Technogenic Reservoirs Resources of Mine Methane When Implementing the Circular Waste Management Concept
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Silvia, F.; Talia, V.; Di Matteo, M. Coal mining and policy responses: Are externalities appropriately addressed? A meta-analysis. Environ. Sci. Policy 2021, 126, 39–47. [Google Scholar] [CrossRef]
- Shukla, P.R.; Skea, J.; Slade, R.; Al Khourdajie, A.; van Diemen, R.; McCollum, D.; Pathak, M.; Some, S.; Vyas, P.; Fradera, R.; et al. IPCC—2022: Climate Change 2022: Mitigation of Climate Change. In Contribution of Working Group III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2022; 2913p. [Google Scholar] [CrossRef]
- Saunois, M.; Jackson, R.B.; Bousquet, P.; Poulter, B.; Canadell, J.G. The growing role of methane in anthropogenic climate change. Environ. Res. Lett. 2016, 11, 120207. [Google Scholar] [CrossRef]
- Kopylov, A.S.; Dzhioeva, A.K.; Kondratyev, Y.I. An integrated approach to the development of the raw material base of the mining region with the use of resource-reproducing technologies. Sustain. Dev. Mt. Territ. 2022, 14, 228–239. (In Russian) [Google Scholar] [CrossRef]
- Rybak, J.; Adigamov, A.; Kongar-Syuryun, C.; Khayrutdinov, M.; Tyulyaeva, Y. Renewable-resource technologies in mining and metallurgical enterprises providing environmental safety. Minerals 2021, 11, 1145. [Google Scholar] [CrossRef]
- Kongar-Syuryun, C.B.; Aleksakhin, A.V.; Eliseeva, E.N.; Zhaglovskaya, A.V.; Klyuev, R.V.; Petrusevich, D.A. Modern Technologies Providing a Full Cycle of Geo-Resources Development. Resources 2023, 12, 50. [Google Scholar] [CrossRef]
- Malyukova, L.S.; Martyushev, N.V.; Tynchenko, V.V.; Kondratiev, V.V.; Bukhtoyarov, V.V.; Konyukhov, V.Y.; Bashmur, K.A.; Panfilova, T.A. Circular Mining Wastes Management for Sustainable Production of Camellia synthesis (L.) O. Kuntze. Sustainability 2023, 15, 11671. [Google Scholar] [CrossRef]
- Baumann, F.; Raga, S.R.; Lira-Cantú, M. Monitoring the stability and degradation mechanisms of perovskite solar cells by in situ and operando characterization. APL Energy 2023, 1, 011501. [Google Scholar] [CrossRef]
- Gómez-Sanabria, A.; Kiesewetter, G.; Klimont, Z.; Schoepp, W.; Haberl, H. Potential for future reductions of global GHG and air pollutants from circular waste management systems. Nat. Commun. 2022, 13, 106. [Google Scholar] [CrossRef] [PubMed]
- Balovtsev, S.V. Comparative assessment of aerological risks at operating coal mines. MIAB. Min. Inf. Anal. Bull. 2021, 2, 5–17. (In Russian) [Google Scholar] [CrossRef]
- Zhanbayev, R.A.; Yerkin, A.Y.; Shutaleva, A.V.; Irfan, M.; Gabelashvili, K.; Temirbaeva, G.R.; Chazova, I.Y.; Abdykadyrkyzy, R. State asset management paradigm in the quasi-public sector and environmental sustainability: Insights from the Republic of Kazakhstan. Front. Environ. Sci. 2022, 10, 1037023. [Google Scholar] [CrossRef]
- Godio, A.; Chiampo, F. Geophysical Monitoring of Leachate Injection in Pretreated Waste Landfill. Appl. Sci. 2023, 13, 5661. [Google Scholar] [CrossRef]
- Balovtsev, S.V. Higher rank aerological risks in coal mines. Min. Sci. Technol. 2022, 7, 310–319. [Google Scholar] [CrossRef]
- Zhang, K.; Liu, H.; Ma, M.; Xu, H.; Fang, H. Multiscale Fractal Characterization of Pore–Fracture Structure of Tectonically Deformed Coal Compared to Primary Undeformed Coal: Implications for CO2 Geological Sequestration in Coal Seams. Processes 2023, 11, 2934. [Google Scholar] [CrossRef]
- Brigida, V.S.; Golik, V.I.; Dmitrak, Y.V.; Gabaraev, O.Z. The impact of situational geomechanical conditions influence to improving of the drainage rock-mass caved. Proc. Tula States Univ.-Sci. Earth 2019, 2, 279–288, WOS: 000546576800026. Available online: https://cyberleninka.ru/article/n/uchet-vliyaniya-situatsionnyh-geomehanicheskih-usloviy-dlya-sovershenstvovaniya-degazatsii-podrabatyvaemogo-massiva-gornyh-porod (accessed on 28 December 2023). (In Russian).
- Efremenkov, E.A.; Martyushev, N.V.; Skeeba, V.Y.; Grechneva, M.V.; Olisov, A.V.; Ens, A.D. Research on the Possibility of Lowering the Manufacturing Accuracy of Cycloid Transmission Wheels with Intermediate Rolling Elements and a Free Cage. Appl. Sci. 2022, 12, 5. [Google Scholar] [CrossRef]
- Klyuev, R.V.; Morgoev, I.D.; Morgoeva, A.D.; Gavrina, O.A.; Martyushev, N.V.; Efremenkov, E.A.; Mengxu, Q. Methods of Forecasting Electric Energy Consumption: A Literature Review. Energies 2022, 15, 8919. [Google Scholar] [CrossRef]
- Golik, V.I. To the Problem of Environmental Protection of the Russian Donbass. Mon. J. Res. Prod. 2022, 32, 372022. (In Russian) [Google Scholar] [CrossRef]
- Tian, X.; Xie, J.; Xu, M.; Wang, Y.; Liu, Y. An infinite life cycle assessment model to re-evaluate resource efficiency and environmental impacts of circular economy systems. Waste Manag. 2022, 145, 72–82. [Google Scholar] [CrossRef] [PubMed]
- Valiev, N.G.; Golik, V.I.; Propp, V.D.; Bolgova, A.I.; Ovsyannikov, M.S. Regularities of environmental protection process management. Min. Informational Anal. Bull. 2022, 11-1, 40–50. [Google Scholar] [CrossRef]
- Yan, J.; Xu, M. Energy and circular economy in sustainability transitions. Resour. Conserv. Recycl. 2021, 169, 105471. [Google Scholar] [CrossRef]
- Pomili, L.; Fabrizi, F. Automotive recycling: A circular economy centre. Environ. Eng. Manag. J. 2020, 19, 1747–1753. [Google Scholar]
- Geissdoerfer, M.; Savaget, P.; Bocken, N.M.; Hultink, E.J. The Circular Economy—A new sustainability paradigm? J. Clean. Prod. 2017, 143, 757–768. [Google Scholar] [CrossRef]
- Kalmykova, Y.; Sadagopan, M.; Rosado, L. Circular economy—From review of theories and practices to development of implementation tools. Resour. Conserv. Recycl. 2018, 135, 190–201. [Google Scholar] [CrossRef]
- Jia, Z.; Lin, B. How to achieve the first step of the carbon-neutrality 2060 target in China: The coal substitution perspective. Energy 2021, 233, 121179. [Google Scholar] [CrossRef]
- Blokhin, D.I.; Zakorshmenniy, I.M.; Kubrin, S.S.; Kobylkin, A.S.; Pozdeev, E.E.; Pushilin, A.N. Numerical research of effect of stress–strain changes on stability of gas drainage wells in coal–rock mass. Min. Informational Anal. Bull. 2023, 11, 17–32. (In Russian) [Google Scholar] [CrossRef]
- Yin, F.; Ni, X.; Han, J.; Di, J.; Zhou, Y.; Zhao, X.; Gao, Y. Impact Assessment of Hydrate Cuttings Migration and Decom-position on Annular Temperature and Pressure in Deep Water Gas Hydrate Formation Riserless Drilling. Energies 2023, 16, 5903. [Google Scholar] [CrossRef]
- Yang, S.; Zhang, L.; Guo, J.; Huang, Y.; Xu, M. Cement production life cycle inventory dataset for China. Resour. Conserv. Recycl. 2023, 197, 107064. [Google Scholar] [CrossRef]
- Golik, V.I.; Razorenov, Y.U.I.; Brigida, V.S.; Burdzieva, O.G. Mechanochemical technology of metal mining from enriching tails. Bull. Tomsk. Polytech. Univ. Geo Assets Eng. 2020, 331, 175–183. (In Russian) [Google Scholar] [CrossRef]
- Shutaleva, A. Ecological Culture and Critical Thinking: Building of a Sustainable Future. Sustainability 2023, 15, 13492. [Google Scholar] [CrossRef]
- Nepsha, F.S.; Voronin, V.A.; Liven, A.S.; Korneev, A.S. Feasibility study of using cogeneration plants at Kuzbass coal mines. J. Min. Inst. 2023, 259, 141–150. (In Russian) [Google Scholar] [CrossRef]
- Qu, Q.; Guo, H.; Balusu, R. Methane emissions and dynamics from adjacent coal seams in a high permeability multi-seam mining environment. Int. J. Coal Geol. 2022, 253, 103969. [Google Scholar] [CrossRef]
- Yue, G.-W.; Wang, Z.-F.; Kang, B. Prediction for isothermal adsorption curve of coal/CH4 based on adsorption heat theory. Nat. Gas Geosci. 2015, 26, 148–153. [Google Scholar] [CrossRef]
- Yang, H.-M.; Wang, Z.-F.; Ren, Z.-Y. Differences between competitive adsorption and replacement desorption of binary gases in coal and its replacement laws. MeitanXuebao. J. China Coal Soc. 2015, 40, 1550–1554. [Google Scholar] [CrossRef]
- Li, S.; Wang, Z. Study on the Coupling Effect of Stress Field and Gas Field in Surrounding Rock of Stope and Gas Migration Law. Energies 2023, 16, 6672. [Google Scholar] [CrossRef]
- Martyushev, N.V.; Egorov, Y.P. Determination of the signal strength with the computer analysis of the material structure. In Proceedings of the 9th International Scientific and Practical Conference of Students, Post-Graduates and Young Scientists—Modern Techniques and Technologies MTT’ 2003, Tomsk, Russia, 7–11 April 2003; pp. 192–194. [Google Scholar]
- Khakmardan, S.; Rezai, B.; Abdollahzadeh, A.; Ghorbani, Y. From waste to wealth: Unlocking the value of copper anode slimes through systematic characterization and pretreatment. Miner. Eng. 2023, 200, 108141. [Google Scholar] [CrossRef]
- Brigida, V.S.; Golik, V.I.; Klyuev, R.V.; Sabirova, L.B.; Mambetalieva, A.R.; Karlina, Y.I. Efficiency Gains When Using Ac-tivated Mill Tailings in Underground Mining. Metallurgist 2023, 67, 398–408. [Google Scholar] [CrossRef]
- Gryazev, M.V.; Kachurin, N.M.; Vorob’ev, S.A. Mathematical Models of Gas-Dynamic and Thermophysical Processes in Underground Coal Mining at Different Stages of Mine Development. J. Min. Inst. 2017, 223, 99–108. (In Russian) [Google Scholar] [CrossRef]
- Campo, G.; Ruffino, B.; Reyes, A.; Zanetti, M. Water-Energy Nexus in the Antofagasta Mining District: Options for Municipal Wastewater Reuse from a Nearly Energy-Neutral WWTP. Water 2023, 15, 1221. [Google Scholar] [CrossRef]
- Slastunov, S.; Kolikov, K.; Batugin, A.; Sadov, A.; Khautiev, A. Improvement of Intensive In-Seam Gas Drainage Technology at Kirova Mine in Kuznetsk Coal Basin. Energies 2022, 15, 1047. [Google Scholar] [CrossRef]
- Zhao, C.; Cheng, Y.; Li, W.; Zhang, K.; Wang, C. Critical stress related to coalbed methane migration pattern: Model development and experimental validation. Energy 2023, 284, 128681. [Google Scholar] [CrossRef]
- Hosseini, A.; Najafi, M.; Hossein Morshedy, A. Determination of suitable distance between methane drainage stations in Tabas mechanized coal mine (Iran) based on theoretical calculations and field investigation. J. Min. Inst. 2022, 258, 1050–1060. [Google Scholar] [CrossRef]
- Li, Y.; Wu, S.; Nie, B.; Ma, Y. A new pattern of underground space-time Tridimensional gas drainage: A case study in Yuwu coal mine, China. Energy Sci. Eng. 2019, 7, 399–410. [Google Scholar] [CrossRef]
- Jiangfu, H.; Wenchao, H.; Chengpeng, Z.; Zhongguang, S.; Xiaoyi, S. Numerical simulation on the deformation characteristics of borehole failure in gas-bearing coal seams considering the effective stress principle under complicated stress path conditions. Geomech. Geophys. Geo Energy Geo Resour. 2022, 8, 95. [Google Scholar] [CrossRef]
- Xiang, Y.; Lan, J.; Cai, Y.; Dong, Y.; Hou, H. Preparation of nickel–cobalt tailings-based cementing materials by mechano-chemical activation: Performance and mechanism. Constr. Build. Mater. 2023, 408, 133836. [Google Scholar] [CrossRef]
- Qu, Q.; Shi, J.; Wilkins, A. A Numerical Evaluation of Coal Seam Permeability Derived from Borehole Gas Flow Rate. Energies 2022, 15, 3828. [Google Scholar] [CrossRef]
- Zhao, P.; An, X.; Li, S.; Kang, X.; Huang, Y.; Yang, J.; Jin, S. Study on the Pseudo-Slope Length Effect of Buried Pipe Extraction in Fully Mechanized Caving Area on Gas Migration Law in Goaf. Sustainability 2023, 15, 6628. [Google Scholar] [CrossRef]
- Gorelkina, E.I.; Mugisho, J.B.; Kouadio, K.S. Waterflooding, water-gas method and generation of carbon dioxide in the reservoir —Methods of enhanced oil recovery and technology development. In IOP Conference Series: Earth and Environmental Science; IOP: Bristol, UK, 2023; Volume 1212, p. 012038. [Google Scholar] [CrossRef]
- Montano, J.; Coco, G.; Antolinez, J.A.A.; Beuzen, T.; Bryan, K.R.; Cagigal, L.; Castelle, B.; Davidson, M.A.; Goldstein, E.B.; Ibace-ta, R.; et al. Blind testing of shoreline evolution models. Sci. Rep. 2020, 10, 2137. [Google Scholar] [CrossRef]
- Chicco, D.; Warrens, M.J.; Jurman, G. The coefficient of determination R-squared is more informative than SMAPE, MAE, MAPE, MSE and RMSE in regression analysis evaluation. PeerJ Comput. Sci. 2021, 7, e623. [Google Scholar] [CrossRef] [PubMed]
- Brigida, V.S.; Zinchenko, N.N. Methane Release in Drainage Holes Ahead of Coal Face. J. Min. Sci. 2014, 50, 60–64. [Google Scholar] [CrossRef]
- Pan, H.-Y.; He, S.-N.; Zhang, T.-J.; Song, S.; Wang, K. Application of an improved naive Bayesian analysis for the identification of air leaks in bore-holes in coal mines. Sci. Rep. 2022, 12, 16081. [Google Scholar] [CrossRef]
- Mayet, A.M.; Gorelkina, E.I.; Fouladinia, F.; Sh Daoud, M.; ThafasalIjyas, V.P.; Kumar Shukla, N.; Sayeeduddin Habeeb, M.; HAlhashim, H. An artificial neural network and a combined capacitive sensor for measuring the void fraction in-dependent of temperature and pressure changes for a two-phase homogeneous fluid. Flow Meas. Instrum. 2023, 93, 102406. [Google Scholar] [CrossRef]
- Haque, I.; Siam Abdullah, M.; Khairul Islam, M.; Enamullah, M. Synthesis, PXRD structure, spectroscopy, cyclic voltammogram, thermal analysis and DFT/TD-DFT calculations of bis[salicylaldehydato-κO,O′]nickel(II). Inorganica Chim. Acta 2023, 550, 121430. [Google Scholar] [CrossRef]
- Dmitriev, A.N.; Vyaznikova, E.A.; Vitkina, G.Y.; Karlina, A.I. A Study of the Structure and Physicochemical Properties of the Mixed Basicity Iron Ore Sinter. Magnetochemistry 2023, 9, 212. [Google Scholar] [CrossRef]
- Isametova, M.E.; Martyushev, N.V.; Karlina, Y.I.; Kononenko, R.V.; Skeeba, V.Y.; Absadykov, B.N. Thermal Pulse Processing of Blanks of Small-Sized Parts Made of Beryllium Bronze and 29 NK Alloy. Materials 2022, 15, 6682. [Google Scholar] [CrossRef] [PubMed]
- Bosikov, I.I.; Martyushev NV Klyuev, R.V.; Savchenko, I.A.; Kukartsev, V.V.; Kukartsev, V.A.; Tynchenko, Y.A. Modeling and Complex Analysis of the Topology Parameters of Ventilation Networks When Ensuring Fire Safety While Developing Coal and Gas Deposits. Fire 2023, 6, 95. [Google Scholar] [CrossRef]
- Brigida, V.S.; Golik, V.I.; Dmitrak, Y.V.; Gabaraev, O.Z. Ensuring stability of undermining inclined drainage holes during intensive development of multiple gas-bearing coal layers. J. Min. Inst. 2019, 239, 497–501. [Google Scholar] [CrossRef]
- Abdullah, G.M.S.; Abd El Aal, A.; Al Saiari, M.; Radwan, A.E. Sustainable Impact of Coarse Aggregate Crushing Waste (CACW) in Decreasing Carbon Footprint and Enhancing Geotechnical Properties of Silty Sand Soil. Appl. Sci. 2023, 13, 10930. [Google Scholar] [CrossRef]
- Kondrakhin, V.P.; Martyushev, N.V.; Klyuev, R.V.; Sorokova, S.N.; Efremenkov, E.A.; Valuev, D.V.; Mengxu, Q. Mathemati-cal Modeling and Multi-Criteria Optimization of Design Parameters for the Gyratory Crusher. Mathematics 2023, 11, 2345. [Google Scholar] [CrossRef]
- Malozyomov, B.V.; Golik, V.I.; Brigida, V.; Kukartsev, V.V.; Tynchenko, Y.A.; Boyko, A.A.; Tynchenko, S.V. Substantiation of Drilling Parameters for Undermined Drainage Boreholes for Increasing Methane Production from Unconventional Coal-Gas Collectors. Energies 2023, 16, 4276. [Google Scholar] [CrossRef]
- Chen, J.; Zhou, L.; Xia, B.; Su, X.; Shen, Z. Numerical Investigation of 3D Distribution of Mining-Induced Fractures in Response to Longwall Mining. Nat. Resour. Res. 2021, 30, 889–916. [Google Scholar] [CrossRef]
- Chen, Y.; Liu, R.; Xuan, P. A calculation method of gas emission zone in a coal mine considering main controlling factors. Sci. Rep. 2021, 11, 23597. [Google Scholar] [CrossRef]
- Zhou, X.; Jing, Z.; Li, Y. Research on controlling gas overrun in a working face based on gob-side entry retaining by utilizing ventilation type “Y”. Sci. Rep. 2023, 13, 9199. [Google Scholar] [CrossRef]
- Xia Tq Xu, M.j.; Wang, Y.l. Simulation investigation on flow behavior of gob gas by applying a newly developed FE software. Environ. Earth Sci. 2017, 76, 485. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, Y.; He, M.; Li, S.; Jiang, Z.; Jiang, B.; Xu, S.; Wei, H. Experimental study on the mechanism of pressure releasing control in deep coal mine roadways located in faulted zone. Geomech. Geophys. Geoenerg. Georesour. 2022, 8, 50. [Google Scholar] [CrossRef]
- Zhang, B.; Liang, Y.; Sun, H.; Wang, K.; Zou, Q.; Dai, J. Evolution of mining-induced fractured zone height above a mined panel in longwall coal mining. Arab. J. Geosci. 2022, 15, 476. [Google Scholar] [CrossRef]
- Zakharov, V.N.; Shlyapin, A.V.; Trofimov, V.A.; Filippov, Y.A. Change in stress-strain behavior of coal-rock mass during coal mining. Min. Informational Anal. Bull. 2020, 79, 5–24. (In Russian) [Google Scholar] [CrossRef]
- Xu, J.; Li, H.; Wang, H.; Tang, L. Experimental study on 3D internal penny-shaped crack propagation in brittle materials under uniaxial compression. Deep Undergr. Sci Eng. 2023, 2, 37–51. [Google Scholar] [CrossRef]
- Demenkov, P.A.; Romanova, E.L.; Kotikov, D.A. Stress–strain analysis of vertical shaft lining and adjacent rock mass under conditions of irregular contour/MIAB. In Mining Informational and Analytical Bulletin; Saint Petersburg Mining University: Saint Petersburg, Russia, 2023; pp. 33–48. [Google Scholar]
- Wei, H.; Wu, H.; Ren, G.; Tang, L.; Feng, K. Energy-based analysis of seismic damage mechanism of multi-anchor piles in tunnel crossing landslide area. Deep Undergr. Sci. Eng. 2023, 2, 245–261. [Google Scholar] [CrossRef]
- Zakirova, G.; Pshenin, V.; Tashbulatov, R.; Rozanova, L. Modern Bitumen Oil Mixture Models in Ashalchinsky Field with Low-Viscosity Solvent at Various Temperatures and Solvent Concentrations. Energies 2023, 16, 395. [Google Scholar] [CrossRef]
- Korshak, A.A.; Nikolaeva, A.V.; Nagatkina, A.S.; Gaysin, M.T.; Korshak, A.A.; Pshenin, V.V. Method for predicting the degree of hydrocarbon vapor recovery at absorption. Sci. Technol. Oil Oil Prod. Pipeline Transp. 2020, 10, 202–209. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brigida, V.; Golik, V.I.; Voitovich, E.V.; Kukartsev, V.V.; Gozbenko, V.E.; Konyukhov, V.Y.; Oparina, T.A. Technogenic Reservoirs Resources of Mine Methane When Implementing the Circular Waste Management Concept. Resources 2024, 13, 33. https://doi.org/10.3390/resources13020033
Brigida V, Golik VI, Voitovich EV, Kukartsev VV, Gozbenko VE, Konyukhov VY, Oparina TA. Technogenic Reservoirs Resources of Mine Methane When Implementing the Circular Waste Management Concept. Resources. 2024; 13(2):33. https://doi.org/10.3390/resources13020033
Chicago/Turabian StyleBrigida, Vladimir, Vladimir Ivanovich Golik, Elena V. Voitovich, Vladislav V. Kukartsev, Valeriy E. Gozbenko, Vladimir Yu. Konyukhov, and Tatiana A. Oparina. 2024. "Technogenic Reservoirs Resources of Mine Methane When Implementing the Circular Waste Management Concept" Resources 13, no. 2: 33. https://doi.org/10.3390/resources13020033
APA StyleBrigida, V., Golik, V. I., Voitovich, E. V., Kukartsev, V. V., Gozbenko, V. E., Konyukhov, V. Y., & Oparina, T. A. (2024). Technogenic Reservoirs Resources of Mine Methane When Implementing the Circular Waste Management Concept. Resources, 13(2), 33. https://doi.org/10.3390/resources13020033