Bioaccumulation of Cr, Zn, Pb and Cu in Ambrosia artemisiifolia L. and Erigeron canadensis L.
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Metal Concentrations in Soil and Ambrosia artemisiifolia L.
- Roots: Zn > Cu > Cr > Pb > As;
- Inflorescence: Zn > Cu > Cr > Pb;
- Leaves: Zn > Cu > Cr > Pb;
- Stems: Zn > Cu > Cr > Pb.
3.2. The Metals Concentrations in Soil and Erigeron canadensis L.
3.3. Translocation Factor (TF)
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Angulo-Bejarano, P.I.; Puente-Rivera, J.; Cruz-Ortega, R. Metal and Metalloid Toxicity in Plants: An Overview on Molecular Aspects. Plants 2021, 10, 635. [Google Scholar] [CrossRef] [PubMed]
- Kabata-Pendias, A.; Mukherjee, A. Trace Elements from Soil to Human; Springer: Berlin/Heidelberg, Germany, 2007; 550p. [Google Scholar] [CrossRef]
- Pourrut, B.; Shahid, M.; Dumat, C.; Winterton, P.; Pinelli, E. Lead uptake, toxicity, and detoxification in plants. Rev. Environ. Contam. Toxicol. 2011, 213, 113–136. [Google Scholar] [CrossRef] [PubMed]
- Alloway, B. Heavy metals in soils. In Trace Elements and Metalloids in Soils and Their Bioavailability; Environmental Pollution; Springer: Dordrecht, The Netherlands; Reading, UK, 2012; Volume 22, pp. 11–50. [Google Scholar] [CrossRef]
- Hazrat, A.; Ezzat, K.; Ikram, I. Environmental Chemistry and Ecotoxicologyof Hazardous Heavy Metals: Environmental Persistence, Toxicity, and Bioaccumulation. J. Chem. 2019, 2019, 6730305. [Google Scholar] [CrossRef]
- Tchounwou, P.; Yedjou, C.; Patlolla, A.; Sutton, D. Heavy Metals Toxicity and the Environment. Mol. Clin. Environ. Toxicol. 2012, 101, 133–164. [Google Scholar] [CrossRef]
- Jiang, X.; Lu, W.; Zhao, H.; Yag, Q.; Yang, Z. Potential ecological riskassessment and prediction of soil heavy metal pollution around coalgangue dump. Nat. Hazards Earth Syst. Sci. 2014, 14, 1599–1610. [Google Scholar] [CrossRef]
- Apori, O.S.; Hanyabui, E.; Asiamah, Y.J. Remediation Technology for Copper Contaminated Soil: A Review. Asian Soil Res. J. 2018, 1, 1–7. [Google Scholar] [CrossRef]
- Fontúrbel, F.E.; Barbieri, E.; Herbas, C.; Barbieri, F.L.; Gardon, J. Indoor metallic pollution related to mining activity in the Bolivian Altiplano. Environ. Pollut. 2011, 159, 2870–2875. [Google Scholar] [CrossRef]
- Habashi, F. Pollution problems in the metallurgical industry: A review. J. Min. Environ. 2011, 2, 17–26. [Google Scholar]
- Izydorczyk, G.; Mikula, K.; Skrzypczak, D.; Moustakas, K.; Witek-Krowiak, A.; Chojnacka, K. Potential environmental pollution from copper metallurgy and methods of management. Environ. Res. 2021, 197, 111050. [Google Scholar] [CrossRef]
- Jadaa, W.; Mohammed, H. Heavy Metals—Definition, Natural and Anthropogenic Sources of Releasing into Ecosystems, Toxicity, and Removal Methods—An Overview Study. J. Ecol. Eng. 2023, 24, 249–271. [Google Scholar] [CrossRef]
- Wild, P.; Bourgkard, E.; Paris, C. Lung Cancer and Exposure to Metals: The Epidemiological Evidence. Cancer Epidemiol. 2009, 472, 139–167. [Google Scholar] [CrossRef]
- Gritsan, N.P.; Babiy, A.P. Hazardous materials in the environment of Dnepropetrovsk region (Ukraine). J. Hazard. Mater. 2000, 76, 59–70. [Google Scholar] [CrossRef]
- Kharytonov, M.; Benselhoub, A.; Shupranova, L.; Kryvakovska, R.; Khlopova, V. Environmental assessment of atmospheric pollution in Dnipropetrovsk province (Ukraine). In Studia Universitatis “Vasile Goldis” Arad; Seria Stiintele Vietii (Life Sciences Series); Vasyl Goldis Western University: Arad, Romania, 2015; Volume 25, p. 125. [Google Scholar]
- Shparyk, Y.S.; Parpan, V.I. Heavy metal pollution and forest health in the Ukrainian Carpathians. Environ. Pollut. 2004, 130, 55–63. [Google Scholar] [CrossRef]
- Sytar, O.; Taran, N. Effect of heavy metals on soil and crop pollution in Ukraine—A review. J. Cent. Eur. Agric. 2022, 23, 881–887. [Google Scholar] [CrossRef]
- Tomašević, M.; Antanasijević, D.; Aničić, M.; Deljanin, I.; Perić-Grujić, A.; Ristić, M. Lead concentrations and isotope ratios in urban tree leaves. Ecol. Indic. 2013, 24, 504–509. [Google Scholar] [CrossRef]
- Bae, J.; Byun, C.; Watson, A.K.; Benoit, D.L. Selection of ground cover species for the management of common ragweed (Ambrosia artemisiifolia L.) on a highway shoulder. Plant Ecol. 2015, 216, 263–271. [Google Scholar] [CrossRef]
- Krgović, R.; Trifković, J.; Milojković-Opsenica, D.; Manojlović, D.; Marković, M.; Mutić, J. Phytoextraction of metals by Erigeron canadensis L. from fly ash landfill of power plant “Kolubara”. Environ. Sci. Pollution. Res. 2015, 22, 10506–10515. [Google Scholar] [CrossRef]
- Kocaman, A. Assessment of The Use of Artemisia dracunculus L. and Erigeron canadensis in The Remediation of Heavy Metal Contaminated Soils and Their Ability to Phytoextraction and Biomass Yield. Turk. J. Nat. Sci. 2022, 11, 1–10. [Google Scholar] [CrossRef]
- Ryzhenko, N.; El Amrani, A.; Giltrap, M.; Furong, T.; Laptiev, V. Bioaccumulation of As, Cd, Cr, Cu, Pb, Zn in Ambrosia artemisiifolia L. in the polluted area by enterprise for the production and processing of batteries. Ann. Civ. Environ. Eng. 2022, 6, 26–30. [Google Scholar] [CrossRef]
- Rana, V.; Bandyopadhyay, S.; Kumar Maiti, S. Potential and prospects of weed plants in phytoremediation and eco-restoration of heavy metals polluted sites. In Phytoremediation Technology for the Removal of Heavy Metals and Other Contaminants from Soil and Water; Elsevier: Amsterdam, The Netherlands, 2022; pp. 187–205. [Google Scholar] [CrossRef]
- Castro-Bedriñana, J.; Chirinos-Peinado, D.; Garcia-Olarte, E.; Quispe-Ramos, R. Lead transfer in the soil-root-plant system in a highly contaminated Andean area. PeerJournal 2021, 9, 10624. [Google Scholar] [CrossRef] [PubMed]
- Laghlimi, M.; Baghdad, B.; Hadi, H.; Bouabdli, A. Phytoremediation Mechanisms of Heavy Metal Contaminated Soils: A Review. Open J. Ecol. 2015, 5, 375–388. [Google Scholar] [CrossRef]
- Bondar, O.; Ryzhenko, N.; Laptiev, V.; Makhniuk, V. Bioaccumulation of Hg, Cr, Zn, As, Cd, Pb, Cu in the “soil-plant” system in the rea of influence of enterprises for the production and processing of batteries. Ecologicalscience 2022, 1, 11–16. [Google Scholar]
- Smith, M.; Cecchi, L.; Skjøth, C.A.; Karrer, G.; Šikoparija, B. Common ragweed: A threat to environmental health in Europe. Environ. Int. 2013, 61, 115–126. [Google Scholar] [CrossRef] [PubMed]
- Ranđelović, D.; Jakovljević, K.; Mišljenović, T.; Savović, J.; Kuzmanović, M.; Mihailović, N.; Jovanović, S. Accumulation of potentially toxic elements in the invasive Ambrosia artemisiifolia in areas with different levels of anthropogenic pollution. Water Air Soil Pollut. 2020, 231, 272. [Google Scholar] [CrossRef]
- Sajad, M.A.; Khan, M.S.; Ali, H. Lead phytoremediation potential of sixty-one plant species: An open field survey. Pure Appl. Biol. (PAB) 2019, 8, 405–419. [Google Scholar] [CrossRef]
- Environmental Passport of the City of Dnipro; Department of Transport and Environmental Protection of the Dnipro City Council: Dnipro, Ukraine, 2016; p. 64.
- Soil Survey Staff. Keys to Soil Taxonomy, 13th ed.; U.S. Department of Agriculture, Natural Resources Conservation Service: Washington, DC, USA, 2022.
- Clemente, R.; Dickinson, N.M.; Lepp, N.W. Mobility of metals and metalloids in a multi-element contaminated soil 20 years after cessation of the pollution source activity. Environ. Pollut. 2008, 155, 254–261. [Google Scholar] [CrossRef]
- Violante, A.; Cozzolino, V.; Perelomov, L.; Caporale, A.G.; Pigna, M. Mobility and bioavailability of heavy metals and metalloids in soil environments. J. Soil Sci. Plant Nutr. 2010, 10, 268–292. [Google Scholar] [CrossRef]
- Calace, N.; Petronio, B.M. The role of organic matter on metal toxicity and bio-availability. Ann. Chim. J. Anal. Environ. Cult. Herit. Chem. 2004, 94, 487–493. [Google Scholar] [CrossRef]
- Roberts, S.M.; Munson, J.W.; Lowney, Y.W.; Ruby, M.V. Relative Oral Bioavailability of Arsenic from Contaminated Soils Measured in the Cynomolgus Monkey. Toxicol. Sci. 2007, 95, 281–288. [Google Scholar] [CrossRef]
- Balafrej, H.; Bogusz, D.; Triqui, Z.-E.A.; Guedira, A.; Bendaou, N.; Smouni, A.; Fahr, M. Zinc Hyperaccumulation in Plants: A Review. Plants 2020, 9, 562. [Google Scholar] [CrossRef]
- Dos Santos Utmazian, M.N.; Wenzel, W. Cadmium and zinc accumulation in willow and poplar species grown on polluted soils. J. Plant Nutr. Soil Sci. 2007, 170, 265–272. [Google Scholar] [CrossRef]
- Wójcik, M.; Sugier, P.; Siebielec, G. Metal accumulation strategies in plants spontaneously inhabiting Zn-Pb waste deposits. Sci. Total Environ. 2014, 487, 313–322. [Google Scholar] [CrossRef] [PubMed]
- Frey, B.; Keller, C.; Zierold, K. Distribution of Zn in functionally different leaf epidermal cells of the hyperaccumulator Thlaspi caerulescens. Plant Cell Environ. 2000, 23, 675–687. [Google Scholar] [CrossRef]
- Ravichandran, B.; Ravibabu, K.; Raghavan, S.; Krishnamurthy, V.; Rajan, B.; Rajmohan, H. Environmental and Biological Monitoring in a Lead Acid Battery Manufacturing Unit in India. J. Occup. Health 2005, 47, 350–353. [Google Scholar] [CrossRef]
- Dinu, C.; Gheorghe, S.; Tenea, A.G.; Stoica, C.; Vasile, G.-G.; Popescu, R.L.; Serban, E.A.; Pascu, L.F. Toxic Metals (As, Cd, Ni, Pb) Impact in the Most Common Medicinal Plant (Mentha piperita). Int. J. Environ. Res. Public Health 2021, 18, 3904. [Google Scholar] [CrossRef] [PubMed]
- Hu, P.-J.; Qiu, R.-L.; Senthilkumar, P.; Jiang, D.; Chen, Z.-W.; Tang, Y.-T.; Liu, F.-J. Tolerance, accumulation and distribution of zinc and cadmium in hyperaccumulator Potentilla griffithii. Environ. Exp. Bot. 2009, 66, 317–325. [Google Scholar] [CrossRef]
- Ministry of Health of Ukraine. Order, Regulation of 14.01.2020 N°52 “On Approval of Hygienic Regulations for the Permissible Content of Chemical and Biological Substances in the Atmospheric Air of Settlements”; Ministry of Health of Ukraine: Kyiv, Ukraine, 2020.
- Rabinowitz, M. Plant uptake of soil and atmospheric lead in Southern California. Chemosphere 1972, 1, 175–180. [Google Scholar] [CrossRef]
- Berthelsen, B.O.; Olsen, R.A.; Steinnes, E. Ectomycorrhizal heavy metal accumulation as a contributing factor to heavy metal levels in organic surface soils. Sci. Total Environ. 1995, 170, 141–149. [Google Scholar] [CrossRef]
- Tomašević, M.; Aničić, M.; Jovanović, L.; Perić-Grujić, A.; Ristić, M. Deciduous tree leaves in trace elements biomonitoring: A contribution to methodology. Ecol. Indic. 2011, 11, 1689–1695. [Google Scholar] [CrossRef]
- Shahid, M.; Dumat, C.; Khalid, S.; Schreck, E.; Xiong, T.; Niazi, N.K. Foliar heavy metal uptake, toxicity and detoxification in plants: A comparison of foliar and root metal uptake. J. Hazard. Mater. 2017, 325, 36–58. [Google Scholar] [CrossRef]
- Nas, F.S.; Ali, M. The effect of lead on plants in terms of growing and biochemical parameters: A review. MOJ Ecol. Environ. Sci. 2018, 3, 265–268. [Google Scholar] [CrossRef]
- Qiu, Y.; Guan, D.; Song, W.; Huang, K. Capture of heavy metals and sulfur by foliar dust in urban Huizhou, Guangdong Province, China. Chemosphere 2009, 75, 447–452. [Google Scholar] [CrossRef]
- De Temmerman, L.; Ruttens, A.; Waegeneers, N. Impact of atmospheric deposition of As, Cd and Pb on their concentration in carrot and celeriac. Environ. Pollut. 2012, 166, 187–195. [Google Scholar] [CrossRef]
- Zhang, T.; Bai, Y.; Hong, X.; Sun, L.; Liu, Y. Particulate matter and heavy metal deposition on the leaves of Euonymus japonicus during the East Asian monsoon in Beijing, China. PLoS ONE 2017, 12, 0179840. [Google Scholar] [CrossRef]
- Barman, S.C.; Sahu, R.K.; Bhargava, S.K.; Chaterjee, C. Distribution of Heavy Metals in Wheat, Mustard, and Weed Grown in Field Irrigated with Industrial Effluents. Bull. Environ. Contam. Toxicol. 2000, 64, 489–496. [Google Scholar] [CrossRef]
- Arshad, M.; Silvestre, J.; Pinelli, E.; Kallerhoff, J.; Kaemmerer, M.; Tarigo, A.; Shahid, M.; Guiresse, M.; Pradere, P.; Dumat, C. A field study of lead phytoextraction by various scented Pelargonium cultivars. Chemosphere 2008, 71, 2187–2192. [Google Scholar] [CrossRef]
- Gupta, N.; Ram, H.; Kumar, B. Mechanism of Zinc absorption in plants: Uptake, transport, translocation and accumulation. Rev. Environ. Sci. Biotechnol. 2016, 15, 89–109. [Google Scholar] [CrossRef]
- Maestri, E.; Marmiroli, M.; Visioli, G.; Marmiroli, N. Metal tolerance and hyperaccumulation: Costs and trade-offs between traits and environment. Environ. Exp. Bot. 2010, 68, 1–13. [Google Scholar] [CrossRef]
- Naila, A.; Meerdink, G.; Jayasena, V.; Sulaiman, A.Z.; Ajit, A.B.; Berta, G.A. Review on Global Metal Accumulators—Mechanism, Enhancement, Commercial Application, and Research Trend. Environ. Sci. Pollut. Res. 2019, 26, 26449–26471. [Google Scholar] [CrossRef] [PubMed]
- Baker, A.J.M.; McGrath, S.P.; Reeves, R.D.; Smith, J.A.C. Metal hyperaccumulator plants: A review of the ecology and physiology of a biological resource for phytoremediation of metal-polluted soils. In Phytoremediation of Contaminated Soils; CRC: Boca Raton, FL, USA, 1999; pp. 85–107. [Google Scholar]
- McGrath, S.P.; Zhao, F.-J. Phytoextraction of metals and metalloids from contaminated soils. Curr. Opin. Biotechnol. 2003, 14, 277–282. [Google Scholar] [CrossRef] [PubMed]
- Baker, A.J.M.; Brooks, R.R. Terrestrial Higher Plants which Hyperaccumulate Metallic Elements. A Review of Their Distribution, Ecology and Phytochemistry. Biorecovery 1989, 1, 81–126. [Google Scholar]
Location | pHsalt | OM, % | CEC, mmol 10−2 g−1 |
---|---|---|---|
N 48°58′64.79″ E 35°21′81.27″ | 6.7 ± 0.02 | 4.4 ± 0.12 | 45.0 ± 1.4 |
Metals | mg kg−1 | Concentration in the Plant, mg kg−1, Dry Matter | PUI Total | ||||
---|---|---|---|---|---|---|---|
Part of Plants | |||||||
Total Plant | Inflorescence | Leaves | Stem | Roots | |||
Cr | 0.89 ± 0.17 | 19.22 ±1.75 bc | 1.13 ±0.10 bc | 8.37 ±0.73 bc | 1.97 ±0.17 bc | 7.74 ±0.69 bc | 21.69 |
Cu | 0.28 ± 0.05 | 59.88 ±5.17 bc | 13.56 ±1.19 bc | 16.36 ±1.51 bc | 4.33 ±0.37 bc | 25.63 ±2.23 bc | 216.73 |
Pb | 2.71 ± 0.52 | 5.13 ±0.66 b | 0.44 ±0.04 b | 1.17 ±0.11 b | 0.39 ±0.03 b | 3.14 ±0.23 b | 1.89 |
Zn | 4.73 ± 0.91 | 505.52 ±27.33 a | 127.40 ±10.70 a | 171.10 ±15.57 a | 58.52 ±5.09 a | 148.50 ±13.22 a | 106.81 |
Metals | mg kg−1 | Concentration in Plant, mg kg−1, Dry Matter | PUI Total | ||||
---|---|---|---|---|---|---|---|
Part of Plants | |||||||
Total Plant | Inflorescence | Leaves | Stem | Roots | |||
Cr | 0.89 ± 0.17 | 7.39 ±0.60 bc | 0.76 ±0.07 bc | 3.23 ±0.29 bc | 2.22 ±0.20 bc | 1.18 ±0.10 bc | 8.34 |
Cu | 0.28 ± 0.05 | 27.66 ±3.34 bc | 2.70 ±0.24 bc | 16.07 ±1.37 bc | 6.58 ±0.60 bc | 2.32 ±0.20 bc | 100.12 |
Pb | 2.7 ± 0.52 | 1.46 ±0.14 b | 0.09 ±0.01 b | 0.49 ±0.04 b | 0.66 ±0.06 b | 0.22 ±0.02 b | 0.54 |
Zn | 4.73 ± 0.91 | 139.68 ±7.29 a | 37.79 ±3.44 a | 30.56 ±2.57 a | 50.65 ±4.31 a | 20.68 ±1.80 a | 29.51 |
Metals | Ratio vs. Root | |||||
---|---|---|---|---|---|---|
PUI Total Root/Soil | TF | |||||
Shoot | Inflorescence | Leaf | Stem | |||
Ambrosia artemisiifolia L. | ||||||
Cr | 21.69 | 8.74 | 1.48 | 0.15 | 1.08 | 0.25 |
Cu | 216.70 | 92.76 | 1.34 | 0.53 | 0.64 | 0.17 |
Pb | 1.89 | 1.15 | 0.64 | 0.14 | 0.37 | 0.13 |
Zn | 106.81 | 31.38 | 2.40 | 0.86 | 1.15 | 0.40 |
Erigeron canadensis L. | ||||||
Cr | 8.34 | 1.33 | 5.26 | 0.65 | 2.74 | 1.88 |
Cu | 100.12 | 8.38 | 10.94 | 1.17 | 6.94 | 2.84 |
Pb | 0.54 | 0.08 | 5.66 | 0.41 | 2.23 | 3.02 |
Zn | 29.51 | 4.36 | 5.75 | 1.83 | 1.48 | 2.45 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Laptiev, V.; Apori, S.O.; Giltrap, M.; Tian, F.; Ryzhenko, N. Bioaccumulation of Cr, Zn, Pb and Cu in Ambrosia artemisiifolia L. and Erigeron canadensis L. Resources 2024, 13, 43. https://doi.org/10.3390/resources13030043
Laptiev V, Apori SO, Giltrap M, Tian F, Ryzhenko N. Bioaccumulation of Cr, Zn, Pb and Cu in Ambrosia artemisiifolia L. and Erigeron canadensis L. Resources. 2024; 13(3):43. https://doi.org/10.3390/resources13030043
Chicago/Turabian StyleLaptiev, Volodymyr, Samuel Obeng Apori, Michelle Giltrap, Furong Tian, and Nataliia Ryzhenko. 2024. "Bioaccumulation of Cr, Zn, Pb and Cu in Ambrosia artemisiifolia L. and Erigeron canadensis L." Resources 13, no. 3: 43. https://doi.org/10.3390/resources13030043
APA StyleLaptiev, V., Apori, S. O., Giltrap, M., Tian, F., & Ryzhenko, N. (2024). Bioaccumulation of Cr, Zn, Pb and Cu in Ambrosia artemisiifolia L. and Erigeron canadensis L. Resources, 13(3), 43. https://doi.org/10.3390/resources13030043