Table 8. RMSE, MAE, MAPE, and MASE values for different parameters used in auto.arima.

Variable SARIMA RMSE MAE MAPE MASE ACF1

Demand (1,1,1) (0,1,2) 0.0174 0.0132 0.1253 0.3928 0.0041
(1,1,1) (1,1,1) 0.0173 0.0132 0.1250 0.3917 0.0062

GDP (1,1,3) (0,1,2) 0.0206 0.0154 0.1192 0.1686 −0.0011
(0,1,2) (2,1,1) 0.0208 0.0157 0.1209 0.1710 −0.0076

Table 7 presents the values for the AIC, AICc, and BIC tests provided by the auto.arima
models with the lowest values describing the best model. However, the default and adjusted
models for energy demand showed the same values, and for the GDP models, the first had
a lower BIC value while the adjusted model had a lower AIC. Following the principle of
parsimony, the simpler model was chosen, thus proceeding with the unadjusted model.

This is confirmed when observing the values given by RMSE, MAE, MAPE, and
MASE, which are measures of error evaluation. The closer the value is to zero, the better
the model. Therefore, the SARIMA(1, 1, 1)(0, 1, 2) performed better for demand than
SARIMA(1, 1, 3)(0, 1, 2), and both variables performed better with the adjusted model.

Adjusting the parameters to apply the ARIMA model shows a drop in yield. The
RMSE, MAE, MAPE, and MASE values are also presented in Table 9.

Table 9. ME, RMSE, MAE, MAPE, and MASE values for different parameters used in ARIMA.

Variable ARIMA RMSE MAE MAPE MASE ACF1

Demand (1,1,1) 0.0231 0.0184 0.1749 0.5478 −0.0404
GDP (1,1,3) 0.0359 0.0287 0.2235 0.3136 −0.1028

(0,1,2) 0.0372 0.0302 0.2346 0.3292 −0.1340

Table 9 contains the parameters of the ARIMA model and the adjusted models for GDP.
Comparing the SARIMA (Table 8) model with the ARIMA (Table 9) model shows

that the SARIMA models perform better. Therefore, we will analyze the residuals of the
SARIMA model to determine if they exhibit characteristics of white noise, which is essential
for applying the forecasts.

7. Diagnostic Checking

This section presents the statistical tests applied to analyze the residuals. This section
refers to Step 4 of the methodology, which can be seen in Figure 1.

The Ljung–Box test was applied to the models to diagnose the parameters used. The
results presented show that the models do not fail. The values of the x-squared test show
no autocorrelation in the residuals up to lag 1. The values of the p-value indicate that the
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null hypothesis cannot be rejected and that there is no autocorrelation in the residuals,
showing that the residuals behave like white noise (Table 10).

Table 10. Ljung–Box test.

SARIMA X-Squared df pvalue

(1,1,1) (0,1,2) 0.0040 1 0.9494
(1,1,3) (0,1,2) 0.0003 1 0.9869

Observing the waste graph in Figures 15 and 16, it is clear that waste presents ho-
moscedasticity over time except for 2020 (COVID-19).
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Figure 15. Analysis of residuals from the SARIMA (1,1,1) (0,1,2) model for the energy demand time
series, assessing the differences between observed and predicted values.
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Figure 16. Analysis of the residuals from the SARIMA(1,1,3) (0,1,2) model applied to the GDP time
series, evaluating the differences between observed and predicted values.

Blue lines indicate the significance limits for autocorrelation coefficients, while the red
line approximates a normally distributed curve.

To confirm the normality of the data, the normal Q-Q plot of the residuals was plotted,
as shown in Figure 17a,b.
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Figure 17. Normal Q-Q plots of the residuals from the SARIMA models, assessing the normality of
the residuals by comparing their quantiles against a theoretical normal distribution. (a) Normal Q-Q
plot of the residuals from the SARIMA(1,1,1) (0,1,2) model for energy demand. (b) Normal Q-Q plot
of the residuals from the SARIMA(1,1,3) (0,1,2) model for GDP.

Therefore, we decided to use the parameters based on the first test (Table 10) and
the observations in Figures 15–17. Therefore, it is accepted that the residuals behave like
white noise.

8. Results and Discussion

This section presents an analysis and comparison of the results obtained in this study
to highlight the innovative contributions of the research. One of the main aspects that was
compared was the performance of ARIMA/SARIMA models applied to forecasting energy
demand in Brazil. Previous studies, such as [27,51], demonstrated the effectiveness of these
models in time series scenarios. However, this study differentiated itself by using a combi-
nation of advanced forecasting techniques, combining classical modeling with bootstrap
resampling methods to estimate confidence intervals, increasing the results’ robustness.

In addition, using the Heaviside pattern for detecting and removing outliers proved
to be more effective than traditional methods, such as the Kolmogorov–Smirnov test, as
reported in previous research. The Heaviside pattern, when implemented in the context
of data envelopment analysis (DEA), showed greater sensitivity to identifying extreme
deviations, resulting in a more accurate assessment of the energy efficiency of DMUs
(decision-making units). Compared to other studies, such as [25], which used more tra-
ditional outlier detection approaches, the innovative application of this technique in this
study strengthens the conclusions about energy efficiency in Brazil.

Another innovative point refers to the use of the Jackknife leverage technique, which,
by iteratively removing DMUs and recalculating efficiency scores, provided a robust and
detailed analysis, minimizing the influence of outliers on the final assessment. This method
has been underused in the existing literature, making its application here an important
methodological contribution.

When comparing the results of this study with existing research, it is clear that despite
the widespread use of ARIMA and SARIMA models in energy time series forecasts, the
combination of these models with bootstrap reanalysis techniques and the focus on more
sensitive outlier detection improve the quality and accuracy of the forecasts. In addition,
incorporating more robust methods, such as Jackknife leverage and the Heaviside pattern,
represents an innovation in relation to previous studies, which typically focus on simpler
statistical methods.

This section is Step 5 of the methodology visualized in Figure 1, and it presents
the consolidation of the results found in Steps 2, 3, and 4. In summary, this research
advances existing knowledge by efficiently integrating classical and innovative techniques,
standing out for the robust application of methodologies that improve the analysis of
energy efficiency and demand predictability in the Brazilian energy sector.
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8.1. Energy Efficiency Analysis

The efficiency scores for the dataset are shown in Table A2 (Appendix A). Blank spaces
indicate outliers for the month.

The DMU with the highest efficiency score was in August 2004, while the lowest
efficiency score was observed in April 2006. On average, Brazil can reduce energy expendi-
tures by 30.58% given the same GDP value, considering the productive frontier of 2004 and
2023. The mean value of 0.6942 for the efficiency index is relatively low, indicating that in
most months, Brazil operates well below what can be considered efficient.

The DEA highlights the necessity for substantial changes to minimize energy usage.
It also suggests that such reductions are achievable, as there were times when energy
efficiency values were nearing 1.

The trend of efficiency indices from 2004 to 2023 is presented in Figure 18.

1.0

0.8

0.6

0.4

Figure 18. Efficiency index from 2004 to 2023 calculated using data envelopment analysis (DEA),
reflecting the relative performance and productivity of energy demand during this period.

Despite Brazil presenting an inefficient index on average, Figure 18 shows a decline
initially followed by a recovery over time, indicating that with technological advancements,
operations are becoming more efficient. There is, however, a significant variation from
month to month, demonstrating that there are periods where operations become efficient
and periods where they do not [52].

8.2. SARIMA Forecasting

With the (p, d, q) parameters defined, SARIMA forecasts were made. The models were
forecasted for 72 months with December 2023 as the reference month.

The results with 95% confidence intervals from the SARIMA(1,1,1) (0,1,2) model
for demand and SARIMA(1,1,3) (0,1,2) model for GDP are presented, respectively, in
Tables A3 and A4 (Appendix A).

The times series data have been plotted in Figures 19 and 20 to improve clarity. In
the plots, the blue region indicates the forecast made by SARIMA with the darker line
representing the forecast and the surrounding area representing the model confidence
interval.
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Figure 19. Forecasting energy demand with the SARIMA(1,1,1) (0,1,2) model, extending predictions
through 2030 based on historical data and identified seasonal patterns.
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Figure 20. SARIMA (0,1,2) (2,1,1) forecasting for GDP projected through 2030, providing estimates
based on historical data and seasonal patterns.

The forecast data indicate a consistent upward trend for the next two years. Antic-
ipated annual demand growth is 2.1% from 2023 to 2030. These increases are below the
average the International Energy Agency (IEA) gives, which predicts an average annual
growth of 2.5% through 2026 [53].

The rise in energy consumption is thought to be caused by increased economic activity
and residential energy use due to the high temperatures Brazil has experienced in recent
years. SARIMA predicts that this increase will be more gradual compared to the energy
matrix in 2023.

According to projections, GDP is on an upward trend. In 2024, it should close at close
to 11.7 trillion and could reach 19.5 trillion in 2030.

8.3. Implications

In recent years, Brazil has been seeking alternatives to mitigate the impacts caused by
the increase in greenhouse gas (GHG) emissions. The country aims to address the effects of
climate change by proposing public policies until 2050. These policies are fundamental in
developing strategies to mitigate changes and reduce energy use. Brazil also focuses on
making the energy sector more efficient by expanding renewable sources such as wind,
solar, and biomass energy [54].

Some policy proposals are being considered for 2050 to reduce carbon emissions and make
the Brazilian energy transition more efficient [55]. These proposals include (i) implementing
a flexible energy policy to support decarbonization, better use of energy resources, and align-
ment with climate targets (NDC); (ii) encouraging technological neutrality through market
opening, promoting greater competitiveness, and providing incentives for combining different
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technologies; (iii) exploring Brazil’s advantages in oil and gas, biofuels, and renewables to
facilitate the energy transition and utilize new decarbonized energy sources; (iv) ensuring an
inclusive and economically viable energy transition without imposing higher costs on society;
(v) improving legal and regulatory frameworks to promote emission reduction technologies,
advanced biofuels, and hydrogen; and (vi) studying the climate resilience of energy solutions,
such as hydroelectric, wind, solar, and biofuels [56]. The country has implemented key policies
in the energy sector, including the Ten-Year Energy Expansion Plan 2030 and Law 13,576/2017
National Policy for Biofuels (RenovaBio). These policies aim to improve the energy sector’s
efficiency and sustainability [57].

Brazil has implemented studies and policies and developed a diverse renewable energy
matrix. In 2022, 48% of the energy used in the country comes from renewable sources, which is
higher than the global average of 14% [57]. However, compared to other countries, Germany
and Great Britain are pursuing more ambitious goals for the sustainability of the energy sector.
They seek to reduce CO2 emissions through carbon pricing in this sector [58]. Although, in
practical terms, OECD countries have only 11% of the energy matrix from renewable sources,
Brazil has a competitive advantage for sustainable energy transition [57], and it still has room
for improvement in terms of efficiency.

The procedure adopted, which involves DEA combined with computational methods like
bootstrap, has proved to be effective in measuring energy efficiency and assessing the frontiers
of the country’s productive opportunities. Based on energy demand and GDP variables, the
conclusions of its effectiveness show that Brazil has become increasingly energy efficient over
time due to its technological advances. However, there is still significant room for improve-
ment to achieve actual efficiency since the potential reduction of the profit margin in energy
consumption costs is approximately 30.58%. As shown in Section 8.1, there are periods of highs
and lows throughout the months under consideration, suggesting that seasonal factors impact
energy efficiency.

Although Brazil has improved its efficiency over the years, there has been considerable
variation from month to month, highlighting the need for further improvements. There is
still significant potential for improvement by introducing new technologies that can optimize
production costs or maintain productivity while reducing energy costs. One potential solution
is to invest in sustainable energy technologies to increase the amount of renewable energy in
the country’s energy matrix. By doing so, Brazil can increase its efficiency and competitiveness
and reduce electricity costs for households and industries. This highlights the importance of the
2030 agenda targets for the industrial sector, particularly SDG 7, which aims to ensure access to
reliable, sustainable, renewable, and affordable energy.

9. Conclusions

This study used data envelopment analysis (DEA) to evaluate Brazilian energy effi-
ciency and applied SARIMA models to forecast trend demand and GDP variables, using
monthly data from 2004 to 2023 and computer simulations using R software.

The study accomplished its objectives. (i) It utilized non-parametric models from the
bootstrap-DEA computational methods to analyze the country’s energy resources. The study
revealed inefficiencies (30.58%) in the energy matrix over a significant period, indicating a
substantial opportunity for improvement to enhance the country’s efficiency. (ii) SARIMA out-
performed the ARIMA model in forecasting demand and GDP series, which was primarily due
to the seasonal behavior of the series. (iii) The study provided a comprehensive understanding
of electricity demand by utilizing SARIMA models to predict the future behavior of the energy
matrix. (iv) The study proposed a methodology for evaluating Brazilian energy efficiency, which
can aid in developing public policies and initiatives to ensure the country’s alignment with
SDG7, thus increasing awareness of energy strategies.

A suggestion for further investigation would be to include more variables such as climate,
energy imports and exports, energy prices, and the effects of CO2 pollution resulting from
electricity generation in the country. According to the Electricity 2024 Analysis and Forecast for
2026 by the International Energy Agency (IEA) [53], energy production significantly contributes



Resources 2024, 13, 150 25 of 29

to CO2 emissions worldwide. Additionally, incorporating other variables correlated with energy
consumption and GDP in the energy sector could enhance the analysis, providing more robust
results for efficiency evaluation in future scenarios using forecasting. Furthermore, the research
could benefit from testing a wider range of seasonal models to assess likely trends in the future.
An approach that could also be applied would be cointegration to find a linear combination
between two variables I(d), which leads to a variable of lower order of integration, as well as
integrating machine learning models into smart grids for the better management of energy
resources in energy generation, distribution, and supply [59].
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Appendix A

Table A1. Actions for the SDG7 targets.

SDG Target Description Actions Taken by Brazil

7.1: Universal access to
affordable, reliable, and
modern energy services

Ensure everyone has
access to clean and
sustainable energy.

• National program for universal access to electricity (Light for All): expands
access to electricity to remote and low-income areas

• Social tariff programs: provide subsidies for low-income households

7.2: Increase the share of
renewable energy in the
global energy mix

Promote clean energy
sources.

• Dominant hydropower: Brazil uses hydropower as its main source of
electricity generation (around 60%)

• Biofuels program: encourages the production and use of biofuels, such as
sugarcane ethanol, reducing dependence on fossil fuels

• Investment in wind and solar energy: government incentives and auctions
promote the development of wind and solar farms

7.3: Double the global rate of
improvement in energy
efficiency

Reduce energy
consumption without
compromising economic
activity.

• Brazilian labeling program (PBE): labeling program that promotes
energy-efficient appliances

• National plan for energy efficiency (PNEF): sets targets and strategies for
various sectors to improve energy efficiency

• Industrial energy efficiency programs: offer incentives and technical assistance
to industries for adopting energy-saving practices

7.4: Enhance international
cooperation for clean energy
research and technology

Collaborate with other
countries on clean energy
development.

• Participation in international initiatives: Brazil actively participates in forums
like the International Renewable Energy Agency (IRENA) and Mission
Innovation.

• Bilateral cooperation: engages in joint research and development projects with
other countries focusing on clean energy technologies

7.5: Expand infrastructure for
sustainable energy services
in developing countries

Assist developing nations
in accessing clean energy
solutions.

• South-South cooperation: Brazil shares its expertise and technology in
renewable energy with other developing countries

• Technology transfer initiatives: provides technical assistance and training
programs for capacity building in clean energy technologies

Table A2. Energy efficiency scores.

Date 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013

January - 0.697 0.728 0.573 0.553 0.733 0.583 0.529 0.573 0.556
February - 0.837 0.594 0.581 0.549 0.734 0.548 0.556 0.543 0.547
Marchch - 0.727 0.579 0.535 0.546 0.623 0.525 0.534 0.512 0.574

April 0.735 0.591 0.556 0.467 0.582 0.608 0.520 0.552 0.519 0.583
May - 0.771 0.794 0.560 0.571 0.766 0.584 0.614 0.608 0.598
June - 0.840 0.769 0.636 0.658 0.830 0.605 0.650 0.621 0.640
July - 0.865 0.805 0.691 0.656 0.777 0.657 0.637 0.689 0.663

August 0.994 0.765 0.674 0.611 0.555 0.664 0.599 0.590 0.624 0.607
September 0.744 0.618 0.628 0.516 0.548 0.619 0.563 0.530 0.554 0.589
October 0.703 0.695 0.656 0.544 0.539 0.613 0.592 0.572 0.597 0.593

November 0.798 0.700 0.628 0.504 0.531 0.606 0.625 0.613 0.560 0.570
December 0.757 0.680 0.639 0.532 0.674 0.590 0.570 0.596 0.599 0.597

Date 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023

January 0.543 0.549 0.677 0.684 0.693 0.654 0.718 0.688 0.795 0.889
February 0.489 0.533 0.662 0.692 0.698 0.660 0.725 0.786 0.868 0.908

March 0.552 0.629 0.666 0.655 0.652 0.676 0.725 0.760 0.831 0.890
April 0.588 0.614 0.616 0.679 0.669 0.764 0.858 0.778 0.878 0.899
May 0.617 0.677 0.701 0.787 0.720 0.741 0.963 0.872 0.947 0.976
June 0.661 0.737 0.805 0.802 0.836 0.848 - 0.897 - -
July 0.693 0.795 0.819 0.853 0.820 0.901 0.940 0.951 - -

August 0.649 0.711 0.793 0.816 0.786 0.863 0.839 0.903 0.975 -
September 0.631 0.718 0.712 0.706 0.747 0.821 0.790 0.852 0.948 0.912
October 0.602 0.677 0.745 0.720 0.728 0.762 0.704 0.831 0.986 0.887

November 0.564 0.672 0.739 0.719 0.730 0.719 0.775 0.889 0.971 0.873
December 0.623 0.713 0.776 0.764 0.770 0.782 0.766 0.849 0.951 -
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Table A3. Forecast the demand energy (MWh).

Month 2024 2025 2026 2027 2028 2029 2030

January 45,223.43 46,442.76 47,464.77 48,527.26 49,613.77 50,724.61 51,860.32
February 44,885.43 46,019.91 47,037.97 48,090.97 49,167.71 50,268.56 51,394.06

March 46,702.57 47,694.36 48,753.33 49,844.79 50,960.80 52,101.80 53,268.34
April 45,577.83 46,511.62 47,546.96 48,611.44 49,699.84 50,812.61 51,950.29
May 44,254.19 45,233.10 46,241.76 47,277.05 48,335.57 49,417.79 50,524.24
June 43,446.27 44,366.31 45,356.86 46,372.36 47,410.62 48,472.13 49,557.41
July 43,354.12 44,422.76 45,415.42 46,432.24 47,471.84 48,534.72 49,621.40

August 44,459.96 45,466.72 46,483.31 47,524.05 48,588.10 49,675.97 50,788.20
September 45,265.66 46,200.20 47,233.62 48,291.16 49,372.38 50,477.82 51,608.00

October 46,496.98 47,352.26 48,411.76 49,495.68 50,603.87 51,736.88 52,895.26
November 46,648.16 47,442.90 48,504.64 49,590.64 50,700.96 51,836.14 52,996.74
December 46,200.65 47,209.60 48,266.27 49,346.94 50,451.80 51,581.41 52,736.30

Table A4. Forecast the GDP (thousand of R$).

Month 2024 2025 2026 2027 2028 2029 2030

January 894,130.7 976,779.9 1,065,062.3 1,160,704.3 1,264,826.2 1,378,243.9 1,501,813.5
February 898,594.8 975,965.6 1,063,101.4 1,158,260.6 1,262,037.6 1,375,153.7 1,498,425.1

March 972,345.1 1,045,097.5 1,139,144.1 1,241,412.9 1,352,764.2 1,474,063.1 1,606,221.8
April 949,898.1 1,024,401.4 1,115,918.2 1,215,828.3 1,324,772.7 1,443,515.7 1,572,916.8
May 956,952.5 1,035,981.0 1,129,154.4 1,230,504.7 1,340,868.8 1,461,097.3 1,592,092.1
June 966,061.6 1,050,497.1 1,144,394.5 1,246,874.4 1,358,608.9 1,480,388.1 1,613,096.0
July 991,411.8 1,080,793.6 1,177,950.5 1,283,661.4 1,398,785.3 1,524,203.6 1,660,854.9

August 993,631.4 1,079,827.0 1,176,389.2 1,281,751.8 1,396,619.0 1,521,808.2 1,658,230.4
September 972,186.6 1,057,416.6 1,152,433.2 1,255,838.2 1,368,460.2 1,491,156.9 1,624,844.3

October 1,016,733.6 1,106,198.2 1,205,156.1 1,313,110.6 1,430,794.5 1,559,049.6 1,698,811.3
November 1,024,990.2 1,115,216.2 1,215,391.6 1,324,431.4 1,443,198.9 1,572,594.3 1,713,581.9
December 1,038,563.0 1,132,211.8 1,233,529.5 1,344,038.9 1,464,500.1 1,595,778.8 1,738,834.1
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