Geophysical Assessment of Structurally Controlled Mineral Resources at Wadi El-Nakheel, Eastern Desert, Egypt
Abstract
:1. Introduction
2. Materials and Methods
2.1. Location and Geology
2.2. Methodology
2.2.1. Geomagnetic Data Processing
2.2.2. Magnetic Modeling
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- AbdelAal, G.Z.; El-Haddad, A.E.; Badri, M.S.; Mohamed, M.A. Inferring Depth to basement using Airborne magnetic data at Wadi El Nakheel area, Eastern desert of Egypt. Assiut Univ. J. Multdisiciplinary Sci. Res. 2019, 48, 1–11. [Google Scholar]
- Yousif, M.; Sracek, O. Integration of geological investigations with multi-GIS data layers for water resources assessment in arid regions: El Ambagi Basin, Eastern Desert, Egypt. Environ. Earth Sci. 2016, 75, 684. [Google Scholar] [CrossRef]
- Mansour, S.; Hasebe, N.; Khedr, M.Z.; Tamura, A.; Shehata, A.A. Tectonic-Thermal Evolution of the Wadi El-Dahal Area, North Eastern Desert, Egypt: Constraints on the Suez Rift Development. Minerals 2023, 13, 1021. [Google Scholar] [CrossRef]
- Shallaly, N.A. Metamorphic evolution of Pan-African Wadi El Miyah Metasediments, Central Eastern Desert, Egypt: A distinctive LP/HT metapelitic sequence from the northern Arabian–Nubian Shield. Arab. J. Geosci. 2019, 12, 54. [Google Scholar] [CrossRef]
- Ahmadi, H.; Pekkan, E. Fault-Based Geological Lineaments Extraction Using Remote Sensing and GIS—A Review. Geosciences 2021, 11, 183. [Google Scholar] [CrossRef]
- Arnous, M.O.; ElMowafy, A.A.; Azzaz, S.A.; Omar, A.E.; Abdel Hafeez, W.M. Exploration radioactive mineralization using mappable data integration approach: Example from Wadi Dahab area, Southeastern Sinai, Egypt. Arab. J. Geosci. 2021, 14, 599. [Google Scholar] [CrossRef]
- Cianfarra, P.; Salvini, F. Lineament Domain of Regional Strike-Slip Corridor: Insight from the Neogene Transtensional De Geer Transform Fault in NW Spitsbergen. Pure Appl. Geophys. 2015, 172, 1185–1201. [Google Scholar] [CrossRef]
- Dong, L.J.; Pei, Z.W.; Xie, X.; Zhang, Y.H.; Yan, X.H. Early identification of abnormal regions in rock-mass using traveltime tomography. Engineering 2023, 22, 191–200. [Google Scholar] [CrossRef]
- Zhang, Y.B.; Yao, X.L.; Liang, P.; Wang, K.X.; Sun, L.; Tian, B.Z.; Liu, X.X.; Wang, S.Y. Fracture evolution and localization effect of damage in rock based on wave velocity imaging technology. J. Cent. South Univ. 2021, 28, 2752–2769. [Google Scholar] [CrossRef]
- Seif, E.S.S.A. Evaluation of geotechnical properties of Cretaceous sandstone, Western Desert, Egypt. Arab. J. Geosci. 2016, 9, 299. [Google Scholar] [CrossRef]
- Araffa, S.A.S.; Rabeh, T.T.T.; Mousa, S.E.D.A.W.; Nabi, S.H.A.; Al Deep, M. Integrated geophysical investigation for mapping of manganese-iron deposits at Wadi Al Sahu area, Sinai, Egypt—A case study. Arab. J. Geosci. 2020, 13, 823. [Google Scholar] [CrossRef]
- Mekkawi, M.M.; ElEmam, A.E.; Taha, A.I.; Al Deep, M.A.; Araffa, S.A.S.; Massoud, U.S.; Abbas, A.M. Integrated geophysical approach in exploration of iron ore deposits in the North-eastern Aswan-Egypt: A case study. Arab. J. Geosci. 2021, 14, 721. [Google Scholar] [CrossRef]
- Saleh, A.; Abdelmoneim, M.; Abdelrady, M.; Al Deep, M. Subsurface structural features of the basement complex and mineralization zone investigation in the Barramiya area, Eastern Desert of Egypt, using magnetic and gravity data analysis. Arab. J. Geosci. 2018, 11, 676. [Google Scholar] [CrossRef]
- Mousa, S.A.; Abdel Nabi, S.H.; Sultan, S.A.; Mansour, S.A.; Al-Deep, M.A. Geophysical exploration of titanomagnetite ore deposits by geomagnetic and geoelectric methods. SN Appl. Sci. 2020, 2, 444. [Google Scholar] [CrossRef]
- Bakheit, A.A.; Abdel Aal, G.Z.; El-Haddad, A.E.; Ibrahim, M.A. Subsurface tectonic pattern and basement topography as interpreted from aeromagnetic data to the south of El-Dakhla Oasis, western desert, Egypt. Arab. J. Geosci. 2014, 7, 2165–2178. [Google Scholar] [CrossRef]
- Abdelrady, M.; Elhadek, H.; Abdelmoneim, M.; Saleh, A. Orogenic lode-gold deposits and listvenization processes in the El-Barramiya area, Eastern Desert, Egypt. Environ. Earth Sci. 2023, 82, 420. [Google Scholar] [CrossRef]
- Alkholy, A.; Saleh, A.; Ghazala, H.; Al Deep, M.; Mekkawi, M. Groundwater exploration using drainage pattern and geophysical data: A case study from Wadi Qena, Egypt. Arab. J. Geosci. 2023, 16, 92. [Google Scholar] [CrossRef]
- Ji, N.; Qin, X.; Wu, H.; Wang, Z.; Du, W.; Liu, Y.; Zhang, T.; Zhang, S.; Shi, Q. Occurrence Characteristics of Lead–Zinc Mine and Low-Flying Aeromagnetic Prospecting in a Forested Region of Yichun City. Minerals 2023, 13, 1414. [Google Scholar] [CrossRef]
- Zhdanov, M.S.; Wan, L.; Jorgensen, M. Joint Three-Dimensional Inversion of Gravity and Magnetic Data Collected in the Area of Victoria Mine, Nevada, Using the Gramian Constraints. Minerals 2024, 14, 292. [Google Scholar] [CrossRef]
- Poliakovska, K.; Annesley, I.R.; Hajnal, Z. Geophysical Constraints to the Geological Evolution and Genesis of Rare Earth Element–Thorium–Uranium Mineralization in Pegmatites at Alces Lake, SK, Canada. Minerals 2024, 14, 25. [Google Scholar] [CrossRef]
- CONOCO. Geological Map of Egypt, Scale 1:500,000, NG-36-NE; Quseir Datasheet; The Egyptian General Petroleum Corporation: Cairo, Egypt, 1987. [Google Scholar]
- El Bahariya, G.A. Ghadir Ophiolites, Eastern Desert, Egypt: A Complete Sequence of Oceanic Crust in the Arabian-Nubian Shield. In The Geology of the Arabian-Nubian Shield. Regional Geology Reviews; Hamimi, Z., Fowler, A.R., Liégeois, J.P., Collins, A., Abdelsalam, M.G., Abd EI-Wahed, M., Eds.; Springer: Cham, Switzerland, 2021. [Google Scholar] [CrossRef]
- Trueblood, P.M. Explanatory Text for a Geologic Map of an Area North of Quseir, Egypt. Master’s Thesis, Bryn Mawr College, Wales, UK, 1981; 72p. [Google Scholar]
- Zaghloul, E.A. Geology of Dakhla Oasis, Western Desert, Egypt. In Sustainable Water Solutions in the Western Desert, Egypt: Dakhla Oasis; Iwasaki, E., Negm, A.M., Elbeih, S.F., Eds.; Earth and Environmental Sciences Library, Springer: Cham, Switzerland, 2021. [Google Scholar] [CrossRef]
- El Ayyat, A.M. Lithostratigraphy, sedimentology, and cyclicity of the Duwi Formation (late Cretaceous) at Abu Tartur plateau, Western Desert of Egypt: Evidences for reworking and redeposition. Arab. J. Geosci. 2015, 8, 99–124. [Google Scholar] [CrossRef]
- Gay, S. Fundamental characteristics of aeromagnetic lineaments, their geological significance, and their significance to geology. In The New Basement Tectonics; American Stereo Map Company: Salt Lake, UT, USA, 1972. [Google Scholar]
- Talwani, M.; Worzel, J.I.; Landisman, M. Rapid gravity computations for two dimensional bodies with application to the Mendtcino submarine fracture Lone. J. Geophys. Res. 1959, 64, 49–59. [Google Scholar] [CrossRef]
- AerService, D. Aeromagnetic Anomaly Map of the Eastern Desert, Egypt; scale 1: 50,000, compiled by the Egyptian General Petroleum Corporation; Aero Service Division; Western Geophysical Company of America: Houston, TX, USA, 1983; Volume 6. [Google Scholar]
- Roest, W.R.; Pilkington, M. Identifying remnant magnetization effect in magnetic data. Geophysics 1993, 58, 653–659. [Google Scholar] [CrossRef]
- Nabighian, M.N. The analytic signal of two-dimensional magnetic bodies with polygonal cross-section; its properties and use for automated interpretation. Geophysics 1972, 37, 507–517. [Google Scholar] [CrossRef]
- Nabighian, M.N. Towards a three dimensional automatic interpretation of potential field data via generalized Hilbert transform: Fundamental relations. Geophysics 1984, 47, 780–786. [Google Scholar] [CrossRef]
- Muszala, S.P.; Grindlay, N.R.; Bird, R.T. Three-dimensional Euler deconvolution and tectonic interpretation of marine magnetic anomaly data in the Puerto Rico trench. J. Geophys. Res. 1999, 104, 29175–29188. [Google Scholar] [CrossRef]
- Nabighian, M.N.; Hansen, R.O. Unification of Euler and Werner deconvolution in three dimensions via the generalized Hilbert transform. Geophysics 2001, 66, 1805–1810. [Google Scholar] [CrossRef]
- Thompson, D.T. EULDPH—A New technique for making computer-assisted depth estimates from magnetic data. Geophysics 1982, 47, 31–37. [Google Scholar] [CrossRef]
- Geosoft Oasis Montaj; Mapping and Application System Inc.: Toronto, ON, Canada, 2015.
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al Deep, M.; Ibrahim, A.S.; Saleh, A. Geophysical Assessment of Structurally Controlled Mineral Resources at Wadi El-Nakheel, Eastern Desert, Egypt. Resources 2024, 13, 83. https://doi.org/10.3390/resources13060083
Al Deep M, Ibrahim AS, Saleh A. Geophysical Assessment of Structurally Controlled Mineral Resources at Wadi El-Nakheel, Eastern Desert, Egypt. Resources. 2024; 13(6):83. https://doi.org/10.3390/resources13060083
Chicago/Turabian StyleAl Deep, Mohamed, Arwa Sameer Ibrahim, and Ahmed Saleh. 2024. "Geophysical Assessment of Structurally Controlled Mineral Resources at Wadi El-Nakheel, Eastern Desert, Egypt" Resources 13, no. 6: 83. https://doi.org/10.3390/resources13060083
APA StyleAl Deep, M., Ibrahim, A. S., & Saleh, A. (2024). Geophysical Assessment of Structurally Controlled Mineral Resources at Wadi El-Nakheel, Eastern Desert, Egypt. Resources, 13(6), 83. https://doi.org/10.3390/resources13060083