Contemporary and Future Secondary Copper Reserves of Vietnam
Abstract
:1. Introduction
2. Methodology
2.1. Estimation of Copper Stocks, Demand, and End of Life Scrap
2.2. Classification of Secondary Copper Resources
2.3. Data and Scenarios
2.3.1. Data
2.3.2. GDP and Population Scenarios
- SSP1: “Sustainability”—Concentrated on sustainability and fairness, SSP1 depicts steady economic expansion and balanced population growth. There is a notable rise in GDP per capita alongside a stable increase in population, following a sustainable development trajectory.
- SSP2: “Middle of the Road”—Positioned as a “moderate” scenario, SSP2 reflects economic and demographic trends that largely mirror historical patterns. Both GDP per capita and population show gradual and consistent growth.
- SSP3: “Regional Rivalry”—Characterized by societal fragmentation and a resurgence of nationalist sentiments, SSP3 experiences the most rapid population growth among the scenarios. However, economic progress might face challenges due to political and social unrest.
- SSP4: “Inequality”—Illustrating a world marked by widening wealth disparities, SSP4 displays relatively high GDP per capita but with significant social class discrepancies. Population growth occurs but at a slower pace compared to other scenarios.
- SSP5: “Fossil-fueled Development”—Portrayed as a realm of swift economic expansion and heightened energy consumption, SSP5 boasts the highest GDP per capita and the fastest population growth rate among the scenarios. This growth is accompanied by a substantial surge in energy and resource usage.
3. Results
3.1. Evolution of Copper Stocks during 1995–2050
3.2. Evolution of Copper Demand and Scrap during 1995–2050
3.3. Secondary Copper Reserves in 2022 and 2050
4. Discussion
4.1. Result Validation
4.2. Policy Recommendations
4.2.1. Increasing the Geological Expeditions and Mining Investment
4.2.2. Improving the Management System Related to Secondary Resources
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sverdrup, H.U.; Ragnarsdottir, K.V.; Koca, D. On modelling the global copper mining rates, market supply, copper price and the end of copper reserves. Resour. Conserv. Recycl. 2014, 87, 158–174. [Google Scholar] [CrossRef]
- Sverdrup, H.U.; Olafsdottir, A.H.; Ragnarsdottir, K.V. On the long-term sustainability of copper, zinc and lead supply, using a system dynamics model. Resour Conserv Recycl. X 2019, 4, 100007. [Google Scholar] [CrossRef]
- Schipper, B.W.; Lin, H.C.; Meloni, M.A.; Wansleeben, K.; Heijungs, R.; Van der Voet, E. Estimating global copper demand until 2100 with regression and stock dynamics. Resour. Conserv. Recycl. 2018, 132, 28–36. [Google Scholar] [CrossRef]
- Elshkaki, A.; Graedel, T.E.; Ciacci, L.; Reck, B.K. Copper demand, supply, and associated energy use to 2050. Global Environ. Change 2016, 39, 305–315. [Google Scholar] [CrossRef]
- United Nations. World Urbanization Prospects: The 2014 Revision, Highlights; Department of Economic and Social Affairs, Population Division, United Nations: San Francisco, CA, USA, 2014; p. 32. [Google Scholar]
- Dong, D.; Tukker, A.; Van der Voet, E. Modeling copper demand in China up to 2050: A business-as-usual scenario based on dynamic stock and flow analysis. J. Ind. Ecol. 2009, 23, 1363–1380. [Google Scholar] [CrossRef]
- Nishiyama, T. The roles of Asia and Chile in the world copper market. Resour. Conserv. Recycl. 2005, 30, 131–139. [Google Scholar] [CrossRef]
- Nguyen, D.P.; Vo, X.V.; Nguyen, V.C.; Mai, X.D.; Duong, Q.K. Sustainable development for Vietnam’s economy in the context of globalization and Industrial Revolution 4.0. In Sustainability and Environmental Decision Making; Springer: Singapore, 2021; pp. 281–310. [Google Scholar]
- Long, P.D.; Ngoc, B.H.; My, D.T.H. The relationship between foreign direct investment, electricity consumption and economic growth in Vietnam. Int. J. Energy Econ. Policy 2018, 8, 267–274. [Google Scholar]
- Nguyen, H.K.T.; Nguyen, V.H.T.; Vuong, T.T.; Ho, M.T.; Vuong, Q.H. The new politics of debt in the transition economy of Vietnam. Austrian J. South-East. Asian Stud. 2019, 12, 91–110. [Google Scholar]
- Tabelin, C.B.; Park, I.; Phengsaart, T.; Jeon, S.; Villacorte-Tabelin, M.; Alonzo, D.; Yoo, K.; Ito, M.; Hiroyoshi, N. Copper and critical metals production from porphyry ores and E-wastes: A review of resource availability, processing/recycling challenges, socio-environmental aspects, and sustainability issues. Resour. Conserv. Recycl. 2021, 170, 105610. [Google Scholar] [CrossRef]
- Chen, J.; Wang, Z.; Wu, Y.; Li, L.; Li, B.; Pan, D.A.; Zuo, T. Environmental benefits of secondary copper from primary copper based on life cycle assessment in China. Resour. Conserv. Recycl. 2019, 146, 35–44. [Google Scholar] [CrossRef]
- Haas, J.; Moreno-Leiva, S.; Junne, T.; Chen, P.J.; Pamparana, G.; Nowak, W.; Ortiz, J.M. Copper mining: 100% solar electricity by 2030? Appl. Energy 2020, 262, 114506. [Google Scholar] [CrossRef]
- Tost, M.; Hitch, M.; Lutter, S.; Feiel, S.; Moser, P. Carbon prices for meeting the Paris agreement and their impact on key metals. Extr. Ind. Soc. 2020, 7, 593–599. [Google Scholar] [CrossRef]
- Ha, N.T.H.; Ha, N.T.; Nga, T.T.H.; Minh, N.N.; Anh, B.T.K.; Hang, N.T.A.; Duc, N.A.; Nhuan, M.T.; Kim, K.W. Uptake of arsenic and heavy metals by native plants growing near Nui Phao multi-metal mine, northern Vietnam. Appl. Geochem. 2019, 108, 104368. [Google Scholar] [CrossRef]
- Northey, S.; Mohr, S.; Mudd, G.M.; Weng, Z.; Giurco, D. Modelling future copper ore grade decline based on a detailed assessment of copper resources and mining. Resour. Conserv. Recycl. 2014, 83, 190–201. [Google Scholar] [CrossRef]
- Hostettler, D. Mining in Indigenous Regions; Elsevier: Amsterdam, The Netherlands, 2014; pp. 371–380. [Google Scholar]
- Dong, D.; van Oers, L.; Tukker, A.; van der Voet, E. Assessing the future environmental impacts of copper production in China: Implications of the energy transition. J. Clean. Prod. 2020, 274, 122825. [Google Scholar] [CrossRef]
- Bureau of International Recycling. Report on the Environmental Benefits of Recycling—2016 edition. 2016. Available online: https://www.bir.org/publications/facts-figures/item/report-on-the-environmental-benefits-of-recycling-2016-edition (accessed on 15 April 2024).
- Bonnin, M.; Azzaro-Pantel, C.; Domenech, S.; Villeneuve, J. Multicriteria optimization of copper scrap management strategy. Resour. Conserv. Recycl. 2015, 99, 48–62. [Google Scholar] [CrossRef]
- Vinh, N.T.T.; Duong, T.T.T. Firm Export and The Impact Of Foreign Ownership In Vietnam: A Micro-Data Analysis. J. Econ. Dev. 2020, 45, 1. [Google Scholar]
- Hashimoto, S.; Daigo, I.; Murakami, S.; Matsubae-Yokoyama, K.; Fuse, M.; Nakajima, K.; Oguchi, M.; Tanikawa, H.; Tasaki, T.; Yamasue, E.; et al. Framework of material stock accounts—Toward assessment of material accumulation in the economic sphere. In Proceedings of the Eighth International Conference on EcoBalance, Tokyo, Japan, 10–12 December 2008; pp. 71–74. [Google Scholar]
- McKelvey, V.E. Mineral Resource Estimates and Public Policy. Am. Sci. 1972, 60, 32–40. [Google Scholar]
- Maung, K.N.; Hashimoto, S.; Mizukami, M.; Morozumi, M.; Lwin, C.M. Assessment of the Secondary Copper Reserves of Nations. Environ. Sci. Technol. 2017, 51, 3824–3832. [Google Scholar] [CrossRef]
- Gordon, R.B.; Bertram, M.; Graedel, T.E. Metal stocks and sustainability. Proc. Natl. Acad. Sci. USA 2006, 103, 1209–1214. [Google Scholar] [CrossRef]
- Müller, D.B.; Wang, T.; Duval, B.; Graedel, T.E. Exploring the engine of anthropogenic iron cycles. Proc. Natl. Acad. Sci. USA 2006, 103, 16111–16116. [Google Scholar] [CrossRef] [PubMed]
- Van Vuuren, D.P.; Strengers, B.J.; De Vries, H.J.M. Long-term perspectives on world metal use-a system-dynamics model. Resour. Policy 1999, 25, 239–255. [Google Scholar] [CrossRef]
- Guzmán, J.I.; Nishiyama, T.; Tilton, J.E. Trends in the intensity of copper use in Japan since 1960. Resour. Policy 2005, 30, 21–27. [Google Scholar] [CrossRef]
- Hatayama, H.; Daigo, I.; Matsuno, Y.; Adachi, Y. Outlook of the world steel cycle based on the stock and flow dynamics. Environ. Sci. Technol. 2010, 44, 6457–6463. [Google Scholar] [CrossRef] [PubMed]
- AUDM. Science of Non-Ferrous Metal Smelting; Akita University Department of Mine: Akita City, Japan, 1996. (In Japanese) [Google Scholar]
- NIRS. Naturally Occurring Radioactive Material-NORM Database; National Institutes for Quantum and Radiological Science and Technology: Chiba, Japan, 2010. (In Japanese) [Google Scholar]
- METI. Statistical Survey of Supply and Demand Trends of Non-Ferrous Metals; Ministry of Economy, Trade and Industry: Tokyo, Japan, 2015. (In Japanese) [Google Scholar]
- RIETI. Knowledge and Trading of Minerals; Research Institute of Economy, Trade and Industry: Tokyo, Japan, 1955; p. 445. (In Japanese) [Google Scholar]
- NIES. Waste Input–Output Material Flow Analysis Model; National Institute for Environmental Studies: Tsukuba, Japan, 2000. [Google Scholar]
- METI. Report on Model Projects of Used Small Appliances Collection; Ministry of Economy, Trade and Industry: Tokyo, Japan, 2008. (In Japanese) [Google Scholar]
- ICA; IWCC. World End-Use Matrix; International Copper Association & International Wrought Copper Council: London, UK, 2014. [Google Scholar]
- Glöser, S.; Soulier, M.; Tercero Espinoza, L.A. Dynamic analysis of global copper flows. Global stocks, postconsumer material flows, recycling indicators, and uncertainty evaluation. Environ. Sci. Technol. 2013, 47, 6564–6572. [Google Scholar] [CrossRef] [PubMed]
- Ciacci, L.; Reck, B.K.; Nassar, N.T.; Graedel, T.E. Lost by Design. Environ. Sci. Technol. 2015, 49, 9443–9451. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, R.; Dente, S.; Hashimoto, S. Scenarios for reducing copper smelting-related atmospheric mercury emissions through copper recycling and mercury removal technologies in major countries. J. Mater. Cycles Waste Manag. 2023, 25, 2612–2618. [Google Scholar] [CrossRef]
- Graedel, T.E.; Allwood, J.; Birat, J.P.; Buchert, M.; Hagelüken, C.; Reck, B.K.; Sibley, S.F.; Sonnemann, G. What do we know about metal recycling rates? J. Ind. Ecol. 2011, 15, 355–366. [Google Scholar] [CrossRef]
- O’Neill, B.C.; Kriegler, E.; Ebi, K.L.; Kemp-Benedict, E.; Riahi, K.; Rothman, D.S.; van Ruijiven, B.J.; van Vuuren, D.P.; Birkmann, J.; Kok, K.; et al. The roads ahead: Narratives for shared socioeconomic pathways describing world futures in the 21st century. Global Environ. Change 2017, 42, 169–180. [Google Scholar] [CrossRef]
- Riahi, K.; Van Vuuren, D.P.; Kriegler, E.; Edmonds, J.; O’neill, B.C.; Fujimori, S.; Bauer, N.; Calvin, K.; Dellink, R.; Fricko, O.; et al. The Shared Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions implications: An overview. Global Environ. Change 2017, 42, 153–168. [Google Scholar] [CrossRef]
- SSP Database. Available online: https://iiasa.ac.at/ (accessed on 21 September 2023).
- Decision No. 910/QD-TTg Dated 25 July 2018, of the Prime Minister on Approving Planning on Exploration, Extraction, Processing and Use of Vietnams’ Gold, Copper, Nickel and Molybdenum Ores up to 2025, with Visions towards 2035. Available online: https://lawnet.vn/en/vb/Decision-910-QD-TTg-2018-planning-exploration-extraction-gold-copper-nickel-molybdenum-2025-2035-5F629.html (accessed on 10 April 2024).
- Gerst, M.D.; Graedel, T.E. In-use stocks of metals: Status and implications. Environ. Sci. Technol. 2008, 42, 7038–7045. [Google Scholar] [CrossRef] [PubMed]
- Kušnír, I. Mineral resources of Vietnam. Acta. Montan. Slovaca. 2000, 2, 165–172. [Google Scholar]
- Toai, D.B.; Guan, X.; Ghimire, A. Situational Analysis of Vietnam for Belt and Road Initiative. In Proceedings of the 2018 International Conference on Economics, Business, Management and Corporate Social Responsibility (EBMCSR 2018), Zhuhai, China, 28–30 September 2018; Atlantis Press: Amsterdam, The Netherlands, 2018; pp. 176–181. [Google Scholar]
- Truong, X.L.; Truong, X.Q.; Nguyen, T.A.; Raghavan, V.; Nguyen, C.C. Development of HUMGEOSTAT: A New Geological Tool for Geostatistical Analysis of Mineral Deposit: A Case Study at Sin Quyen Mine (Northern Vietnam). J. Geol. Soc. India 2019, 93, 574–582. [Google Scholar] [CrossRef]
- Nguyen, H.H.; Tran, T.A. The Vietnamese Enterprise’s Technological Capacity in the Context of the 4th Industrial Revolution. VNU J. Sci. Policy Manag. Stud. 2019, 35, 1–11. [Google Scholar]
- Shekdar, A.V. Sustainable solid waste management: An integrated approach for Asian countries. Waste Manag. 2009, 29, 1438–1448. [Google Scholar] [CrossRef] [PubMed]
- Guerrero, L.A.; Maas, G.; Hogland, W. Solid waste management challenges for cities in developing countries. Waste Manag. 2013, 33, 220–232. [Google Scholar] [CrossRef] [PubMed]
- Tran, C.D.; Salhofer, S.P. Analysis of recycling structures for e-waste in Vietnam. J. Mater. Cycles Waste Manag. 2018, 20, 110–126. [Google Scholar] [CrossRef]
- Tran, H.P.; Schaubroeck, T.; Nguyen, D.Q.; Ha, V.H.; Huynh, T.H.; Dewulf, J. Material flow analysis for management of waste TVs from households in urban areas of Vietnam. Resour. Conserv. Recycl. 2018, 139, 78–89. [Google Scholar] [CrossRef]
- Kojima, M. Vehicle Recycling in the ASEAN and Other Asian Countries; Economic Research Institute for ASEAN and East Asia: Jakarta, Indonesia, 2018. [Google Scholar]
- Nguyen, D.Q.; Yamasue, E.; Okumura, H.; Ishihara, K.N. Use and disposal of large home electronic appliances in Vietnam. J Mater Cycles Waste Manag. 2009, 11, 358–366. [Google Scholar] [CrossRef]
- Chung, C.V.; Duc, P.V.; Hai, D.D. The development of e-waste inventory in Vietnam. Part 3: Final Report. URENCO Environ. Vietnam. 2007. Available online: https://www.env.go.jp/recycle/report/index.html (accessed on 10 April 2024).
- Zhang, L.; Xu, Z. A review of current progress of recycling technologies for metals from waste electrical and electronic equipment. J. Clean. Prod. 2016, 127, 19–36. [Google Scholar] [CrossRef]
- Huang, K.; Guo, J.; Xu, Z. Recycling of waste printed circuit boards: A review of current technologies and treatment status in China. J. Hazard. Mater. 2009, 164, 399–408. [Google Scholar] [CrossRef] [PubMed]
- Watling, H.R. Chalcopyrite hydrometallurgy at atmospheric pressure: 1. Review of acidic sulfate, sulfate–chloride and sulfate–nitrate process options. Hydrometallurgy 2013, 140, 163–180. [Google Scholar]
- Gottberg, A.; Morris, J.; Pollard, S.; Mark-Herbert, C.; Cook, M. Producer responsibility, waste minimisation and the WEEE Directive: Case studies in eco-design from the European lighting sector. Sci. Total Environ. 2006, 359, 38–56. [Google Scholar] [CrossRef] [PubMed]
- Kim, E.Y.; Kim, M.S.; Lee, J.C.; Pandey, B.D. Selective recovery of gold from waste mobile phone PCBs by hydrometallurgical process. J. Hazard. Mater. 2011, 198, 206–215. [Google Scholar] [CrossRef] [PubMed]
- Matsumoto, Y.; Oshima, Y. Au and Cu recovery from printed boards by decomposition of epoxy resin in supercritical water. J. Supercrit. Fluids 2014, 95, 462–467. [Google Scholar] [CrossRef]
- Zhan, L.; Xu, Z. Application of vacuum metallurgy to separate pure metal from mixed metallic particles of crushed waste printed circuit board scraps. Environ. Sci. Technol. 2008, 42, 7676–7681. [Google Scholar] [CrossRef] [PubMed]
- Reck, B.K.; Graedel, T.E. Challenges in metal recycling. Science 2012, 337, 690–695. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, T.T. Country Chapter: State of the 3Rs in Asia and the Pacific. The Socialist Republic of Vietnam. Available online: https://uncrd.un.org/sites/uncrd.un.org/files/files/documents/2022/Jun/state-of-the-3rs-vietnam_nov2017.pdf (accessed on 10 April 2024).
- Trinh, L.T.K.; Hu, A.H.; Pham, P.S.T. Situation, challenges, and solutions of policy implementation on municipal waste management in Vietnam toward sustainability. Sustainability 2021, 13, 3517. [Google Scholar] [CrossRef]
- Jones, P.T.; Geysen, D.; Tielemans, Y.; Van Passel, S.; Pontikes, Y.; Blanpain, B.; Quaghebeur, M.; Hoekstra, N. Enhanced Landfill Mining in view of multiple resource recovery: A critical review. J. Cleaner Prod. 2013, 55, 45–55. [Google Scholar] [CrossRef]
- Krook, J.; Svensson, N.; Eklund, M. Landfill mining: A critical review of two decades of research. Waste Manag. 2012, 32, 513–520. [Google Scholar] [CrossRef]
Total 4882 kt (100%) | Final Products in/after Use | Wastes in Managed Landfill Sites | Dissipated Materials | |
---|---|---|---|---|
Emerging in a Year | Not Emerging in a Year | |||
Economic | 28 kt (0.6%) | 1753 kt (35.9%) | ||
Marginally economic | 7 kt (0.1%) | 438 kt (8.9%) | ||
Subeconomic and Other | 37 kt (0.8%) | 2189 kt (44.8%) | 342 kt (7.0%) | 13 kt (0.3%) |
75 kt (1.5%) |
Total 22,420 kt 25,232 kt 27,173 kt (100%) | Final Products in/after Use | Wastes in Managed Landfill Sites | Dissipated Materials | |
---|---|---|---|---|
Emerging in a Year | Not Emerging in a Year | |||
Economic | 203 kt (0.9%) | 5212 kt (23.2%) | ||
203 kt (0.9%) | 6030 kt (23.9%) | |||
247 kt (0.9%) | 6601 kt (24.3%) | |||
Marginally economic | 51 kt (0.2%) | 1303 kt (5.8%) | ||
57 kt (0.2%) | 1508 kt (5.9%) | |||
62 kt (0.2%) | 1650 kt (6.1%) | |||
Subeconomic and Other | 261 kt (1.2%) | 6509 kt (29.0%) | 7161 kt (31.9%) | 147 kt (0.7%) |
295 kt (1.2%) | 7530 kt (29.8%) | 7725 kt (30.6%) | 161 kt (0.6%) | |
318 kt (1.2%) | 8243 kt (30.3%) | 8102 kt (29.8%) | 171 kt (0.6%) | |
1572 kt (7.0%) | ||||
1696 kt (6.7%) | ||||
1779 kt (6.5%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Le, T.V.; Yamamoto, R.; Dente, S.M.R.; Hashimoto, S. Contemporary and Future Secondary Copper Reserves of Vietnam. Resources 2024, 13, 82. https://doi.org/10.3390/resources13060082
Le TV, Yamamoto R, Dente SMR, Hashimoto S. Contemporary and Future Secondary Copper Reserves of Vietnam. Resources. 2024; 13(6):82. https://doi.org/10.3390/resources13060082
Chicago/Turabian StyleLe, Thi Van, Ryota Yamamoto, Sebastien Michael Rene Dente, and Seiji Hashimoto. 2024. "Contemporary and Future Secondary Copper Reserves of Vietnam" Resources 13, no. 6: 82. https://doi.org/10.3390/resources13060082
APA StyleLe, T. V., Yamamoto, R., Dente, S. M. R., & Hashimoto, S. (2024). Contemporary and Future Secondary Copper Reserves of Vietnam. Resources, 13(6), 82. https://doi.org/10.3390/resources13060082