A Review of Environmental Impacts of Wheat Production in Different Agrotechnical Systems
Abstract
:1. Introduction
2. Evaluation of Environmental Impacts in the Life Cycle Assessment
3. Impact Categories of Wheat Grain Production
4. Irrigated and Non-Irrigated Production Systems
5. Conventional Versus Organic Farming Systems
6. The Impact of Fertilizers on the Environment
7. Conventional and Conservation Tillage Methods
8. Crop Rotation Effect
9. Consequences for Social and Political Systems of Wheat Production
10. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Erenstein, O.; Jaleta, M.; Mottaleb, K.A.; Sonder, K.; Donovan, J.; Braun, H.J. Global trends in wheat production, consumption and trade. In Wheat Improvement; Reynolds, M.P., Braun, H.J., Eds.; Springer International Publishing: Cham, Switzerland, 2022; pp. 47–66. [Google Scholar] [CrossRef]
- Gąsiorowski, H. (Ed.) Wheat. Chemistry and Technology; PWRiL: Poznań, Poland, 2004; ISBN 83-09-01787-1. [Google Scholar]
- The Food and Agriculture Organization (FAO). FAOSTAT Online Database. Available online: https://www.fao.org/faostat (accessed on 1 December 2023).
- Martre, P.; Wallach, D.; Asseng, S.; Ewert, F.; Jones, J.W.; Rötter, R.P.; Boote, K.J.; Ruane, A.C.; Thorburn, P.J.; Cammarano, D.; et al. Multimodel ensembles of wheat growth: Many models are better than one. Glob. Chang. Biol. 2015, 21, 911–925. [Google Scholar] [CrossRef] [PubMed]
- Shewry, P.R.; Hey, S.J. The contribution of wheat to human diet and health. Food Energy Secur. 2015, 4, 178–202. [Google Scholar] [CrossRef]
- Ingrao, C.; Licciardello, F.; Pecorino, B.; Muratore, G.; Zerbo, A.; Messineo, A. Energy and environmental assessment of a traditional durum-wheat bread. J. Clean. Prod. 2018, 171, 1494–1509. [Google Scholar] [CrossRef]
- Giraldo, P.; Benavente, E.; Manzano-Agugliaro, F.; Gimenez, E. Worldwide research trends on wheat and barley: A bibliometric comparative analysis. Agronomy 2019, 9, 352. [Google Scholar] [CrossRef]
- Vinci, G.; Ruggieri, R.; Ruggeri, M.; Zaki, M.G. Application of life cycle assessment (LCA) to cereal production: An overview. IOP Conf. Ser. Earth Environ. Sci. 2022, 1077, 012004. [Google Scholar] [CrossRef]
- Acevedo, M.; Zurn, J.D.; Molero, G.; Singh, P.; He, X.; Aoun, M.; McCandless, L. The role of wheat in global food security. In Agricultural Development and Sustainable Intensification: Technology and Policy Challenges in the Face of Climate Change, 1st ed.; Routledge: New York, NY, USA, 2018; pp. 81–110. [Google Scholar] [CrossRef]
- Głodowska, M.; Gałązka, A. Unsustainable agriculture and its environmental consequences. Zesz. Probl. Postępów Nauk. Rol. 2018, 592, 3–13. [Google Scholar] [CrossRef]
- Baum, R.; Bieńkowski, J. Eco-Efficiency in measuring the sustainable production of agricultural crops. Sustainability 2020, 12, 1418. [Google Scholar] [CrossRef]
- Holka, M.; Kowalska, J.; Jakubowska, M. Reducing carbon footprint of agriculture—Can organic farming help to mitigate climate change? Agriculture 2022, 12, 1383. [Google Scholar] [CrossRef]
- Jolliet, O.; Saadé-Sbeih, M.; Shaked, T.S.; Jolliet, A.; Crettaz, P. Environmental Life Cycle Assessment; CRC Press: Boca Raton, FL, USA, 2016. [Google Scholar]
- Cucurachi, S.; Scherer, L.; Guinée, J.; Tukker, A. Life cycle assessment of food systems. One Earth 2019, 1, 292–297. [Google Scholar] [CrossRef]
- Camara-Salim, I.; Almeida-Garcia, F.; Feijoo, G.; Moreira, M.T.; Gonzalez-García, S. Environmental consequences of wheat-based crop rotation in potato farming systems in Galicia, Spain. J. Environ. Manag. 2021, 287, 112351. [Google Scholar] [CrossRef]
- Fan, J.; Liu, C.; Xie, J.; Han, L.; Zhang, C.; Guo, D.; Niu, J.; Jin, H.; McConkey, B.G. Life cycle assessment on agricultural production: A mini review on methodology, application, and challenges. Int. J. Environ. Res. Public Health 2022, 19, 9817. [Google Scholar] [CrossRef] [PubMed]
- Kowalski, Z.; Kulczycka, J.; Góralczyk, M. Ecological Assessment of the Life Cycle of Manufacturing Processes (LCA); PWN Scientific Publishing House: Warsaw, Poland, 2007. [Google Scholar]
- Guinée, J.B.; Gorrée, M.; Heijungs, R.; Huppes, G.; Kleijn, R.; de Koning, A.; van Oers, L.; Wegener Sleeswijk, A.; Suh, S.; Udo de Haes, H.A.; et al. Handbook on Life Cycle Assessment. Operational Guide to the ISO Standards. I: LCA in Perspective. IIa: Guide. IIb: Operational Annex. III: Scientific Background; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2002. [Google Scholar]
- ISO 14040:2006; Environmental Management–Life Cycle Assessment–Principles and Framework. International Organization for Standardization: Geneva, Switzerland, 2006.
- ISO 14044:2006; Environmental Management—Life Cycle Assessment—Requirements and Guidelines. International Organization for Standardization: Geneva, Switzerland, 2006.
- Klopffer, W.; Grahl, B. Life Cycle Assessment (LCA): A Guide to Best Practice; Wiley-VCH Verlag GmbH: Weinheim, Germany, 2014. [Google Scholar]
- Colomb, V.; Ait-Amar, S.; Basset-Mens, C.; Gac, A.; Gaillard, G.; Koch, P.; Mousset, J.; Salou, T.; Tailleur, A.; Van Der Werf, H.M. AGRIBALYSE®, the French LCI Database for Agricultural Products: High Quality Data for Producers and Environmental Labelling. Oilseeds Fats Crops Lipids 2015, 22, D104. [Google Scholar] [CrossRef]
- Wernet, G.; Bauer, C.; Steubing, B.; Reinhard, J.; Moreno-Ruiz, E.; Weidema, B. The ecoinvent database version 3 (part I): Overview and methodology. Int. J. Life Cycle Assess. 2016, 21, 1218–1230. [Google Scholar] [CrossRef]
- EU International Reference Life Cycle Data System (ILCD) Handbook: Framework and Requirements for Life Cycle Impact Assessment Models and Indicators; EUR 24586 EN; Publications Office of the European Union: Luxembourg, 2010.
- Meisterling, K.; Samaras, C.; Schweizer, V. Decisions to reduce greenhouse gases from agriculture and product transport: LCA case study of organic and conventional wheat. J. Clean. Prod. 2009, 17, 222–230. [Google Scholar] [CrossRef]
- Brock, P.; Madden, P.; Schwenke, G.; Herridge, D. Greenhouse gas emissions profile for 1 tonne of wheat produced in Central Zone (East) New South Wales: A life cycle assessment approach. Crop Pasture Sci. 2012, 63, 319–329. [Google Scholar] [CrossRef]
- Zhang, D.; Shen, J.; Zhang, F.; Li, Y.; Zhang, W. Carbon footprint of grain production in China. Sci. Rep. 2017, 7, 4126. [Google Scholar] [CrossRef] [PubMed]
- Hou, L.; Yang, Y.; Zhang, X.; Jiang, C. Carbon footprint for wheat and maize production modulated by farm size: A study in the North China plain. Int. J. Clim. Chang. 2021, 13, 302–319. [Google Scholar] [CrossRef]
- Pishgar-Komleh, S.H.; Żylowski, T.; Rozakis, S.; Kozyra, J. Efficiency under different methods for incorporating undesirable outputs in an LCA-DEA framework: A case study of winter wheat production in Poland. J. Environ. Manag. 2020, 260, 110138. [Google Scholar] [CrossRef] [PubMed]
- González-García, S.; Almeida, F.; Brandão, M. Do carbon footprint estimates depend on the LCA modelling approach adopted? A case study of bread wheat grown in a crop-rotation system. Sustainability 2023, 15, 4941. [Google Scholar] [CrossRef]
- Kazlauskas, M.; Bručienė, I.; Savickas, D.; Naujokienė, V.; Buragienė, S.; Steponavičius, D.; Romaneckas, K.; Šarauskis, E. Life cycle assessment of winter wheat production using precision and conventional seeding technologies. Sustainability 2023, 15, 14376. [Google Scholar] [CrossRef]
- Huerta, J.H.; Alvear, E.M.; Navarro, R.M. Evaluation of two production methods of Chilean wheat by life cycle assessment (LCA). Idesia 2012, 30, 101–110. [Google Scholar] [CrossRef]
- Jekayinfa, S.O.; Olaniran, J.A.; Jaiyeoba, K.F.; Olujide, O.S. Life cycle assessment of wheat production and processing systems. LAUJET J. Eng. Technol. 2015, 9, 79–86. [Google Scholar]
- Holka, M.; Jankowiak, J.; Bienkowski, J.F.; Dabrowicz, R. Life cycle assessment (LCA) of winter wheat in an intensive crop production system in Wielkopolska region (Poland). Appl. Ecol. Environ. Res. 2016, 14, 535–545. [Google Scholar] [CrossRef]
- Holka, M.; Bieńkowski, J. Assessment of environmental burdens of winter wheat production in different agrotechnical systems. Agronomy 2020, 10, 1303. [Google Scholar] [CrossRef]
- Taki, M.; Soheili-Fard, F.; Rohani, A.; Chen, G.; Yildizhan, H. Life cycle assessment to compare the environmental impacts of different wheat production systems. J. Clean. Prod. 2018, 197, 195–207. [Google Scholar] [CrossRef]
- Ghasemi-Mobtaker, H.; Kaab, A.; Rafiee, S. Application of life cycle analysis to assess environmental sustainability of wheat cultivation in the west of Iran. Energy 2020, 193, 116768. [Google Scholar] [CrossRef]
- Shrestha, P.; Karim, R.A.; Sieverding, H.L.; Archer, D.W.; Kumar, S.; Nleya, T.; Graham, C.J.; SMge, J.J. Life cycle assessment of wheat production and wheat-based crop rotations. J. Environ. Qual. 2020, 49, 1515–1529. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Z.; Zheng, H.; Xing, B. Environmental life cycle assessment of wheat production using chemical fertilizer, manure compost, and biochar-amended manure compost strategies. Sci. Total Environ. 2021, 760, 143342. [Google Scholar] [CrossRef] [PubMed]
- González-Garcia, S.; Almeida, F.; Moreira, M.T.; Brandao, M. Evaluating the environmental profiles of winter wheat rotation systems under different management strategies. Sci. Total Environ. 2021, 770, 145270. [Google Scholar] [CrossRef] [PubMed]
- Khalaj, M.; Gholami Parashkoohi, M.; Mohammad Zamani, D. Application of artificial neural network to predict the environmental impacts of wheat cultivation systems. Environ. Res. 2022, 10, 311–328. [Google Scholar] [CrossRef]
- Pourmehdi, K.; Kheiralipour, K. Compression of input to total output index and environmental impacts of dryland and irrigated wheat production systems. Ecol. Indic. 2023, 148, 110048. [Google Scholar] [CrossRef]
- Williams, A.G.; Audsley, E.; Sandars, D.L. Environmental burdens of producing bread wheat, oilseed rape and potatoes in England and Wales using simulation and system modelling. Int. J. Life Cycle Assess. 2010, 15, 855–868. [Google Scholar] [CrossRef]
- Bernas, J.; Koppensteiner, L.; Tichá, M.; Kaul, H.P.; Klimek-Kopyra, A.; Euteneuer, P.; Moitzi, G.; Neugschwandtner, R. Optimal environmental design of nitrogen application rate for facultative wheat using life cycle assessment. Eur. J. Agron. 2023, 146, 126813. [Google Scholar] [CrossRef]
- Fantin, V.; Righi, S.; Rondini, I.; Masoni, P. Environmental assessment of wheat and maize production in an Italian farmers’ cooperative. J. Clean. Prod. 2017, 140, 631–643. [Google Scholar] [CrossRef]
- di Cristofaro, M.; Marino, S.; Lima, G.; Mastronardi, L. Evaluating the impacts of different wheat farming systems through life cycle assessment. J. Clean. Prod. 2024, 436, 140696. [Google Scholar] [CrossRef]
- Van Stappen, F.; Loriers, A.; Mathot, M.; Planchon, V.; Stilmant, D.; Debode, F. Organic versus conventional farming: The case of wheat production in Wallonia (Belgium). Agric. Agric. Sci. Procedia 2015, 7, 272–279. [Google Scholar] [CrossRef]
- Verdi, L.; Dalla, M.A.; Falconi, F.; Orlandini, S.; Mancini, M. Comparison between organic and conventional farming systems using Life Cycle Assessment (LCA): A case study with an ancient wheat variety. Eur. J. Agron. 2022, 141, 126638. [Google Scholar] [CrossRef]
- Mulimbi, W.; Nalley, L.L.; Strauss, J.; Ala-Kokko, K. Economic and environmental comparison of conventional and conservation agriculture in South African wheat production. Agrekon 2023, 62, 133–151. [Google Scholar] [CrossRef]
- Giusti, G.; Saavedra, Y.M.B.; Almeida, G.F. Environmental impacts assessment of maize, soybean, and wheat production in the Southwest of São Paulo state: Alternative scenarios for the substitution of chemical fertilization. Eng. Agric. 2022, 30, 328–346. [Google Scholar] [CrossRef]
- Nassiri Mahallati, M.; Koocheki, A. Life cycle assessment (LCA) for wheat (Triticum aestivum L.) production systems of Iran: 1-comparison of inputs level. J. Agroecol. 2018, 9, 972–992. [Google Scholar]
- Zhai, Y.; Shen, X.; Quan, T.; Ma, X.; Zhang, R.; Ji, C.; Zhang, T.; Hong, J. Impact-oriented water footprint assessment of wheat production in China. Sci. Total Environ. 2019, 689, 90–98. [Google Scholar] [CrossRef] [PubMed]
- Fathollahi, H.; Rafiee, S.; Mousavi-Avval, S.H. Assessment of the energy, economic and environmental indices of rainfed and irrigated wheat production (case study: Lorestan province). Iran. J. Biosyst. Eng. 2017, 48, 527–537. [Google Scholar]
- Smith, L.; Kirk, G.; Jones, P.; Williams, A. The greenhouse gas impacts of converting food production in England and Wales to organic methods. Nat. Commun. 2019, 10, 4641. [Google Scholar] [CrossRef] [PubMed]
- Van der Werf, H.M.; Knudsen, M.T.; Cederberg, C. Towards better representation of organic agriculture in life cycle assessment. Nat. Sustain. 2020, 3, 419–425. [Google Scholar] [CrossRef]
- Brentrup, F.; Kusters, J.; Lammel, J.; Barraclough, P.; Kuhlmann, H. Environmental impact assessment of agricultural production systems using the life cycle assessment (LCA) methodology II. The application to N fertilizer use in winter wheat production systems. Eur. J. Agron. 2004, 20, 265–279. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, W.; Cui, Z.; Hu, Y.; Schmidhalter, U.; Chen, X. Environmental, human health, and ecosystem economic performance of long-term optimizing nitrogen management for wheat production. J. Clean. Prod. 2021, 311, 127620. [Google Scholar] [CrossRef]
- Nasser, K.; El-Gizawy, B. Effect of planting date and fertilizer application on yield of wheat under no till system. World J. Agric. Sci. 2009, 5, 777–783. [Google Scholar]
- Bot, A.; Benites, J. The Importance of Soil Organic Matter: Key to Drought-Resistant Soil and Sustained Food Production; FAO soils bulletin; Food and Agriculture Organization of the United Nations: Rome, Italy, 2005; ISBN 978-92-5-105366-9. [Google Scholar]
- Smith, K. Practical guide to raising earthworm (basic vermiculture information) KW rabbit and worm. Bioresour. Technol. 1998, 84, 191–196. [Google Scholar]
- Tangkoonboribun, R.; Rauysoongnern, S.; Rambo, P.V.; Tumsan, B. Effect of organic and clay material amendment on physical properties of degraded sandy soil for sugarcane production. Sugar Tech. 2006, 8, 44–48. [Google Scholar] [CrossRef]
- McGarry, D. Tillage and soil compaction. In Conservation Agriculture; García-Torres, L., Benites, J., Martínez-Vilela, A., Holgado-Cabrera, A., Eds.; Springer: Dordrecht, The Netherlands, 2003; pp. 307–316. [Google Scholar] [CrossRef]
- Yalcin, H.; Cakir, E.; Aykas, E. Tillage parameters and economic analysis of direct seeding, minimum and conventional tillage in wheat. J. Agron. 2005, 4, 329–332. [Google Scholar] [CrossRef]
- Franzen, D.W. North Dakota Fertilizer Recommendation Tables and Equations. Available online: https://www.ag.ndsu.edu/publications/crops/north-dakota-fertilizer-recommendation-tables-and-equations/sf882.pdf (accessed on 1 December 2023).
- Altieri, M.A. Agroecology: The Science of Sustainable Agriculture, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2018. [Google Scholar] [CrossRef]
- Masuda, K. Measuring eco-efficiency of wheat production in Japan: A combined application of life cycle assessment and data envelopment analysis. J. Clean. Prod. 2016, 126, 373–381. [Google Scholar] [CrossRef]
- Camara-Salim, I.; Almeida-Garcia, F.; Gonzalez-García, S.; Romero-Rodriguez, A.; Ruiz- Nogueiras, B.; Pereira-Lorenzo, S.; Feijoo, G.; Moreira, M.T. Life cycle assessment of autochthonous varieties of wheat and artisanal bread production in Galicia, Spain. Sci. Total Environ. 2020, 713, 136720. [Google Scholar] [CrossRef] [PubMed]
- Reeves, T.G.; Pingali, P.L.; Rajaram, S.; Cassaday, K. Crop and natural resource management strategies to foster sustainable wheat production in developing countries. In Wheat in a Global Environment; Bedo, Z., Lang, L., Eds.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2001; pp. 23–36. [Google Scholar]
- Savary, S.; Bregaglio, S.; Willocquet, L.; Gustafson, D.; Mason D’Croz, D.; Sparks, A.; Castilla, N.; Djurle, A.; Allinne, C.; Sharma, M.; et al. Crop health and its global impacts on the components of food security. Food Secur. 2017, 9, 311–327. [Google Scholar] [CrossRef]
- Rietveld, A.M.; Groot, J.C.J.; van der Burg, M. Predictable patterns of unsustainable intensification. Int. J. Agric. Sustain. 2022, 20, 461–477. [Google Scholar] [CrossRef]
- Ijaz, M.; Nawaz, A.; Ul-Allah, S.; Rizwan, M.S.; Ullah, A.; Hussain, M.; Sher, A.; Ahmad, S. Crop diversification and food security. In Agronomic Crops; Production Technologies; Hasanuzzaman, M., Ed.; Springer Nature: Singapore, 2019; Volume 1, pp. 607–621. [Google Scholar] [CrossRef]
Country | System Boundaries | Functional Units | Assessment Methods | Reference |
---|---|---|---|---|
Chile | Cradle-to-gate | 1 Mg | CML 2000 | [32] |
Nigeria | Gate-to-gate | 1 kg | ISO14042 (2000) | [33] |
Poland | Cradle-to-gate | 1 Mg and 1 ha | CML-IA baseline | [34] |
Poland | Cradle-to-gate | 1 kg | CML-IA baseline | [35] |
Iran | Cradle-to-gate | 1 Mg | CML-IA baseline | [36] |
Iran | Cradle-to-gate | 1 Mg | CML-IA baseline | [37] |
United States and Canada | Cradle-to-gate | 1 kg | ReCiPe 2016 | [38] |
China | Cradle-to-gate | 1 Mg | ReCiPe 2016 | [39] |
Spain | Gate-to-gate | 1 ha | ReCiPe 2016 | [40] |
Iran | Gate-to-gate | 1 Mg | ReCiPe 2016 | [41] |
Iran | Gate-to-gate | 1 Mg | CML-IA baseline | [42] |
England, Wales | Cradle-to-gate | 1 kg | CML 1999, IPCC 2001 | [43] |
Austria | Cradle-to-gate | Grain N yield and 1 ha | ReCiPe 2016 | [44] |
Italy | Cradle-to-gate | 1 Mg | ILCD | [45] |
Italy | Cradle-to-gate | 1 Mg and 1 ha | ReCiPe 1.07 endpoint (H) | [46] |
Belgium | Cradle-to-gate | 1 kg and 1 ha | ILCD | [47] |
Italy | Cradle-to-grave | 1 kg | CML vs. 3.06 (2016) | [48] |
South Africa | Cradle-to-gate | 1 kg and 1 ha | Stepwise | [49] |
Brazil | Cradle-to-gate | 1 Mg | CML 2000 | [50] |
Indicator | Unit | Minimum | Reference | Maximum | Reference |
---|---|---|---|---|---|
Abiotic depletion (non-fossil) | kg Sb eq. | 2.00 × 10−³ | [34,36] | 3.01 | [32] |
Abiotic depletion (fossil fuels) | MJ | 0.50 | [34] | 6.67 × 103 | [37] |
Global warming potential | kg CO2 eq. | −4.39 | [32] | 160.00 | [51] |
Ozone layer depletion | kg CFC-11 eq. | 1.19 × 10−7 | [33] | 1.00 × 10−4 | [37] |
Human toxicity | kg 1.4 DB eq. | 60 | [42] | 229.00 | [42] |
Freshwater aquatic ecotoxicity | kg 1.4 DB eq. | 42 | [42] | 173.00 | [42] |
Marine aquatic ecotoxicity | kg 1.4 DB eq. | 1.23 × 105 | [42] | 3.20 × 105 | [42] |
Terrestrial ecotoxicity | kg 1.4 DB eq. | 0.46 | [36] | 12.79 | [37] |
Photochemical oxidation | kg C2H4 eq. | 4.55 × 10−2 | [42] | 0.17 | [36] |
Acidification | kg SO2 eq. | 5.61 × 10−6 | [33] | 15.28 | [32] |
Eutrophication | kg PO4 eq. | 3.59 × 10−4 | [33] | 4.83 | [32] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kheiralipour, K.; Brandão, M.; Holka, M.; Choryński, A. A Review of Environmental Impacts of Wheat Production in Different Agrotechnical Systems. Resources 2024, 13, 93. https://doi.org/10.3390/resources13070093
Kheiralipour K, Brandão M, Holka M, Choryński A. A Review of Environmental Impacts of Wheat Production in Different Agrotechnical Systems. Resources. 2024; 13(7):93. https://doi.org/10.3390/resources13070093
Chicago/Turabian StyleKheiralipour, Kamran, Miguel Brandão, Malgorzata Holka, and Adam Choryński. 2024. "A Review of Environmental Impacts of Wheat Production in Different Agrotechnical Systems" Resources 13, no. 7: 93. https://doi.org/10.3390/resources13070093
APA StyleKheiralipour, K., Brandão, M., Holka, M., & Choryński, A. (2024). A Review of Environmental Impacts of Wheat Production in Different Agrotechnical Systems. Resources, 13(7), 93. https://doi.org/10.3390/resources13070093