Growth of Clones of Eucalyptus urophylla in Two Contrasting Soil Conditions in Plantations of Southeastern Mexico
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Site Preparation
2.3. Establishment and Management of the Trial
2.4. Evaluation of Growth
2.5. Data Analysis
2.5.1. Analysis of Survival
2.5.2. Analysis of Growth
2.5.3. Estimation of Genetic Parameters
3. Results
3.1. Survival
3.2. Growth of the E. urophylla Clonal Lines
3.3. Genetic Parameters
4. Discussion
5. Recommendations
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sein, C.C.; Mitlöhner, R. Eucalyptus urophylla S.T. Blake: Ecology and Silviculture in Vietnam; CIFOR: Bogor, Indonesia, 2011; p. 11. [Google Scholar] [CrossRef]
- CONAFOR; AMEPLANFOR. Situación Actual Del Germoplasma Utilizado en Los Programas de Plantaciones Forestales Comerciales en el Sureste de México. Available online: https://www.gob.mx/cms/uploads/attachment/file/246716/Situacion_actual_de_germoplasma_utilizado_en_los_proyectos_de_PFC_en_el_sureste.pdf (accessed on 9 March 2024).
- Sánchez-Vargas, N.M.; Vargas-Hernández, J.J.; Ruiz-Posadas, L.M.; López-Upton, J. Repetibilidad de parámetros genéticos en un ensayo clonal Eucalyptus urophylla S.T. Blake en el sureste de México. Agrociencia 2005, 38, 465–475. [Google Scholar]
- BMV [Internet]. Reporte anual de Proteak Uno S.A.B. de C.V. Available online: https://proteak.com/wp-content/uploads/2022/05/Informe-anual-2021.pdf (accessed on 9 March 2024).
- Delgado-Caballero, C.E.; Gómez-Guerrero, A.; Valdez-Lazalde, J.R.; De los Santos-Posadas, H.; Fierros-González, A.M.; Horwath, W.R. Site index and soil properties in young plantations of Eucalyptus grandis and E. urophylla in Southeastern Mexico. Agrociencia 2009, 43, 61–72. [Google Scholar]
- Pérez-Sandoval, R.; Gómez-Guerrero, A.; Fierros-González, A.; Horwath, W.R. Site productivity of clone and seed raised plantations of Eucalyptus urophylla and Eucalyptus grandis in southeast Mexico. Open J. For. 2012, 2, 225–231. [Google Scholar] [CrossRef]
- Palma-López, D.J.; Mercado-Zapata, F.J.; Palma-Cancino, D.J.; Jasso-Mata, J.; Carillo-Ávila, E.; Salgado-García, S. Producción de biomasa y extracción de nutrimentos en una plantación de Eucalyptus grandis (Hill ex Maiden) y Eucalyptus urophylla (S.T. Blake) en ultisoles de México. Agroproductividad 2019, 12, 25–30. [Google Scholar] [CrossRef]
- Rubilar, R.; Hubbard, R.; Emhart, V.; Mardones, O.; Quiroga, J.J.; Medina, A.; Valenzuela, H.; Espinoza, J.; Burgos, Y.; Bozo, D. Climate and water availability impacts on early growth and growth efficiency of Eucalyptus genotypes: The importance of GxE interactions. For. Ecol. Manag. 2020, 458, 117763. [Google Scholar] [CrossRef]
- Grishkevich, V.; Yanai, I. The genomic determinants of genotype × environment interactions in gene expression. Trends Genet. 2013, 29, 479–487. [Google Scholar] [CrossRef]
- Araujo, M.J.; Paula, R.C.; Campoe, O.C.; Carneiro, R.L. Adaptability and stability of eucalypt clones at different ages across environmental gradients in Brazil. For. Ecol. Manag. 2019, 454, 117631. [Google Scholar] [CrossRef]
- Yan, W.; Tinker, N. Biplot analysis of multi-environment trial data: Principles and applications. Can. J. Plant Sci. 2006, 86, 623–645. [Google Scholar] [CrossRef]
- Malosetti, M.; Ribaut, J.-M.; van Eeuwijk, F.A. The statistical analysis of multi-environment data: Modeling genotype-by-environment interaction and its genetic basis. Front. Physiol. 2013, 4, 44. [Google Scholar] [CrossRef]
- van Eeuwijk, F.A.; Bustos-Korts, D.V.; Malosetti, M. What should students in plant breeding know about the statistical aspects of genotype x environment interactions? Crop. Sci. 2016, 56, 2119–2140. [Google Scholar] [CrossRef]
- Palma-López, D.J.; Jiménez Ramírez, R.; Zavala-Cruz, J.; Bautista-Zúñiga, F.; Gavi Reyes, F.; Palma-Cancino, D.Y. Actualización de la clasificación de suelos de Tabasco, México. Agroproductividad 2017, 10, 29–35. [Google Scholar]
- García, E. Modificaciones al Sistema de Clasificación Climática de Köppen, 5th ed.; Instituto de Geografía-UNAM: México City, Mexico, 2004; pp. 20–21. [Google Scholar]
- Hernández-Ramos, J.; De los Santos-Posadas, H.M.; Valdez-Lazalde, J.R.; Tamarit-Urias, J.C.; Ángeles-Pérez, G.; Hernández-Ramos, A.; Peduzzi, A. Funciones de ahusamiento para clones de Eucalyptus urophylla establecidos en plantaciones comerciales en Huimanguillo, Tabasco, México. Agrociencia 2018, 52, 1013–1029. [Google Scholar]
- Silva, J.W.L.; Silva, J.A.A.; Tavares, J.A. Volumetric production of Eucalyptus spp. clones under different spacing in a severe drought period in the semi-arid region of Pernambuco, Brazil. Floresta 2022, 52, 150–158. [Google Scholar] [CrossRef]
- Murillo-Brito, Y.; Domínguez-Domínguez, M.; Martínez-Zurimendi, P.; Lagunes-Espinoza, L.C.; Aldrete, A. Índice de sitio en plantaciones de Cedrela odorata en el trópico húmedo de México. Rev. Fac. Cienc. Agrar. 2017, 49, 15–31. [Google Scholar]
- Kaplan, E.L.; Meier, P. Nonparametric estimation from incomplete observations. J. Am. Stat. Assoc. 1958, 53, 457–481. [Google Scholar] [CrossRef]
- R Core Team. R: A language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2022; Available online: https://www.R-project.org/ (accessed on 1 September 2023).
- Wobbrock, J.O.; Findlater, L.; Gergle, D.; Higgins, J.J. The Aligned Rank Transform for Nonparametric Factorial Analyses Using Only ANOVA procedures. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, Vancouver, BC, Canada, 7–11 May 2011; pp. 143–146. [Google Scholar] [CrossRef]
- Mangiafico, S.S. Summary and Analysis of Extension Program Evaluation in R. Available online: https://rcompanion.org/handbook/F_16.html (accessed on 10 March 2024).
- Braga, R.C.; Paludeto, J.G.Z.; Souza, B.M.; Aguiar, A.V.; Pollnow, M.F.M.; Carvalho, A.G.M.; Tambarussi, E.V. Genetic parameters and genotype × environment interaction in Pinus taeda clonal tests. For. Ecol. Manag. 2020, 474, 118342. [Google Scholar] [CrossRef]
- Wu, J.; Zhou, Q.; Sang, Y.; Kang, X.; Zhang, P. Genotype-environment interaction and stability of fiber properties and growth traits in triploid hybrid clones of Populus tomentosa. BMC Plant Biol. 2021, 21, 405. [Google Scholar] [CrossRef] [PubMed]
- Munhoz, L.V.; Santos, O.P.; Valente, B.M.R.T.; Tambarussi, E.V. Genetic control of productivity and genotypes by environments interaction for Eucalyptus dorrigoensis in southern Brazil. Cerne 2021, 27, e102594. [Google Scholar] [CrossRef]
- Li, Z.; Liu, N.; Zhang, W.; Dong, Y.; Ding, M.; Huang, Q.; Ding, C.; Su, X. Application of BLUP-GGE in growth variation analysis in southern-type Populus deltoides seedlings in different climatic regions. Forests 2022, 13, 2120. [Google Scholar] [CrossRef]
- Satterthwaite, F.E. An approximate distribution of estimates of variance components. Biometrics 1946, 2, 110–114. [Google Scholar] [CrossRef]
- Muranty, H.; Schermann, N.; Santi, F.; Dufour, J. Genetic parameters estimated from a wild cherry diallel: Consequences for breeding. Silvae Genet. 1998, 47, 249–257. [Google Scholar]
- Becker, W.A. Manual of Quantitative Genetics; Academic Enterprises: Washington, DC, USA, 1984. [Google Scholar]
- Makouanzi, G.; Chaix, G.; Nourissier, S.; Vigneron, P. Genetic variability of growth and wood chemical properties in a clonal population of Eucalyptus urophylla × Eucalyptus grandis in the Congo. South For. 2017, 80, 151–158. [Google Scholar] [CrossRef]
- Falconer, D.S.; Mackay, T.F.C. Introduction to Quantitative Genetics, 4th ed.; Longman: Harlow, UK, 1996. [Google Scholar]
- Olivoto, T.; Lúcio, A.D.C. metan: An R package for multi-environment trial analysis. Methods Ecol. Evol. 2020, 11, 783–789. [Google Scholar] [CrossRef]
- Yan, W.; Hunt, L.A. Biplot analysis of multi-environment trial data. In Quantitative Genetics, Genomics and Plant Breeding, 2nd ed.; Kang, M.S., Ed.; CABI Publishing: Wallingford, UK, 2020; pp. 162–177. [Google Scholar]
- Yan, W.; Hunt, L.A.; Sheng, Q.; Szlavnics, Z. Cultivar evaluation and mega-environment investigation based on the GGE biplot. Crop Sci. 2000, 40, 597–605. [Google Scholar] [CrossRef]
- Yan, W.; Kang, M.S.; Ma, B.; Woods, S.; Cornelius, P.C. GGE biplot vs. AMMI analysis of genotype-by-environment data. Crop. Sci. 2007, 47, 641–653. [Google Scholar] [CrossRef]
- Yan, W. GGEbiplot-A windows application for graphical analysis of multienvironment trial data and other types of two-way data. Agron. J. 2001, 93, 1111–1118. [Google Scholar] [CrossRef]
- Vallejos, J.; Badilla, Y.; Picado, F.; Murillo, O. Metodología para la selección e incorporación de árboles plus en programas de mejoramiento genético forestal. Agron. Costarric. 2010, 34, 105–119. [Google Scholar] [CrossRef]
- Lambeth, C.; Endo, M.; Wright, J. Genetic analysis of 16 clonal trials of Eucalyptus grandis and comparisons with seedling checks. For. Sci. 1994, 40, 397–411. [Google Scholar] [CrossRef]
- Rezende, G.D.S.P.; Lima, J.L.; Dias, D.C.; Lima, B.M.; Aguiar, A.M.; Bertolucci, F.L.G.; Ramalho, M.A.P. Clonal composites: An alternative to improve the sustainability of production in eucalypt forests. For. Ecol. Manag. 2019, 449, 117445. [Google Scholar] [CrossRef]
- Oliveira, R.S.; Santos, L.T.V.; Melo, S.C.; Chagas, M.P.; Ribeiro, D.; Reis, C.A.F.; Novaes, E.; Sette, C.R. Wood energy yield for Eucalyptus clones growing under seasonal drought-stress in Brazil. Biomass Bioenergy 2021, 154, 106264. [Google Scholar] [CrossRef]
- Pereira, B.L.C.; Oliveira, A.C.; Carvalho, A.M.M.L.; Carneiro, A.C.O.; Santos, L.C.; Vital, B.R. Quality of wood and charcoal from Eucalyptus clones for ironmaster use. Int. J. For. Res. 2012, 2012, 523025. [Google Scholar] [CrossRef]
- Sadono, R.; Wardhana, W.; Wirabuana, P.Y.A.P.; Idris, F. Soil chemical properties influences on the growth performance of Eucalyptus urophylla planted in dryland ecosystems, East Nusa Tenggara. J. Degrade. Min. Land. Manag. 2021, 8, 2635–2642. [Google Scholar] [CrossRef]
- Resquin, F.; Navarro-Cerrillo, R.M.; Rachid-Casnati, C.; Hirigoyen, A.; Carrasco-Letelier, L.; Duque-Lazo, J. Allometry, growth and survival of three Eucalyptus species (Eucalyptus benthamii Maiden and Cambage, E. dunnii Maiden and E. grandis Hill ex Maiden) in high-density plantations in Uruguay. Forests 2018, 9, 745. [Google Scholar] [CrossRef]
- Zhao, D.; Kane, M.; Borders, B.E. Growth responses to planting density and management intensity in loblolly pine plantations in the southeastern USA Lower Coastal Plain. Ann. For. Sci. 2011, 68, 625–635. [Google Scholar] [CrossRef]
- Bahru, T.; Eshete, N.; Woldemariam, Z. Effect of spacing on survival and growth performance of Eucalyptus grandis Hill ex Maiden at Holeta Research Site, Central Ethiopia. Int. J. For. Res. 2023, 2023, 9957776. [Google Scholar] [CrossRef]
- Xu, D.; Dell, B.; Yang, Z.; Malajczuk, N.; Gong, M. Effects of phosphorus application on productivity and nutrient accumulation of a Eucalyptus urophylla plantation. J. Trop. For. Sci. 2005, 17, 447–461. [Google Scholar]
- Manasa, C.; Hegde, R.; BKM, A.; Singh, A.; Varghese, M.; Salimath, S.K. Tree spacing effect on growth and yield of Eucalyptus urophylla S.T. Blake: Prominent species for pulp and paper industry. Pharma Innov. 2022, 11, 1945–1951. [Google Scholar]
- Almeida, M.N.F.; Vidaurre, G.B.; Pezzopane, J.E.M.; Lousada, J.L.P.C.; Silva, M.E.C.M.; Câmara, A.P.; Rocha, S.M.G.; Oliveira, J.C.L.; Campoe, O.C.; Carneiro, F.L.; et al. Heartwood variation of Eucalyptus urophylla is influenced by climatic conditions. For. Ecol. Manag. 2020, 458, 117743. [Google Scholar] [CrossRef]
- Silva, B.I.P.; Santos, A.C.; Silva, M.F.; Moraes, M.D.A.; Sette, C.R., Jr. Bioenergy yield of Eucalyptus urophylla clones and its relationship with the mean annual increment of wood volume. Can. J. For. Res. 2021, 51, 1381–1385. [Google Scholar] [CrossRef]
- Resende, R.T.; Soares, A.A.V.; Forrester, D.I.; Marcatti, G.E.; Santos, A.R.; Takahashi, E.K.; Silva, F.F.; Grattapagliah, D.; Resende, M.D.V.; Leite, H.G. Environmental uniformity, site quality and tree competition interact to determine stand productivity of clonal Eucalyptus. For. Ecol. Manag. 2018, 410, 76–83. [Google Scholar] [CrossRef]
- Allen, H.L.; Fox, T.R.; Campbell, R.G. What is ahead for intensive pine plantation silviculture in the South? South. J. Appl. For. 2005, 29, 62–69. [Google Scholar] [CrossRef]
- Zhang, D.; Stanturf, J. Forest plantations. Encycl. Ecol. 2008, 5, 1973–1980. [Google Scholar] [CrossRef]
- Seppänen, P. Secuestro de carbono a través de plantaciones de eucalipto en el trópico húmedo. For. Veracruzana 2002, 4, 51–58. [Google Scholar]
- Forrester, D.I.; Collopy, J.J.; Beadle, C.L.; Baker, T.G. Effect of thinning, pruning and nitrogen fertiliser application on light interception and light-use efficiency in a young Eucalyptus nitens plantation. For. Ecol. Manag. 2013, 288, 21–30. [Google Scholar] [CrossRef]
- Timander, P. Fertilization in Eucalyptus urophylla Plantations in Guangxi, Southern China. Master’s Thesis, Southern Swedish Forest Research Centre, Swedish University of Agricultural Sciences, Uppsala, Sweden, 2011. [Google Scholar]
- Castro, C.A.O.; Resende, R.T.; Bhering, L.L.; Cruz, C.D. Brief history of Eucalyptus breeding in Brazil under perspective of biometric advances. Cienc. Rural. 2016, 46, 1585–1593. [Google Scholar] [CrossRef]
- Costa, S.E.L.; Santos, R.C.; Vidaurre, G.B.; Castro, R.V.O.; Rocha, S.M.G.; Carneiro, R.L.; Campoe, O.C.; Santos, C.P.S.; Gomes, I.R.F.; Carvalho, N.F.O.; et al. The effects of contrasting environments on the basic density and mean annual increment of wood from eucalyptus clones. For. Ecol. Manag. 2020, 458, 117807. [Google Scholar] [CrossRef]
- Chen, S.; Arnold, R.; Li, Z.; Li, T.; Zhou, G.; Wu, Z.; Zhou, Q. Tree and stand growth for clonal E. urophylla × grandis across a range of initial stockings in southern China. New For. 2011, 41, 95–112. [Google Scholar] [CrossRef]
- Jatzek, V.A.; Tambarussi, E.V.; Rosse, L.N.; Valente, B.M.R.; Rocha, L.F. Selection of superior Eucalyptus “urograndis” hybrid clones through genotype × environment analysis. TreeDimens. J. 2022, 10, 1–11. [Google Scholar] [CrossRef]
- Terfa, G.N.; Gurmu, G.N. Genetic variability, heritability and genetic advance in linseed (Linum usitatissimum L) genotypes for seed yield and other agronomic traits. Oil. Crop. Cci. 2020, 5, 156–160. [Google Scholar] [CrossRef]
- Resende, M.D.V.; Duarte, J.B. Precisão e controle de qualidade em experimentos de avaliação de cultivares. Pesqui. Agropecu. Trop. 2007, 7, 182–194. [Google Scholar]
- Pinto, D.S.; Resende, R.T.; Mesquita, A.G.G.; Rosado, A.M.; Cruz, C.D. Seleção precoce para características de crescimento em testes clonais de Eucalyptus urophylla. Sci. For. 2014, 42, 251–257. [Google Scholar]
- Wu, S.; Zhu, Y.; Xu, J.; Lu, Z.; Chen, G.; Song, P.; Guo, W. Genetic variation and genetic gain for energy production, growth traits and wood properties in Eucalyptus hybrid clones in China. Aust. For. 2017, 80, 57–65. [Google Scholar] [CrossRef]
- Wu, S.; Xu, J.; Li, G.; Lu, Z.; Han, C.; Hu, Y.; Hu, X. Genetic variation and genetic gain in growth traits, stem-branch characteristics and wood properties and their relationships to Eucalyptus urophylla clones. Silvae Genet. 2013, 62, 218–231. [Google Scholar] [CrossRef]
- Garcia, C.H. Tabelas Para Classificação do Coeficiente de Variação; IPEF: Piracicaba, Brasil, 1989. [Google Scholar]
- Mora, F.; Arriagada, O. A classification proposal for coefficients of variation in Eucalyptus experiments involving survival, growth and wood quality variables. Bragantia 2016, 75, 263–267. [Google Scholar] [CrossRef]
- Rosado, A.M.; Rosado, T.B.; Alves, A.A.; Laviola, B.G.; Bhering, L.L. Seleção simultânea de clones de eucalipto de acordó com produtividade, estabilidade e adaptabilidade. Pesqui. Agropecu. Bras. 2012, 47, 964–971. [Google Scholar] [CrossRef]
- Furlan, R.A.; Moraes, C.B.; Tambarussi, E.V. Genetic parameters of Eucalyptus spp. clones in northeastern Brazil. Floresta 2020, 50, 1267–1278. [Google Scholar] [CrossRef]
- Ignacio-Sánchez, E.; Vargas-Hernández, J.J.; López-Upton, J.; Borja-de la Rosa, A. Parámetros genéticos del crecimiento y densidad de madera en edades juveniles de Eucalyptus urophylla S. T. Blake. Agrociencia 2005, 9, 469–479. [Google Scholar]
- Pliura, A.; Zhang, S.Y.; MacKay, J.; Bousquet, J. Genotypic variation in wood density and growth traits of poplar hybrids at four clonal trials. For. Ecol. Manag. 2007, 238, 92–106. [Google Scholar] [CrossRef]
- Karimizadeh, R.; Mohammadi, M.; Sabaghni, N.; Mahmoodi, A.A.; Roustami, B.; Seyyedi, F.; Akbari, F. GGE biplot analysis of yield stability in multi-environment trials of lentil genotypes under rainfed condition. Not. Sci. Biol. 2013, 5, 256–262. [Google Scholar] [CrossRef]
- Ferreira, F.M.; Rocha, J.R.A.S.C.; Alves, R.S.; Malikouski, R.G.; Peixoto, M.A.; Oliveira, S.S.; Aguiar, A.M.; Bhering, L.L. GGE biplot-based genetic selection to guide interspecific crossing in Corymbia spp. Bragantia 2021, 80, e5221. [Google Scholar] [CrossRef]
- Frangi, J.; Pérez, C.; Goya, J.; Tesón, N.; Barrera, M.; Arturi, M. Modelo empírico integral de una plantación de Eucalyptus grandis en Concordia, Entre Ríos. Bosque 2016, 37, 191–204. [Google Scholar] [CrossRef]
- Rosim, C.C.; Hsing, T.Y.; Paula, R.C. Nutrient use efficiency in interspecific hybrids of eucalypt. Cienc. Agron. 2016, 47, 540–547. [Google Scholar] [CrossRef]
- Stape, J.L.; Binkley, D.; Ryan, M.G.; Fonseca, S.; Loos, R.A.; Takahashi, E.N.; Silva, C.R.; Silva, S.R.; Hakamada, R.E.; Ferreira, J.M.A.; et al. The Brazil Eucalyptus potential productivity project: Influence of water, nutrients and stand uniformity on wood production. For. Ecol. Manag. 2010, 259, 1684–1694. [Google Scholar] [CrossRef]
- Silva, G.T.G.; Martins, K.; Belinazi, L.L.; Santos, A.P.; Rossi, M.; Longui, E.L. Influence of soil type on wood density and mean annual increment in two commercial Eucalyptus clones. Rev. Inst. Flor. 2020, 32, 171–186. [Google Scholar] [CrossRef]
- Otto, M.S.G.; Vergani, A.R.; Gonçalves, A.N.; Silva, S.R.; Vrechi, A.; Stape, J.L. Impact of water supply on stomatal conductance, light use efficiency and growth of tropical Eucalyptus plantation in Brazil. Ecol. Nutr. Florest. 2017, 4, 87–92. [Google Scholar] [CrossRef]
- Payn, K.G.; Dvorak, W.S.; Janse, B.J.H.; Myburg, A.A. Microsatellite diversity and genetic structure of the commercially important tropical tree species Eucalyptus urophylla, endemic to seven islands in eastern Indonesia. Tree Genet. Genomes 2008, 4, 519–530. [Google Scholar] [CrossRef]
- Barros, I.P.; Costa, L.O.S.; Silva, P.H.M.; Araujo, M.; Novaes, E. Genetic structure and diversity in wild and breeding populations of Eucalyptus urophylla. Silvae Genet. 2022, 71, 128–136. [Google Scholar] [CrossRef]
Clonal Line | Acrisol Soil | Fluvisol Soil | ||||||
---|---|---|---|---|---|---|---|---|
S (%) | H (m) | DBH (cm) | VOL (m3 ha−1) | S (%) | H (m) | DBH (cm) | VOL (m3 ha−1) | |
F1 | 47 | 22.9 abc | 18.4 abc | 228.4 abcde | 50 | 20.3 abcd | 17.6 abcd | 150.0 bc |
F2 | 86 | 21.9 abc | 16.0 abc | 238.3 abcde | 83 | 20.0 abcd | 16.9 abcd | 235.5 ab |
F3 | 94 | 17.7 c | 13.7 bc | 153.6 bcde | 64 | 15.7 d | 13.5 cd | 93.8 bc |
F4 | 58 | 20.5 bc | 14.3 abc | 122.6 cde | 58 | 18.0 abcd | 14.3 abcd | 113.1 bc |
F5 | 97 | 24.0 ab | 16.8 abc | 315.6 abcd | 56 | 18.6 abcd | 16.2 abcd | 140.9 bc |
F6 | 53 | 20.5 bc | 13.9 bc | 103.8 cde | 56 | 19.1 abcd | 13.8 bcd | 94.9 bc |
F7 | 83 | 22.9 abc | 18.0 abc | 332.3 abcd | 44 | 20.1 abcd | 18.9 abcd | 165.9 bc |
F8 | 86 | 21.5 abc | 14.6 abc | 191.7 abcde | 86 | 16.9 cd | 13.7 bcd | 135.9 bc |
F9 | 81 | 21.3 abc | 17.7 abc | 279.1 abcde | 72 | 18.0 abcd | 14.7 abcd | 143.2 bc |
F10 | 89 | 21.4 abc | 16.8 abc | 274.8 abcde | 72 | 18.9 abcd | 16.8 abcd | 197.3 abc |
F11 | 78 | 19.1 bc | 14.3 abc | 164.1abcde | 86 | 17.2 cd | 12.4 d | 110.1 bc |
F12 | 89 | 18.5 bc | 15.2 abc | 240.3 abcde | 56 | 18.5 abcd | 19.7 ab | 201.3 abc |
F13 | 64 | 24.9 ab | 19.5 ab | 295.7 abcd | 58 | 21.6 a | 19.6 abc | 211.7 abc |
F14 | 86 | 21.2 abc | 13.5 c | 165.0 abcde | 86 | 18.9 abcd | 14.4 abcd | 150.8 bc |
F16 | 86 | 21.8 abc | 13.7 bc | 166.5 abcde | 75 | 18.6 abcd | 13.9 bcd | 124.5 bc |
F18 | 83 | 23.7 abc | 21.4 a | 489.9 a | 64 | 21.6 a | 22.9 a | 336.6 a |
F19 | 92 | 22.4 abc | 15.0 abc | 223.7 abcde | 81 | 19.4 abcd | 15.5 abcd | 170.7 bc |
F20 | 89 | 21.4 abc | 15.1 abc | 199.6 abcde | 89 | 19.6 abcd | 15.6 abcd | 194.8 abc |
F21 | 100 | 23.5 abc | 18.8 abc | 408.0 ab | 86 | 19.4 abcd | 17.3 abcd | 233.9 ab |
F22 | 50 | 22.6 abc | 16.2 abc | 145.3 cde | 56 | 17.6 bcd | 14.3 abcd | 106.9 bc |
F23 | 83 | 26.8 a | 18.5 abc | 346.8 abc | 67 | 20.1 abcd | 18.2 abcd | 209.7 abc |
F24 | 61 | 21.6 abc | 14.4 abc | 142.7 cde | 39 | 18.0 abcd | 13.8 bcd | 65.3 c |
F25 | 86 | 22.1 abc | 14.9 abc | 209.0 abcde | 72 | 18.0 abcd | 15.6 abcd | 157.7 bc |
F26 | 78 | 21.3 abc | 15.4 abc | 235.5 abcde | 69 | 18.3 abcd | 16.2 abcd | 177.9 bc |
Average | 21.9 | 16.0 | 223.3 | 18.9 | 16.1 | 163.4 | ||
SD | 2.0 | 2.1 | 101.2 | 1.4 | 2.5 | 58.9 |
Effect | Test | DBH | H | VOL |
---|---|---|---|---|
Replicate × Environment | F-test | 1.609 ns | 3.313 *** | 4.67 *** |
Environment (soil type) | F-test | 0.520 ns | 63.124 ** | 22.72 *** |
Genotype (clonal line) | LRT | 24.978 *** | 13.605 *** | 19.03 *** |
Genotype x Environment | LRT | 0.020 ns | 0.823 ns | 1.53 ns |
Parameter | Acrisol Soil | Fluvisol Soil | Both Soils Together | ||||||
DBH | H | VOL | DBH | H | VOL | DBH | H | VOL | |
3.86 *** | 2.94 *** | 7482.94 *** | 5.23 *** | 1.57 *** | 2692.85 *** | 4.51 *** | 1.99 *** | 4600.08 *** | |
6.25 | 6.38 | 7868.14 | 5.76 | 2.38 | 4657.03 | 5.93 | 4.67 | 6383.33 | |
0.04 ns | 0.21 ns | 467.51 ns | |||||||
0.38 ± 0.10 | 0.32 ± 0.02 | 0.49 ± 0.09 | 0.48 ± 0.10 | 0.40 ± 0.10 | 0.37 ± 0.04 | 0.43 ± 0.08 | 0.29 ± 0.01 | 0.40 ± 0.01 | |
0.79 ± 0.06 | 0.73 ± 0.01 | 0.85 ± 0.04 | 0.84 ± 0.05 | 0.80 ± 0.05 | 0.78 ± 0.02 | 0.90 ± 0.03 | 0.80 ± 0.01 | 0.86 ± 0.05 | |
(%) | 12.24 | 7.83 | 36.60 | 14.22 | 6.65 | 31.75 | 13.23 | 6.94 | 33.93 |
(%) | 15.57 | 11.55 | 37.53 | 14.94 | 8.19 | 41.76 | 15.17 | 10.62 | 39.97 |
0.79 | 0.86 | 0.98 | 0.95 | 0.81 | 0.76 | 0.87 | 0.65 | 0.85 | |
0.89 | 0.68 | 0.92 | 0.92 | 0.89 | 0.88 | 0.95 | 0.89 | 0.93 |
Trait | Acrisol Soil | Fluvisol Soil | Both Soils Together | ||||||
---|---|---|---|---|---|---|---|---|---|
DBH | H | VOL | DBH | H | VOL | DBH | H | VOL | |
DBH | 0.69 * | 0.90 * | 0.80 * | 0.91 * | 0.80 * | 0.99 * | |||
H | 0.54 * | 0.58 * | 0.66 * | 0.80 * | 0.69 * | 0.72 * | |||
VOL | 0.74 * | 0.46 * | 0.74 * | 0.64 * | 0.87 * | 0.60 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Torres-Lamas, S.; Martínez-Zurimendi, P.; Ortega-Ramírez, M.E.; Cach-Pérez, M.J.; Domínguez-Domínguez, M. Growth of Clones of Eucalyptus urophylla in Two Contrasting Soil Conditions in Plantations of Southeastern Mexico. Resources 2024, 13, 74. https://doi.org/10.3390/resources13060074
Torres-Lamas S, Martínez-Zurimendi P, Ortega-Ramírez ME, Cach-Pérez MJ, Domínguez-Domínguez M. Growth of Clones of Eucalyptus urophylla in Two Contrasting Soil Conditions in Plantations of Southeastern Mexico. Resources. 2024; 13(6):74. https://doi.org/10.3390/resources13060074
Chicago/Turabian StyleTorres-Lamas, Secundino, Pablo Martínez-Zurimendi, Marynor Elena Ortega-Ramírez, Manuel Jesús Cach-Pérez, and Marivel Domínguez-Domínguez. 2024. "Growth of Clones of Eucalyptus urophylla in Two Contrasting Soil Conditions in Plantations of Southeastern Mexico" Resources 13, no. 6: 74. https://doi.org/10.3390/resources13060074
APA StyleTorres-Lamas, S., Martínez-Zurimendi, P., Ortega-Ramírez, M. E., Cach-Pérez, M. J., & Domínguez-Domínguez, M. (2024). Growth of Clones of Eucalyptus urophylla in Two Contrasting Soil Conditions in Plantations of Southeastern Mexico. Resources, 13(6), 74. https://doi.org/10.3390/resources13060074