Element Cycling at Thermally Active Coal-Waste Dumps: A Case Study of Calamagrostis epigejos and Solidago canadensis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Thermal Measurements
2.3. Plant and Soil Samplings
2.4. Laboratory Analyses
2.5. Analytical Studies
- Geoaccumulation index (Igeo): , where is the content of the element in the sample, and is the background value [54,55]. As background values, we used the content of elements in the Upper Continental Crust [56]. The geoaccumulation index allows the evaluation of the degree of metal contamination or pollution in the studied samples. The results are divided into seven classes: uncontaminated (0), uncontaminated to moderately contaminated (0–1), moderately contaminated (1–2), moderately to strongly contaminated (2–3), strongly contaminated (3–4), strongly to extremely strongly contaminated (4–5), and extremely contaminated (>5).
- Enrichment factor (EF): , is metal content and is the concentration of a reference element for normalization [57]. It is an indicator by which the relative concentrations of the analytes accumulated in a given specimen/object/environment are compared [55]. The enrichment factor is used to assess the degree of anthropogenic influence on ecosystems. The results determine five classes: deficiency to minimal enrichment (<2), moderate enrichment (2–5), significant enrichment (5–20), very high enrichment (20–40), and extremely high enrichment (>40).
- Translocation factor (TF): , where is the element content in the aboveground parts of the plant, and is the concentration of the same element in the roots [58,59]. The results distinguish four classes: low contamination factor (<1), moderate contamination factor (1–3), considerable contamination factor (3–6), and very high contamination factor (>6).
3. Results and Discussion
3.1. Thermal Situation in the Research Area
3.2. Physicochemical Properties of Soil
3.3. Environmental Indicators
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Welch, C.; Barbour, S.L.; Hendry, M.J. The Geochemistry and Hydrology of Coal Waste Rock Dumps: A Systematic Global Review. Sci. Total Environ. 2021, 795, 148798. [Google Scholar] [CrossRef] [PubMed]
- Szczepanska, J.; Twardowska, I. Distribution and Environmental Impact of Coal-Mining Wastes in Upper Silesia, Poland. Environ. Geol. 1999, 38, 249–258. [Google Scholar] [CrossRef]
- Younger, P.L. Environmental Impacts of Coal Mining and Associated Wastes: A Geochemical Perspective. Geol. Soc. Lond. Spec. Publ. 2004, 236, 169–209. [Google Scholar] [CrossRef]
- Bian, Z.; Dong, J.; Lei, S.; Leng, H.; Mu, S.; Wang, H. The Impact of Disposal and Treatment of Coal Mining Wastes on Environment and Farmland. Environ. Geol. 2009, 58, 625–634. [Google Scholar] [CrossRef]
- Kříbek, B.; Sracek, O.; Mihaljevič, M.; Knésl, I.; Majer, V. Geochemistry and Environmental Impact of Neutral Drainage from an Uraniferous Coal Waste Heap. J. Geochem. Explor. 2018, 191, 1–21. [Google Scholar] [CrossRef]
- Popovych, V.; Voloshchyshyn, A.; Bosak, P.; Popovych, N. Waste Heaps in the Urban Environment as Negative Factors of Urbanization. IOP Conf. Ser. Earth Environ. Sci. 2021, 915, 012001. [Google Scholar] [CrossRef]
- Ryś, K.; Chmura, D.; Dyczko, A.; Woźniak, G. The Biomass Amount of Spontaneous Vegetation Concerning the Abiotic Habitat Conditions in Coal Mine Heaps as Novel Ecosystems. J. Ecol. Eng. 2024, 25, 79–100. [Google Scholar] [CrossRef]
- Adibee, N.; Osanloo, M.; Rahmanpour, M. Adverse Effects of Coal Mine Waste Dumps on the Environment and Their Management. Environ. Earth Sci. 2013, 70, 1581–1592. [Google Scholar] [CrossRef]
- Petlovanyi, M.V.; Medianyk, V.Y. Assessment of Coal Mine Waste Dumps Development Priority. Nauk. Visnyk Natsionalnoho Hirnychoho Universytetu 2018, 4, 28–35. [Google Scholar] [CrossRef]
- Góralczyk, S.; Baic, I. Hard Coal Extractive Waste and Possibilities of Their Usage. Polityka Energetyczna 2009, 12, 145–157. [Google Scholar]
- Mohanty, M.; Biswal, D.R.; Mohapatra, S.S. A Systematic Review Exploring the Utilization of Coal Mining and Processing Wastes as Secondary Aggregate in Sub-Base and Base Layers of Pavement. Constr. Build. Mater. 2023, 368, 130408. [Google Scholar] [CrossRef]
- Walotek, K. On the Possibility of Using Industrial Wastes in Road Construction. Inżynieria I Bud. 2023, 79, 276–280. [Google Scholar]
- Segui, P.; Safhi, A.e.M.; Amrani, M.; Benzaazoua, M. Mining Wastes as Road Construction Material: A Review. Minerals 2023, 13, 90. [Google Scholar] [CrossRef]
- Khalil, A.; Taha, Y.; Benzaazoua, M.; Hakkou, R. Applied Methodological Approach for the Assessment of Soil Contamination by Trace Elements around Abandoned Coal Mines—A Case Study of the Jerada Coal Mine, Morocco. Minerals 2023, 13, 181. [Google Scholar] [CrossRef]
- Skrobala, V.; Popovych, V.; Tyndyk, O.; Voloshchyshyn, A. Chemical Pollution Peculiarities of the Nadiya Mine Rock Dumps in the Chervonohrad Mining District, Ukraine. Min. Miner. Depos. 2022, 16, 71–79. [Google Scholar] [CrossRef]
- Stracher, G.; Prakash, A.; Sokol, E. Coal and Peat Fires: A Global Perspective: Volume 3: Case Studies—Coal Fires; Elsevier Science: Amsterdam, The Netherlands, 2014. [Google Scholar]
- Abramowicz, A.K.; Rahmonov, O.; Fabiańska, M.J.; Nádudvari, Á.; Chybiorz, R.; Michalak, M. Changes in Soil Chemical Composition Caused by Self-heating of a Coal-waste Dump. Land. Degrad. Dev. 2021, 32, 4340–4349. [Google Scholar] [CrossRef]
- Nádudvari, Á.; Kozielska, B.; Abramowicz, A.; Fabiańska, M.; Ciesielczuk, J.; Cabała, J.; Krzykawski, T. Heavy Metal- and Organic-Matter Pollution Due to Self-Heating Coal-Waste Dumps in the Upper Silesian Coal Basin (Poland). J. Hazard. Mater. 2021, 412, 125244. [Google Scholar] [CrossRef] [PubMed]
- Górka, M.; Bezyk, Y.; Strąpoć, D.; Nęcki, J. The Origin of GHG’s Emission from Self-Heating Coal Waste Dump: Atmogeochemical Interactions and Environmental Implications. Int. J. Coal Geol. 2022, 250, 103912. [Google Scholar] [CrossRef]
- Fabiańska, M.; Ciesielczuk, J.; Nádudvari, Á.; Misz-Kennan, M.; Kowalski, A.; Kruszewski, Ł. Environmental Influence of Gaseous Emissions from Self-Heating Coal Waste Dumps in Silesia, Poland. Environ. Geochem. Health 2019, 41, 575–601. [Google Scholar] [CrossRef]
- Wasilewski, S. Monitoring the Thermal and Gaseous Activity of Coal Waste Dumps. Environ. Earth Sci. 2020, 79, 474. [Google Scholar] [CrossRef]
- Więcław, D.; Jurek, K.; Fabiańska, M.J.; Bilkiewicz, E.; Kowalski, A.; Misz-Kennan, M.; Ciesielczuk, J. Molecular and Stable Isotope Composition of Pollutants Emitted during Thermal Processes within the Rymer Coal Waste Dump (Upper Silesia, Poland). Minerals 2021, 11, 1120. [Google Scholar] [CrossRef]
- Ciesielczuk, J.; Czylok, A.; Fabiańska, M.J.; Misz-Kennan, M. Plant Occurrence on Burning Coal Waste—A Case Study from the Katowice-Wełnowiec Dump, Poland. Environ. Socio-Econ. Stud. 2015, 3, 1–10. [Google Scholar] [CrossRef]
- Abramowicz, A.; Rahmonov, O.; Chybiorz, R.; Ciesielczuk, J. Vegetation as an Indicator of Underground Smoldering Fire on Coal-Waste Dumps. Fire Saf. J. 2021, 121, 103287. [Google Scholar] [CrossRef]
- Ren, H.; Zhao, Y.; Xiao, W.; Zhang, J.; Chen, C.; Ding, B.; Yang, X. Vegetation Growth Status as an Early Warning Indicator for the Spontaneous Combustion Disaster of Coal Waste Dump after Reclamation: An Unmanned Aerial Vehicle Remote Sensing Approach. J. Environ. Manag. 2022, 317, 115502. [Google Scholar] [CrossRef] [PubMed]
- Rauterberg, E.; Black, C.A. Soil-Plant Relationships. (Boden-Pflanzen-Beziehungen.) John Wiley u. Sons. Inc. 440 Fourth Avenue New York 16 N.Y. 1957. VI u. 332 Seiten. 7.—$. Z. Pflanzenernährung Düngung Bodenkd. 1958, 81, 63. [Google Scholar] [CrossRef]
- Jeffrey, D.W. Soil-Plant Relationships; Springer: Dordrecht, The Netherlands, 1987; ISBN 978-0-7099-1464-8. [Google Scholar]
- van der Putten, W.H.; Bardgett, R.D.; Bever, J.D.; Bezemer, T.M.; Casper, B.B.; Fukami, T.; Kardol, P.; Klironomos, J.N.; Kulmatiski, A.; Schweitzer, J.A.; et al. Plant–Soil Feedbacks: The Past, the Present and Future Challenges. J. Ecol. 2013, 101, 265–276. [Google Scholar] [CrossRef]
- Krämer, U. Metal Hyperaccumulation in Plants. Annu. Rev. Plant Biol. 2010, 61, 517–534. [Google Scholar] [CrossRef] [PubMed]
- Sheoran, V.; Sheoran, A.S.; Poonia, P. Role of Hyperaccumulators in Phytoextraction of Metals from Contaminated Mining Sites: A Review. Crit. Rev. Environ. Sci. Technol. 2010, 41, 168–214. [Google Scholar] [CrossRef]
- Baycu, G.; Tolunay, D.; Ozden, H.; Csatari, I.; Karadag, S.; Agba, T.; Rognes, S.E. An Abandoned Copper Mining Site in Cyprus and Assessment of Metal Concentrations in Plants and Soil. Int. J. Phytoremediation 2015, 17, 622–631. [Google Scholar] [CrossRef]
- Bierza, W.; Czarnecka, J.; Błońska, A.; Kompała-Bąba, A.; Hutniczak, A.; Jendrzejek, B.; Bakr, J.; Jagodziński, A.M.; Prostański, D.; Woźniak, G. Plant Diversity and Species Composition in Relation to Soil Enzymatic Activity in the Novel Ecosystems of Urban–Industrial Landscapes. Sustainability 2023, 15, 7284. [Google Scholar] [CrossRef]
- Ehrenfeld, J.G.; Ravit, B.; Elgersma, K. Feedback in the Plant-Soil System. Annu. Rev. Environ. Resour. 2005, 30, 75–115. [Google Scholar] [CrossRef]
- Baghour, M.; Moreno, D.A.; Hernández, J.; Castilla, N.; Romero, L. Influence of Root Temperature on Uptake and Accumulation of Ni and Co in Potato. J. Plant Physiol. 2002, 159, 1113–1122. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, Q.; Wang, R.; Gou, X.; Wang, H.; Wang, S. Temperature Changes the Dynamics of Trace Element Accumulation in Solanum tuberosum L. Clim. Chang. 2012, 112, 655–672. [Google Scholar] [CrossRef]
- Li, Y.; Li, L.; Zhang, Q.; Yang, Y.; Wang, H.; Wang, R.; Zhang, J. Influence of Temperature on the Heavy Metals Accumulation of Five Vegetable Species in Semiarid Area of Northwest China. Chem. Ecol. 2013, 29, 353–365. [Google Scholar] [CrossRef]
- Środek, D.; Rahmonov, O. The Properties of Black Locust Robinia pseudoacacia L. to Selectively Accumulate Chemical Elements from Soils of Ecologically Transformed Areas. Forests 2021, 13, 7. [Google Scholar] [CrossRef]
- De Long, J.R.; Fry, E.L.; Veen, G.F.; Kardol, P. Why Are Plant–Soil Feedbacks so Unpredictable, and What to Do about It? Funct. Ecol. 2019, 33, 118–128. [Google Scholar] [CrossRef]
- Chen, Y.; Shen, Z.; Li, X. The Use of Vetiver Grass (Vetiveria Zizanioides) in the Phytoremediation of Soils Contaminated with Heavy Metals. Appl. Geochem. 2004, 19, 1553–1565. [Google Scholar] [CrossRef]
- Truong, P.N.V.; Foong, Y.K.; Guthrie, M.; Hung, Y.-T. Phytoremediation of Heavy Metal Contaminated Soils and Water Using Vetiver Grass. In Environmental Bioengineering; Humana Press: Totowa, NJ, USA, 2010; pp. 233–275. [Google Scholar]
- Kafle, A.; Timilsina, A.; Gautam, A.; Adhikari, K.; Bhattarai, A.; Aryal, N. Phytoremediation: Mechanisms, Plant Selection and Enhancement by Natural and Synthetic Agents. Environ. Adv. 2022, 8, 100203. [Google Scholar] [CrossRef]
- Fu, W.; Huang, K.; Cai, H.-H.; Li, J.; Zhai, D.-L.; Dai, Z.-C.; Du, D.-L. Exploring the Potential of Naturalized Plants for Phytoremediation of Heavy Metal Contamination. Int. J. Environ. Res. 2017, 11, 515–521. [Google Scholar] [CrossRef]
- Bielecka, A.; Królak, E. Solidago Canadensis as a Bioaccumulator and Phytoremediator of Pb and Zn. Environ. Sci. Pollut. Res. 2019, 26, 36942–36951. [Google Scholar] [CrossRef]
- Wojewódka-Przybył, M.; Stienss, J.; Kruszewski, Ł. Accumulation of Elements in Vegetation Spontaneously Developing on Self-Heating Waste Dumps in the Upper Silesia Area (Poland). Geol. Q. 2022, 66, 1–30. [Google Scholar] [CrossRef]
- Bielecka, A.; Królak, E. Selected Features of Canadian Goldenrod That Predispose the Plant to Phytoremediation. J. Ecol. Eng. 2019, 20, 88–93. [Google Scholar] [CrossRef]
- Królak, E. Negative and Positive Aspects of the Presence of Canadian Goldenrod in the Environment. Environ. Prot. Nat. Resour. 2021, 32, 6–12. [Google Scholar] [CrossRef]
- Lehmann, C.; Rebele, F. Assessing the Potential for Cadmium Phytoremediation with Calamagrostis epigejos: A Pot Experiment. Int. J. Phytoremediation 2004, 6, 169–183. [Google Scholar] [CrossRef] [PubMed]
- Ranđelović, D.; Jakovljević, K.; Mihailović, N.; Jovanović, S. Metal Accumulation in Populations of Calamagrostis epigejos (L.) Roth from Diverse Anthropogenically Degraded Sites (SE Europe, Serbia). Environ. Monit. Assess. 2018, 190, 183. [Google Scholar] [CrossRef] [PubMed]
- Rahmonov, O.; Czajka, A.; Nádudvari, Á.; Fajer, M.; Spórna, T.; Szypuła, B. Soil and Vegetation Development on Coal-Waste Dump in Southern Poland. Int. J. Environ. Res. Public. Health 2022, 19, 9167. [Google Scholar] [CrossRef]
- Łączny, M.J.; Baran, J.; Ryszko, A. Opracowywanie i Wdrażanie Innowacyjnych Technologii Środowiskowych Stosowanych Na Zwałowiskach Odpadów Powęglowych; Wydaw. Naukowe Instytutu Technologii Eksploatacji PIB: Radom, Poland, 2012. [Google Scholar]
- MacNaeidhe, F. Procedures and Precautions Used in Sampling Techniques and Analysis of Trace Elements in Plant Matrices. Sci. Total Environ. 1995, 176, 25–31. [Google Scholar] [CrossRef]
- Markert, B. Sample Preparation (Cleaning, Drying, Homogenization) for Trace Element Analysis in Plant Matrices. Sci. Total Environ. 1995, 176, 45–61. [Google Scholar] [CrossRef]
- Olesik, J.W. Elemental Analysis Using ICP-OES and ICP/MS. Anal. Chem. 1991, 63, 12A–21A. [Google Scholar] [CrossRef]
- Müller, G. Die Schwermetallbelastung Der Sedimente Des Neckars Und Seiner Nebenflusse: Eine Bestandsaufnahme. Chem. Ztg. 1981, 105, 157164. [Google Scholar]
- Barbieri, M. The Importance of Enrichment Factor (EF) and Geoaccumulation Index (Igeo) to Evaluate the Soil Contamination. J. Geol. Geophys. 2016, 5, 1000237. [Google Scholar] [CrossRef]
- Wedepohl, K.H. The Composition of the Continental Crust. Geochim. Cosmochim. Acta 1995, 59, 1217–1232. [Google Scholar] [CrossRef]
- Bern, C.R.; Walton-Day, K.; Naftz, D.L. Improved Enrichment Factor Calculations through Principal Component Analysis: Examples from Soils near Breccia Pipe Uranium Mines, Arizona, USA. Environ. Pollut. 2019, 248, 90–100. [Google Scholar] [CrossRef] [PubMed]
- Álvarez-Mateos, P.; Alés-Álvarez, F.-J.; García-Martín, J.F. Phytoremediation of Highly Contaminated Mining Soils by Jatropha curcas L. and Production of Catalytic Carbons from the Generated Biomass. J. Environ. Manag. 2019, 231, 886–895. [Google Scholar] [CrossRef] [PubMed]
- Dinu, C.; Vasile, G.-G.; Buleandra, M.; Popa, D.E.; Gheorghe, S.; Ungureanu, E.-M. Translocation and Accumulation of Heavy Metals in Ocimum basilicum L. Plants Grown in a Mining-Contaminated Soil. J. Soils Sediments 2020, 20, 2141–2154. [Google Scholar] [CrossRef]
- Stoof, C.R.; Wesseling, J.G.; Ritsema, C.J. Effects of Fire and Ash on Soil Water Retention. Geoderma 2010, 159, 276–285. [Google Scholar] [CrossRef]
- Ngole-Jeme, V.M. Fire-Induced Changes in Soil and Implications on Soil Sorption Capacity and Remediation Methods. Appl. Sci. 2019, 9, 3447. [Google Scholar] [CrossRef]
- Kłos, A. Application of Enrichment Factor (EF) for Intepretation of the Results of Biomonitoring Studies. Chem. Didact. Ecol. Metrol. 2009, 14, 49–55. [Google Scholar]
- Usman, K.; Al-Ghouti, M.A.; Abu-Dieyeh, M.H. The Assessment of Cadmium, Chromium, Copper, and Nickel Tolerance and Bioaccumulation by Shrub Plant Tetraena Qataranse. Sci. Rep. 2019, 9, 5658. [Google Scholar] [CrossRef]
- Bobulská, L.; Cekanová, K.; Demková, L.; Oboňa, J.; Sarvaš, J. Evaluation of the Phytoremediation Properties of the Invasive Species Solidago Genus. Ann. Univ. Craiova 2018, 23, 314–320. [Google Scholar]
- Dambiec, M.; Klink, A.; Polechońska, L. Concentration and Translocation of Trace Metals in Solidago Gigantea in Urban Areas: A Potential Bioindicator. Int. J. Environ. Sci. Technol. 2022, 19, 11729–11740. [Google Scholar] [CrossRef]
- An, R.; Wang, Y.; Zhang, X.; Chen, C.; Liu, X.; Cai, S. Quantitative Characterization of Drying-Induced Cracks and Permeability of Granite Residual Soil Using Micron-Sized X-ray Computed Tomography. Sci. Total Environ. 2023, 876, 163213. [Google Scholar] [CrossRef] [PubMed]
- Wei, Y.; Huang, Y. Behavior of Sequential Extraction of Lead from Thermally Treated Lead(II)-Doped Alumina. J. Environ. Qual. 1998, 27, 343–348. [Google Scholar] [CrossRef]
- Ribeiro, J.; Flores, D. Occurrence, Leaching, and Mobility of Major and Trace Elements in a Coal Mining Waste Dump: The Case of Douro Coalfield, Portugal. Energy Geosci. 2021, 2, 121–128. [Google Scholar] [CrossRef]
- Kříbek, B.; Sýkorová, I.; Veselovský, F.; Laufek, F.; Malec, J.; Knésl, I.; Majer, V. Trace Element Geochemistry of Self-Burning and Weathering of a Mineralized Coal Waste Dump: The Novátor Mine, Czech Republic. Int. J. Coal Geol. 2017, 173, 158–175. [Google Scholar] [CrossRef]
- Chakraborty, P.; Wood, D.A.; Singh, S.; Hazra, B. Trace Element Contamination in Soils Surrounding the Open-Cast Coal Mines of Eastern Raniganj Basin, India. Environ. Geochem. Health 2023, 45, 7275–7302. [Google Scholar] [CrossRef]
- Dotaniya, M.L.; Meena, V.D. Rhizosphere Effect on Nutrient Availability in Soil and Its Uptake by Plants: A Review. Proc. Natl. Acad. Sci. India Sect. B Biol. Sci. 2015, 85, 1–12. [Google Scholar] [CrossRef]
- Antoniadis, V.; Levizou, E.; Shaheen, S.M.; Ok, Y.S.; Sebastian, A.; Baum, C.; Prasad, M.N.V.; Wenzel, W.W.; Rinklebe, J. Trace Elements in the Soil-Plant Interface: Phytoavailability, Translocation, and Phytoremediation—A Review. Earth Sci. Rev. 2017, 171, 621–645. [Google Scholar] [CrossRef]
- Uchimiya, M.; Bannon, D.; Nakanishi, H.; McBride, M.B.; Williams, M.A.; Yoshihara, T. Chemical Speciation, Plant Uptake, and Toxicity of Heavy Metals in Agricultural Soils. J. Agric. Food Chem. 2020, 68, 12856–12869. [Google Scholar] [CrossRef] [PubMed]
- Karthika, K.S.; Rashmi, I.; Parvathi, M.S. Biological Functions, Uptake and Transport of Essential Nutrients in Relation to Plant Growth. In Plant Nutrients and Abiotic Stress Tolerance; Springer: Singapore, 2018; pp. 1–49. [Google Scholar]
- Wang, H.; Inukai, Y.; Yamauchi, A. Root Development and Nutrient Uptake. CRC Crit. Rev. Plant Sci. 2006, 25, 279–301. [Google Scholar] [CrossRef]
- Silva, L.C.R.; Lambers, H. Soil-Plant-Atmosphere Interactions: Structure, Function, and Predictive Scaling for Climate Change Mitigation. Plant Soil. 2021, 461, 5–27. [Google Scholar] [CrossRef]
- Popovych, V.; Bosak, P.; Petlovanyi, M.; Telak, O.; Karabyn, V.; Pinder, V. Environmental safety of phytogenic fields formation on coal mines tailings. Ser. Geol. Tech. Sci. 2021, 2, 129–136. [Google Scholar] [CrossRef]
- World Health Organization. Permissible Limits of Heavy Metals in Soil and Plants; World Health Organization: Geneva, Switzerland, 1996. [Google Scholar]
- Minister of the Environment of Poland. Regulation of the Minister of the Environment of Poland of September 1, 2016. Journal of Laws of 2016, Item 1395 2016, Warsaw, Poland. Available online: https://isap.sejm.gov.pl/isap.nsf/download.xsp/WDU20160001395/O/D20161395.pdf (accessed on 10 May 2024).
Sample | Grain Size [mm] | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
>20.0 * | 20.0–10.0 * | 10.0–5.0 ** | 5.0–2.0 *** | 2.0–1.0 ** | 1.0–0.8 *** | 0.8–0.5 *** | 0.5–0.25 ** | 0.25–0.1 ** | 0.1–0.05 *** | <0.05 ** | |
Non-affected by fire | 19.6 | 21.6 | 12.4 | 8.2 | 3.6 | 2.2 | 5.3 | 9.8 | 7.3 | 4.0 | 6.0 |
Affected by fire | 3.8 | 3.4 | 1.6 | 3.6 | 10.5 | 5.0 | 9.4 | 21.6 | 17.2 | 6.4 | 17.5 |
Sample | TC * | TS *** | TIC *** | TOC * | pH ** | Nt *** [%] | |
---|---|---|---|---|---|---|---|
[%] | H2O | KCl | |||||
Non-affected by fire | 4.204 | 0.088 | 0.398 | 3.806 | 7.1 | 6.8 | 1.11 |
Affected by fire | 1.146 | 0.047 | 0.355 | 0.790 | 6.6 | 6.5 | 1.14 |
Affected by Fire | Non-Affected by Fire | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Solidago canadensis L. | Calamagrostis epigejos (L.) Roth. | Soil | Solidago canadensis L. | Calamagrostis epigejos (L.) Roth. | Soil | ||||||||||
Root | Washed | Unwashed | Root | Washed | Unwashed | Root | Washed | Unwashed | Root | Washed | Unwashed | ||||
Trace elements | Mo | −1.67 | −2.43 | −2.25 | −2.63 | −2.16 | −1.81 | −1.81 | −3.91 | −3.91 | −4.54 | −2.13 | −2.43 | −2.50 | −0.58 |
Cu | −0.99 | −2.60 | −2.24 | −0.56 | −3.22 | −2.93 | −0.39 | −0.81 | −1.66 | −2.31 | 0.20 | −2.33 | −2.51 | 1.37 | |
Pb | −2.09 | −4.06 | −3.82 | −2.13 | −3.29 | −3.10 | 1.64 | −2.20 | −3.50 | −4.25 | −0.93 | −2.59 | −2.40 | 2.83 | |
Zn | −0.78 | −1.09 | −1.01 | 0.93 | −1.15 | −0.89 | 1.99 | −0.57 | 0.41 | −0.19 | 1.72 | −0.75 | −0.70 | 3.26 | |
Ni | −4.12 | −7.12 | −5.54 | −2.73 | −5.80 | −4.80 | −0.26 | −4.54 | −6.54 | −6.54 | −3.17 | −5.54 | −5.12 | 0.44 | |
Co | −4.74 | −6.68 | −6.37 | −3.73 | −6.86 | −5.91 | −1.07 | −5.44 | −7.59 | −7.76 | −3.88 | −6.37 | −5.96 | −0.27 | |
Mn | −3.58 | −2.30 | −2.12 | −1.44 | −0.12 | −0.11 | −0.57 | −4.50 | −3.77 | −4.58 | −2.23 | −2.98 | −3.04 | 0.61 | |
Sr | −3.95 | −3.80 | −3.85 | −4.93 | −5.38 | −5.19 | −2.27 | −4.07 | −3.72 | −4.03 | −4.98 | −5.87 | −6.02 | −1.71 | |
Cd | 1.85 | 2.02 | 2.04 | 1.35 | 0.52 | 0.65 | 4.67 | 2.19 | 2.78 | 2.57 | 3.72 | 1.68 | 1.49 | 3.39 | |
Cr | −4.58 | −5.71 | −5.58 | −2.97 | −5.23 | −4.64 | 0.04 | −4.87 | −5.71 | −5.58 | −3.91 | −5.23 | −4.95 | 0.42 | |
Macroelements | Fe | −5.72 | −8.59 | −7.79 | −4.13 | −7.65 | −6.65 | −1.18 | −6.05 | −8.37 | −8.37 | −4.83 | −7.86 | −6.72 | −0.16 |
Ca | −2.56 | −2.33 | −2.33 | −2.74 | −3.58 | −3.30 | −1.07 | −3.14 | −2.17 | −2.76 | −3.88 | −4.54 | −4.70 | −0.81 | |
P | 0.83 | −0.43 | 0.40 | −0.18 | −1.21 | −1.28 | 7.96 | 0.96 | 0.79 | 0.57 | 0.54 | −0.45 | −0.37 | 8.21 | |
Mg | −4.59 | −5.10 | −4.92 | −4.59 | −5.59 | −5.49 | −2.27 | −4.41 | −3.81 | −4.58 | −4.84 | −5.34 | −5.31 | −1.34 | |
Al | −7.60 | −10.18 | −10.18 | −5.86 | −10.18 | −8.60 | −1.46 | −7.86 | −10.18 | −10.18 | −6.86 | −10.18 | −8.60 | −0.94 | |
Na | −7.27 | −7.66 | −8.00 | −10.33 | −11.91 | −10.91 | −3.12 | −9.91 | −10.33 | −10.91 | −9.33 | −10.91 | −10.33 | −3.80 | |
K | −1.45 | −2.37 | −2.30 | −3.62 | −3.16 | −3.29 | 4.37 | −1.90 | −2.64 | −2.34 | −3.32 | −3.39 | −3.16 | 4.21 | |
S | −0.52 | −1.52 | −0.84 | −0.84 | −0.14 | −0.14 | −0.52 | −0.84 | −0.52 | −1.52 | 0.41 | −0.38 | −0.38 | 0.48 |
Affected by Fire | Non-Affected by Fire | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Solidago canadensis L. | Calamagrostis epigejos (L.) Roth. | Soil | Solidago canadensis L. | Calamagrostis epigejos (L.) Roth. | Soil | ||||||||||
Root | Washed | Unwashed | Root | Washed | Unwashed | Root | Washed | Unwashed | Root | Washed | Unwashed | ||||
Trace elements | Mo | 16.55 | 71.71 | 46.23 | 2.84 | 45.09 | 28.78 | 0.65 | 4.41 | 22.06 | 14.18 | 6.50 | 43.03 | 18.55 | 0.74 |
Cu | 26.46 | 63.90 | 46.70 | 11.88 | 21.60 | 13.24 | 1.74 | 37.83 | 104.46 | 66.81 | 32.63 | 46.01 | 18.46 | 2.87 | |
Pb | 12.37 | 23.17 | 15.66 | 4.02 | 20.62 | 11.73 | 7.10 | 14.43 | 29.20 | 17.39 | 14.89 | 38.43 | 19.95 | 7.94 | |
Zn | 30.65 | 181.18 | 109.76 | 33.30 | 90.91 | 54.37 | 9.00 | 44.64 | 441.29 | 289.38 | 93.66 | 138.11 | 64.94 | 10.67 | |
Ni | 3.02 | 2.77 | 4.75 | 2.64 | 3.61 | 3.61 | 1.90 | 2.85 | 3.56 | 3.56 | 3.16 | 4.98 | 3.02 | 1.51 | |
Co | 1.97 | 3.77 | 2.66 | 1.32 | 1.74 | 1.68 | 1.08 | 1.52 | 1.71 | 1.52 | 1.93 | 2.80 | 1.69 | 0.92 | |
Mn | 4.40 | 78.64 | 50.80 | 6.46 | 184.76 | 93.02 | 1.53 | 2.93 | 24.28 | 13.82 | 6.08 | 29.31 | 12.79 | 1.70 | |
Sr | 3.40 | 27.70 | 15.31 | 0.57 | 4.85 | 2.76 | 0.47 | 3.95 | 25.14 | 20.25 | 0.90 | 3.96 | 1.62 | 0.34 | |
Cd | 189.28 | 1564.69 | 908.53 | 44.74 | 289.68 | 158.01 | 23.75 | 302.84 | 2271.32 | 1968.48 | 375.30 | 741.97 | 295.96 | 28.39 | |
Cr | 2.21 | 7.35 | 5.88 | 2.24 | 5.37 | 4.03 | 2.34 | 2.27 | 6.30 | 6.93 | 1.90 | 6.18 | 3.41 | 1.49 | |
Macroelements | Fe | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
Ca | 8.94 | 76.92 | 43.95 | 2.62 | 16.87 | 10.26 | 1.08 | 7.49 | 73.42 | 48.70 | 1.93 | 9.96 | 4.05 | 0.64 | |
P | 93.43 | 286.45 | 291.98 | 15.48 | 86.84 | 41.40 | 0.71 | 128.74 | 574.00 | 491.05 | 41.32 | 169.55 | 81.29 | 0.97 | |
Mg | 2.18 | 11.24 | 7.29 | 0.73 | 4.18 | 2.24 | 0.47 | 3.10 | 23.52 | 13.88 | 1.00 | 5.72 | 2.65 | 0.44 | |
Al | 0.27 | 0.33 | 0.19 | 0.30 | 0.17 | 0.26 | 0.83 | 0.28 | 0.28 | 0.28 | 0.24 | 0.20 | 0.27 | 0.58 | |
Na | 0.34 | 1.91 | 0.86 | 0.01 | 0.05 | 0.05 | 0.26 | 0.07 | 0.26 | 0.17 | 0.04 | 0.12 | 0.08 | 0.08 | |
K | 19.24 | 74.57 | 44.67 | 1.43 | 22.50 | 10.31 | 46.93 | 17.71 | 53.14 | 65.46 | 2.84 | 22.10 | 11.76 | 20.55 | |
S | 36.83 | 135.06 | 123.48 | 9.82 | 183.21 | 91.60 | 1.59 | 37.04 | 231.52 | 115.76 | 37.78 | 178.27 | 81.03 | 1.56 |
Affected by Fire | Non-Affected by Fire | ||||||||
---|---|---|---|---|---|---|---|---|---|
Solidago canadensis L. | Calamagrostis epigejos (L.) Roth. | Solidago canadensis L. | Calamagrostis epigejos (L.) Roth. | ||||||
Washed | Unwashed | Washed | Unwashed | Washed | Unwashed | Washed | Unwashed | ||
Trace elements | Mo | 0.59 | 0.67 | 1.38 | 1.76 | 1.00 | 0.64 | 2.79 | 2.64 |
Cu | 0.33 | 0.42 | 0.16 | 0.19 | 0.55 | 0.35 | 0.35 | 0.31 | |
Pb | 0.26 | 0.30 | 0.45 | 0.51 | 0.40 | 0.24 | 0.76 | 0.87 | |
Zn | 0.81 | 0.85 | 0.24 | 0.28 | 1.97 | 1.30 | 0.88 | 0.91 | |
Ni | 0.13 | 0.38 | 0.12 | 0.24 | 0.25 | 0.25 | 0.50 | 0.67 | |
Co | 0.26 | 0.32 | 0.11 | 0.22 | 0.23 | 0.20 | 0.53 | 0.70 | |
Mn | 2.44 | 2.76 | 2.49 | 2.51 | 1.66 | 0.94 | 2.86 | 2.74 | |
Sr | 1.11 | 1.08 | 0.74 | 0.84 | 1.27 | 1.02 | 0.29 | 0.26 | |
Cd | 1.13 | 1.15 | 0.56 | 0.62 | 1.50 | 1.30 | 0.70 | 0.61 | |
Cr | 0.45 | 0.64 | 0.21 | 0.31 | 0.56 | 0.61 | 0.78 | 0.94 | |
Macroelements | Fe | 0.14 | 0.24 | 0.09 | 0.17 | 0.20 | 0.20 | 0.29 | 0.63 |
Ca | 1.17 | 1.17 | 0.56 | 0.68 | 1.96 | 1.30 | 0.38 | 0.34 | |
P | 0.42 | 0.75 | 0.49 | 0.47 | 0.89 | 0.76 | 0.38 | 0.40 | |
Mg | 0.70 | 0.80 | 0.50 | 0.54 | 1.52 | 0.89 | 0.53 | 0.54 | |
Al | 0.17 | 0.17 | 0.05 | 0.15 | 0.20 | 0.20 | 0.20 | 0.60 | |
Na | 0.76 | 0.60 | 0.33 | 0.67 | 0.75 | 0.50 | 0.50 | 0.75 | |
K | 0.53 | 0.55 | 1.37 | 1.26 | 0.60 | 0.74 | 0.36 | 0.42 | |
S | 0.50 | 0.80 | 1.63 | 1.63 | 1.25 | 0.63 | 1.38 | 1.38 |
Plant Samples from the Thermally Active Area | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Mo | Cu | Pb | Zn | Ni | Co | Mn | Sr | Cd | Cr | Fe | Ca | P | Mg | Al | Na | K | S | |
Mo | 1 | |||||||||||||||||
Cu | 0.137 | 1 | ||||||||||||||||
Pb | 0.379 | 0.677 | 1 | |||||||||||||||
Zn | 0.151 | 0.835 | 0.934 | 1 | ||||||||||||||
Ni | 0.318 | 0.739 | 0.993 | 0.969 | 1 | |||||||||||||
Co | 0.331 | 0.731 | 0.996 | 0.962 | 0.999 | 1 | ||||||||||||
Mn | 0.199 | −0.231 | 0.223 | 0.167 | 0.211 | 0.199 | 1 | |||||||||||
Sr | 0.343 | 0.606 | 0.940 | 0.829 | 0.916 | 0.927 | −0.047 | 1 | ||||||||||
Cd | 0.285 | 0.642 | 0.928 | 0.840 | 0.912 | 0.922 | −0.102 | 0.996 | 1 | |||||||||
Cr | 0.328 | 0.697 | 0.998 | 0.954 | 0.998 | 0.999 | 0.230 | 0.929 | 0.921 | 1 | ||||||||
Fe | 0.326 | 0.713 | 0.997 | 0.958 | 0.999 | 1.000 | 0.218 | 0.927 | 0.921 | 1.000 | 1 | |||||||
Ca | 0.260 | 0.660 | 0.937 | 0.865 | 0.926 | 0.934 | −0.079 | 0.993 | 0.998 | 0.933 | 0.933 | 1 | ||||||
P | 0.105 | 0.091 | −0.405 | −0.393 | −0.404 | −0.394 | −0.831 | −0.207 | −0.173 | −0.427 | −0.415 | −0.207 | 1 | |||||
Mg | 0.352 | 0.716 | 0.996 | 0.941 | 0.993 | 0.996 | 0.140 | 0.956 | 0.951 | 0.995 | 0.995 | 0.958 | −0.340 | 1 | ||||
Al | 0.350 | 0.664 | 0.999 | 0.935 | 0.993 | 0.995 | 0.231 | 0.941 | 0.930 | 0.998 | 0.997 | 0.940 | −0.427 | 0.995 | 1 | |||
Na | 0.379 | 0.641 | 0.997 | 0.911 | 0.983 | 0.988 | 0.191 | 0.961 | 0.949 | 0.991 | 0.990 | 0.954 | −0.390 | 0.994 | 0.997 | 1 | ||
K | 0.371 | 0.637 | 0.998 | 0.918 | 0.987 | 0.990 | 0.231 | 0.949 | 0.936 | 0.995 | 0.993 | 0.943 | −0.422 | 0.993 | 0.999 | 0.999 | 1 | |
S | 0.574 | −0.165 | 0.074 | −0.025 | 0.051 | 0.042 | 0.789 | −0.179 | −0.239 | 0.056 | 0.050 | −0.240 | −0.330 | 0.003 | 0.059 | 0.034 | 0.063 | 1 |
Plant Samples from the Thermally Inactive Area | ||||||||||||||||||
Mo | Cu | Pb | Zn | Ni | Co | Mn | Sr | Cd | Cr | Fe | Ca | P | Mg | Al | Na | K | S | |
Mo | 1 | |||||||||||||||||
Cu | 0.924 | 1 | ||||||||||||||||
Pb | 0.956 | 0.939 | 1 | |||||||||||||||
Zn | 0.950 | 0.982 | 0.969 | 1 | ||||||||||||||
Ni | 0.956 | 0.943 | 1.000 | 0.972 | 1 | |||||||||||||
Co | 0.957 | 0.944 | 1.000 | 0.973 | 1.000 | 1 | ||||||||||||
Mn | 0.972 | 0.941 | 0.998 | 0.975 | 0.998 | 0.998 | 1 | |||||||||||
Sr | 0.854 | 0.894 | 0.966 | 0.930 | 0.966 | 0.966 | 0.951 | 1 | ||||||||||
Cd | 0.895 | 0.979 | 0.920 | 0.986 | 0.925 | 0.925 | 0.926 | 0.896 | 1 | |||||||||
Cr | 0.951 | 0.931 | 1.000 | 0.964 | 0.999 | 0.999 | 0.996 | 0.970 | 0.913 | 1 | ||||||||
Fe | 0.950 | 0.932 | 1.000 | 0.965 | 0.999 | 0.999 | 0.996 | 0.971 | 0.914 | 1.000 | 1 | |||||||
Ca | 0.796 | 0.846 | 0.927 | 0.897 | 0.927 | 0.926 | 0.911 | 0.989 | 0.870 | 0.933 | 0.934 | 1 | ||||||
P | −0.546 | −0.196 | −0.369 | −0.291 | −0.362 | −0.363 | −0.411 | −0.175 | −0.176 | −0.369 | −0.365 | −0.115 | 1 | |||||
Mg | 0.911 | 0.914 | 0.989 | 0.953 | 0.989 | 0.988 | 0.981 | 0.992 | 0.908 | 0.991 | 0.992 | 0.971 | −0.283 | 1 | ||||
Al | 0.946 | 0.925 | 0.999 | 0.960 | 0.998 | 0.998 | 0.995 | 0.973 | 0.908 | 1.000 | 1.000 | 0.937 | −0.367 | 0.993 | 1 | |||
Na | 0.946 | 0.925 | 0.999 | 0.960 | 0.998 | 0.998 | 0.995 | 0.973 | 0.908 | 1.000 | 1.000 | 0.938 | −0.366 | 0.993 | 1.000 | 1 | ||
K | 0.941 | 0.919 | 0.998 | 0.956 | 0.997 | 0.997 | 0.993 | 0.975 | 0.903 | 0.999 | 0.999 | 0.940 | −0.364 | 0.994 | 1.000 | 1.000 | 1 | |
S | 0.819 | 0.819 | 0.677 | 0.794 | 0.681 | 0.683 | 0.714 | 0.537 | 0.804 | 0.658 | 0.658 | 0.487 | −0.367 | 0.610 | 0.646 | 0.645 | 0.633 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abramowicz, A.K.; Rahmonov, O. Element Cycling at Thermally Active Coal-Waste Dumps: A Case Study of Calamagrostis epigejos and Solidago canadensis. Resources 2024, 13, 73. https://doi.org/10.3390/resources13060073
Abramowicz AK, Rahmonov O. Element Cycling at Thermally Active Coal-Waste Dumps: A Case Study of Calamagrostis epigejos and Solidago canadensis. Resources. 2024; 13(6):73. https://doi.org/10.3390/resources13060073
Chicago/Turabian StyleAbramowicz, Anna K., and Oimahmad Rahmonov. 2024. "Element Cycling at Thermally Active Coal-Waste Dumps: A Case Study of Calamagrostis epigejos and Solidago canadensis" Resources 13, no. 6: 73. https://doi.org/10.3390/resources13060073
APA StyleAbramowicz, A. K., & Rahmonov, O. (2024). Element Cycling at Thermally Active Coal-Waste Dumps: A Case Study of Calamagrostis epigejos and Solidago canadensis. Resources, 13(6), 73. https://doi.org/10.3390/resources13060073