Phytoremediation Characterization of Heavy Metals by Some Native Plants at Anthropogenic Polluted Sites in Jeddah, Saudi Arabia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Collection and Identification
2.2. Soil Collection
2.3. Soil Physicochemical Properties Analysis
2.4. Heavy Metal Analysis
2.5. Phytoremediation Indices Calculation
2.6. Total Thiols Determination
2.7. Statistical Analysis
3. Results and Discussion
3.1. Physical and Chemical Characteristics of Soil
3.2. Heavy Metals in Soil
3.3. Heavy Metals in Plants
3.4. Heavy Metal Accumulation and Translocation Potential Assessment
3.5. Total Thiols
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Suman, J.; Uhlik, O.; Viktorova, J.; Macek, T. Phytoextraction of heavy metals: A promising tool for clean-up of polluted environment? Front. Plant Sci. 2018, 9, 1476. [Google Scholar] [CrossRef] [PubMed]
- Duruibe, J.O.; Ogwuegbu, M.O.C.; Egwurugwu, J.N. Heavy metal pollution and human biotoxic effects. Int. J. Phys. Sci. 2007, 2, 112–118. [Google Scholar]
- Ikehata, K.; Jin, Y.; Maleky, N.; Lin, A. Heavy metal pollution in water resources in China—Occurrence and public health implications. In Heavy Metals in Water: Presence, Removal and Safety; Sharma, S.K., Ed.; Royal Society of Chemistry: Cambridge, UK, 2015; pp. 141–167. ISBN 978-1-84973-885-9. [Google Scholar]
- Raychaudhuri, S.S.; Pramanick, P.; Talukder, P.; Basak, A. Chapter 6—Polyamines, metallothioneins, and phytochelatins—Natural defense of plants to mitigate heavy metals. In Studies in Natural Products Chemistry; Atta-ur-Rahman, Ed.; Elsevier: Amsterdam, The Netherlands, 2021; Volume 69, pp. 227–261. [Google Scholar]
- Bhat, S.A.; Bashir, O.; Ul Haq, S.A.; Amin, T.; Rafiq, A.; Ali, M.; Américo-Pinheiro, J.H.P.; Sher, F. Phytoremediation of heavy metals in soil and water: An eco-friendly, sustainable and multidisciplinary approach. Chemosphere 2022, 303, 134788. [Google Scholar] [CrossRef] [PubMed]
- Farahat, E.; Linderholm, H.W. The effect of long-term wastewater irrigation on accumulation and transfer of heavy metals in Cupressus sempervirens leaves and adjacent soils. Sci. Total Environ. 2015, 512, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Fasani, E.; Manara, A.; Martini, F.; Furini, A.; DalCorso, G. The potential of genetic engineering of plants for the remediation of soils contaminated with heavy metals. Plant. Cell Environ. 2018, 41, 1201–1232. [Google Scholar] [CrossRef] [PubMed]
- Badr, N.B.; El-Fiky, A.A.; Mostafa, A.R.; Al-Mur, B.A. Metal pollution records in core sediments of some Red Sea coastal areas, Kingdom of Saudi Arabia. Environ. Monit. Assess. 2009, 155, 509–526. [Google Scholar] [CrossRef] [PubMed]
- Abu-Zied, R.H.; Basaham, A.S.; El Sayed, M.A. Effect of municipal wastewaters on bottom sediment geochemistry and benthic foraminifera of two Red Sea coastal inlets, Jeddah, Saudi Arabia. Environ. Earth Sci. 2013, 68, 451–469. [Google Scholar] [CrossRef]
- Pan, K.; Lee, O.O.; Qian, P.Y.; Wang, W.X. Sponges and sediments as monitoring tools of metal contamination in the eastern coast of the Red Sea, Saudi Arabia. Mar. Pollut. Bull. 2011, 62, 1140–1146. [Google Scholar] [CrossRef] [PubMed]
- Bantan, R.A.; Al-Dubai, T.A.; Al-Zubieri, A.G. Geo-environmental assessment of heavy metals in the bottom sediments of the Southern Corniche of Jeddah, Saudi Arabia. Mar. Pollut. Bull. 2020, 161, 111721. [Google Scholar] [CrossRef]
- Wang, L.; Rinklebe, J.; Tack, F.M.G.; Hou, D. A review of green remediation strategies for heavy metal contaminated soil. Soil Use Manag. 2021, 37, 936–963. [Google Scholar] [CrossRef]
- Shah, V.; Daverey, A. Phytoremediation: A multidisciplinary approach to clean up heavy metal contaminated soil. Environ. Technol. Innov. 2020, 18, 100774. [Google Scholar] [CrossRef]
- Sparling, D.W. Basics of Ecotoxicology; Taylor & Francis: Abingdon, UK; CRC Press: Boca Raton, FL, USA, 2018. [Google Scholar]
- Azeh Engwa, G.; Udoka Ferdinand, P.; Nweke Nwalo, F.; Unachukwu, N. Mechanism and health effects of heavy metal toxicity in humans. In Poisoning in the Modern World—New Tricks for an Old Dog? Karcioglu, O., Arslan, B., Eds.; IntechOpen: London, UK, 2019. [Google Scholar] [CrossRef]
- Wuana, R.A.; Okieimen, F.E. Heavy metals in contaminated soils: A review of sources, chemistry, risks and best available strategies for remediation. Int. Sch. Res. Not. 2011, 2011, 402647. [Google Scholar] [CrossRef]
- Yan, Y.Y.; Yang, B.; Lan, X.Y.; Li, X.Y.; Xu, F.L. Cadmium accumulation capacity and resistance strategies of a cadmium-hypertolerant fern—Microsorum fortunei. Sci. Total Environ. 2019, 649, 1209–1223. [Google Scholar] [CrossRef] [PubMed]
- Gong, Y.; Zhao, D.; Wang, Q. An overview of field-scale studies on remediation of soil contaminated with heavy metals and metalloids: Technical progress over the last decade. Water Res. 2018, 147, 440–460. [Google Scholar] [CrossRef] [PubMed]
- Yin, K.; Wang, Q.; Lv, M.; Chen, L. Microorganism remediation strategies towards heavy metals. Chem. Eng. J. 2019, 360, 1553–1563. [Google Scholar] [CrossRef]
- Nkongolo, K.K.; Spiers, G.; Beckett, P.; Narendrula-Kotha, R. Effects of phytoremediation on microbial biomass, composition, and function in a sulphide-rich tailing from a metal-contaminated region. Front. Environ. Sci. 2022, 10, 908633. [Google Scholar] [CrossRef]
- Mosa, K.A.; Saadoun, I.; Kumar, K.; Helmy, M.; Dhankher, O.P. Potential biotechnological strategies for the cleanup of heavy metals and metalloids. Front. Plant Sci. 2016, 7, 303. [Google Scholar] [CrossRef]
- Yan, A.; Wang, Y.; Tan, S.N.; Mohd Yusof, M.L.; Ghosh, S.; Chen, Z. Phytoremediation: A Promising Approach for Revegetation of Heavy Metal-Polluted Land. Front. Plant Sci. 2020, 11, 359. [Google Scholar] [CrossRef] [PubMed]
- Ali, H.; Khan, E.; Sajad, M.A. Phytoremediation of heavy metals—Concepts and applications. Chemosphere 2013, 91, 869–881. [Google Scholar] [CrossRef]
- Zhu, G.; Xiao, H.; Guo, Q.; Song, B.; Zheng, G.; Zhang, Z.; Zhao, J.; Okoli, C.P. Heavy metal contents and enrichment characteristics of dominant plants in wasteland of the downstream of a lead-zinc mining area in Guangxi, Southwest China. Ecotoxicol. Environ. Saf. 2018, 151, 266–271. [Google Scholar] [CrossRef]
- Taiz, L.; Zeiger, E.; Moller, I.M.; Murphy, A. Plant Physiology and Development, 6th ed.; Sinauer Associates: Sunderland, CT, USA, 2015. [Google Scholar]
- Ozyigit, I.I.; Can, H.; Dogan, I. Phytoremediation using genetically engineered plants to remove metals: A review. Environ. Chem. Lett. 2020, 19 Pt 2, 669–698. [Google Scholar] [CrossRef]
- Elizabeth, P.H. Phytoremediation. Annu. Rev. Plant Biol. 2005, 56, 15–39. [Google Scholar]
- Conesa, H.M.; Moradi, A.B.; Robinson, B.H.; Kühne, G.; Lehmann, E.; Schulin, R. Response of native grasses and Cicer arietinum to soil polluted with mining wastes: Implications for the management of land adjacent to mine sites. Environ. Exp. Bot. 2009, 65, 198–204. [Google Scholar] [CrossRef]
- Alzahrani, A.J.A.; Al Toukhy, A.A.; Al-Hajar, A.S.; Hasan, M.; Arfan, A. Comparative study of heavy metals content in leaves of five selective plant species growing in Makkah Al-Mukarramah region, Saudi Arabia. Int. J. Sustain. Agril. Tech. 2019, 15, 1–8. [Google Scholar]
- Tiwari, K.K.; Dwivedi, S.; Mishra, S.; Srivastava, S.; Tripathi, R.D.; Singh, N.K.; Chakraborty, S. Phytoremediation efficiency of Portulaca tuberosa rox and Portulaca oleracea L. naturally growing in an industrial effluent irrigated area in Vadodra, Gujrat, India. Environ. Monit. Assess. 2008, 147, 15–22. [Google Scholar] [CrossRef]
- El-Sherbiny, M.; Ismail, A.I.; El-Hefnawy, M.E. A preliminary assessment of potential ecological risk and soil contamination by heavy metals around a cement factory, western Saudi Arabia. Open Chem. 2019, 17, 671–684. [Google Scholar] [CrossRef]
- Eben, P.; Mohri, M.; Pauleit, S.; Duthweiler, S.; Helmreich, B. Phytoextraction potential of herbaceous plant species and the influence of environmental factors—A meta-analytical approach. Ecol. Eng. 2024, 199, 107169. [Google Scholar] [CrossRef]
- Matanzas, S.N.; Aff, E.; Díaz, T.; Gallego, J.R. Phytoremediation Potential of Native Herbaceous Plant Species Growing on a Paradigmatic Brownfield site. Water Air Soil Pollut. 2021, 232, 290. [Google Scholar] [CrossRef]
- Al-Yamani, M.N.; AL-Desoki, R.A. Plant and Environmental Factors—Practical; Scientific Publishing and Printing Press: Riyadh, Saudi Arabia; King Saud University: Riyadh, Saudi Arabia, 2006. [Google Scholar]
- Walz, J.; Knoblauch, C.; Böhme, L.; Pfeiffer, E. Regulation of soil organic matter decomposition in permafrost-affected Siberian tundra soils—Impact of oxygen availability, freezing and thawing, temperature, and labile organic matter. Soil Biol. Biochem. 2017, 110, 34–43. [Google Scholar] [CrossRef]
- Yousef, A.F. Analysis Methods and Devices for Soil and Water; King Saud University: Riyadh, Saudi Arabia, 1999. [Google Scholar]
- Conklin, A.R. Introduction to Soil Chemistry: Analysis and Instrumentation; John Wiley & Sons: Hoboken, NJ, USA, 2013. [Google Scholar]
- Tuzen, M.; Sesli, E.; Soylak, M. Trace element levels of mushroom species from East Black Sea region of Turkey. Food Control. 2007, 18, 806–810. [Google Scholar] [CrossRef]
- Mohanty, M.; Pattnaik, M.M.; Mishra, A.K.; Patra, H.K. Bio-concentration of chromium—An in situ phytoremediation study at South Kaliapani chromite mining area of Orissa, India. Environ. Monit. Assess. 2012, 184, 1015–1024. [Google Scholar] [CrossRef] [PubMed]
- Nazir, A.; Malik, R.N.; Ajaib, M.; Khan, N.; Siddiqui, M.F. Hyperaccumulators of heavy metals of industrial areas of Islamabad and Rawalpindi. Pak. J. Bot. 2011, 43, 1925–1933. [Google Scholar]
- Sajad, M.A.; Khan, M.S.; Bahadur, S.; Shuaib, M.; Naeem, A.; Zaman, W.; Ali, H. Nickel phytoremediation potential of some plant species of the Lower Dir, Khyber Pakhtunkhwa, Pakistan. Limnol. Rev. 2020, 20, 13–22. [Google Scholar] [CrossRef]
- Nazli, F.; Jamil, M.; Hussain, A.; Hussain, T. Exopolysaccarides and indole-3-acetic acid producing Bacillus safensis strain FN13 potential candidate for phytostabilization of heavy metals. Environ. Monit. Assess. 2020, 192, 738. [Google Scholar] [CrossRef] [PubMed]
- Nagalakshmi, N.; Prasad, M.N.V. Responses of glutathione cycle enzymes and glutathione metabolism to copper stress in Scenedesmus bijugatus. Plant Sci. 2001, 160, 291–299. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.; Zhou, X.; Zeng, M.; Liao, B.-H.; Liu, L.; Yang, W.-T.; Wu, Y.-M.; Qiu, Q.-Y.; Wang, Y.-J. Effects of combined amendments on heavy metal accumulation in rice (Oryza sativa L.) planted on contaminated paddy soil. Ecotoxicol. Environ. Saf. 2014, 101, 226–232. [Google Scholar] [CrossRef]
- Rosenfeld, C.E.; Chaney, R.L.; Martínez, C.E. Soil geochemical factors regulate Cd accumulation by metal hyperaccumulating Noccaea caerulescens (J. Presl & C. Presl) FK Mey in field-contaminated soils. Sci. Total Environ. 2018, 616, 279–287. [Google Scholar] [PubMed]
- Al-Moshaddak, A.; Al Zahrani, H.S.; El-Zohri, M. Ecological and phytochemical evaluation of the halophyte Aeluropus Lagopoides grows wildly in Jeddah, Saudi Arabia. Life Sci. J. 2020, 17, 83–91. [Google Scholar]
- Alghamdi, S.A.; Al-Ghamdi, F.A.; El-Zohri, M.; Al-Ghamdi, A.A.M. Modifying of calcareous soil with some acidifying materials and its effect on Helianthus annuus (L.) growth. Saudi J. Biol. Sci. 2023, 30, 103568. [Google Scholar] [CrossRef]
- Sheoran, V.; Sheoran, A.S.; Poonia, P. Factors affecting phytoextraction: A review. Pedosphere 2016, 26, 148–166. [Google Scholar] [CrossRef]
- Sun, H.-F.; Li, Y.-H.; Ji, Y.-F.; Yang, L.-S.; Wang, W.-Y.; Li, H.-R. Environmental contamination and health hazard of lead and cadmium around Chatian mercury mining deposit in western Hunan Province, China. Trans. Nonferrous Metals Soc. China 2010, 20, 308–314. [Google Scholar] [CrossRef]
- Zeng, F.; Ali, S.; Zhang, H.; Ouyang, Y.; Qiu, B.; Wu, F.; Zhang, G. The influence of pH and organic matter content in paddy soil on heavy metal availability and their uptake by rice plants. Environ. Pollut. 2011, 159, 84–91. [Google Scholar] [CrossRef] [PubMed]
- Hernandez-Soriano, M.C.; Jimenez-Lopez, J.C. Effects of soil water content and organic matter addition on the speciation and bioavailability of heavy metals. Sci. Total Environ. 2012, 423, 55–61. [Google Scholar] [CrossRef]
- Chu, Q.; Sha, Z.; Osaki, M.; Watanabe, T. Contrasting effects of cattle manure applications and root-induced changes on heavy metal dynamics in the rhizosphere of soybean in an acidic haplic fluvisol: A chronological pot experiment. J. Agric. Food Chem. 2017, 65, 3085–3095. [Google Scholar] [CrossRef]
- Karaca, A. Effect of wrganic wastes on the extractability of cadmium, copper, nickel, and zinc in soil. Geoderma 2004, 122, 297–303. [Google Scholar] [CrossRef]
- Lee, H.; Kabir, I.; Kown, S.P.; Kim, M.J.; Kim, G.J.; Huyn, H.S.; Jung, S.M. Contamination assessment of abandoned mines by integrated pollution index in the Han river watershed. Open Environ. Pollut. Toxicol. J. 2009, 1, 27–33. [Google Scholar] [CrossRef]
- Halawani, R.F.; Wilson, M.E.; Hamilton, K.M.; Aloufi, F.A.; Taleb, M.A.; Al-Zubieri, A.G.; Quicksall, A.N. Spatial distribution of heavy metals in mear-shore marine mediments of the Jeddah, Saudi Arabia Region: Enrichment and associated risk indices. J. Mar. Sci. Eng. 2022, 10, 614. [Google Scholar] [CrossRef]
- Skaldina, O.; Peräniemi, S.; Sorvari, J. Ants and their nests as indicators for industrial heavy metal contamination. Environ. Pollut. 2018, 240, 574581. [Google Scholar] [CrossRef]
- Alhogbi, B.G.; Alsolame, A.F. Soil Pollution: A Case study on the determination of toxic elements in soil in Jeddah city, Saudi Arabia. Int. J. Chem. 2017, 9, 37–44. [Google Scholar] [CrossRef]
- Mahmood, R.; Malik, N. Human health risk assessment of heavy metals via consumption of contaminated vegetables collected from different irrigation sources in Lahore, Pakistan. Arab. J. Chem. 2014, 7, 91–99. [Google Scholar] [CrossRef]
- Shaheen, N.; Irfan, N.; Khan, I.N.; Islam, S.; Islam, S.; Ahmed, K. Presence of heavy metals in fruits and vegetables: Health risk implications in Bangladesh. Chemosphere 2016, 152, 431–438. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Li, Z.; Lin, C.J.; Bi, X.; Liu, J.; Feng, X.; Zhang, H.; Chen, J.; Wu, T. Health risks of heavy metal exposure through vegetable consumption near a large-scale Pb/Zn smelter in central China. Ecotoxicol. Environ. Saf. 2018, 15, 99–110. [Google Scholar] [CrossRef] [PubMed]
- Marques, A.P.G.C.; Rangel, A.O.S.S.; Castro, P.M.L. Remediation of heavy metal contaminated soils: Phytoremediation as a potentially promising clean-up technology. Crit. Rev. Environ. Sci. Technol. 2009, 39, 622–654. [Google Scholar] [CrossRef]
- Wu, B.; Peng, H.; Sheng, M.; Luo, H.; Wang, X.; Zhang, R.; Xu, F.; Xu, H. Evaluation of phytoremediation potential of native dominant plants and spatial distribution of heavy metals in abandoned mining area in Southwest China. Ecotoxicol. Environ. Saf. 2021, 220, 112368. [Google Scholar] [CrossRef] [PubMed]
- Tangahu, B.V.; Sheikh Abdullah, S.R.; Basri, H.; Idris, M.; Anuar, N.; Mukhlisin, M.A. review on heavy metals (As, Pb, and Hg) uptake by plants through phytoremediation. Int. J. Chem. Eng. 2011, 2012, 939161. [Google Scholar] [CrossRef]
- Song, Y.; Zhang, F.; Li, H.; Qiu, B.; Gao, Y.; Cui, D.; Yang, Z. Antioxidant defense system in lettuces tissues upon various as species exposure. J. Hazard Mater. 2020, 399, 123003. [Google Scholar] [CrossRef] [PubMed]
- Peco, J.D.; Higueras, P.; Campos, J.A.; Olmedilla, A.; Romero-Puertas, M.C.; Sandalio, L.M. Deciphering lead tolerance mechanisms in a population of the plant species Biscutella auriculata L. from a mining area: Accumulation strategies and antioxidant defenses. Chemosphere 2020, 261, 127721. [Google Scholar] [CrossRef] [PubMed]
- Midhat, L.; Ouazzani, N.; Hejjaj, A.; Ouhammou, A.; Mandi, L. Accumulation of heavy metals in metallophytes from three mining sites (Southern Centre Morocco) and evaluation of their phytoremediation potential. Ecotoxicol. Environ. Saf. 2019, 169, 150–160. [Google Scholar] [CrossRef]
- Bothe, H. Plants in heavy metal soils. In Detoxification of Heavy Metals; Sherameti, I., Varma, A., Eds.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 35–57. [Google Scholar]
- Rubio, M.; Mera, M.F.; Cazon, S.; Rubio, M.E.; P´erez, C.A. SR micro-XRF to study Pb diffusion using a one-dimensional geometric model in leaves of Brassica napus for phytoremediation. Radiat. Phys. Chem. 2020, 167, 108291. [Google Scholar] [CrossRef]
- Pourkhabbaz, A.; Rastin, N.; Olbrich, A.; Heyser, R.L.; Polle, A. Influence of environmental pollution onleaf properties of urban plane trees, Platanus orientalis L. Bull. Environ. Contam. Toxicol. 2010, 85, 251–255. [Google Scholar] [CrossRef]
- Iqbal, H.; Khattak, B.; Ayaz, S.; Rehman, A.; Ishfaq, M.; Abbas, M.N.; Malika, M.S.; Wahab, A.; Imran, A.; Mehsud, S. Pollution based study of heavy metals in medicinal plants Aloe vera and Tamarix aphylla. J. App. Pharm. Sci. 2013, 3, 54–58. [Google Scholar]
- Nouri, J.; Khorasani, N.; Lorestani, B.; Karami, M.; Hassani, A.H.; Yousefi, N. Accumulation of heavy metals in soil and uptake by plant species with phytoremediation potential. Environ. Earth Sci. 2009, 59, 315–323. [Google Scholar] [CrossRef]
- Zacchini, M.; Pietrini, F.; Scarascia Mugnozza, G.; Iori, V.; Pietrosanti, L.; Massacci, A. Metal tolerance, accumulation and translocation in poplar and willow clones treated with cadmium in hydroponics. Water Air Soil Pollut. 2009, 197, 23–34. [Google Scholar] [CrossRef]
- Malik, N.; Biswas, A.K. Role of higher plants in remediation of metal contaminated sites. Sci. Rev. Chem. Commun. 2012, 2, 141–146. [Google Scholar]
- Zhan, H.Y.; Jiang, Y.F.; Yuan, J.; Hu, X.F.; Nartey, O.D.; Wang, B.L. Trace metal pollution in soil and wild plants from lead–zinc smelting areas in Huixian County, Northwest China. J. Geochem. Explor. 2014, 147, 182–188. [Google Scholar] [CrossRef]
- Ghazaryan, K.; Movsesyan, H.; Ghazaryan, N.; Watts, B.A. Copper phytoremediation potential of wild plant species growing in the mine polluted areas of Armenia. Environ. Pollut. 2019, 249, 491–501. [Google Scholar] [CrossRef] [PubMed]
- Guarino, C.; Zuzolo, D.; Marziano, M.; Baiamonte, G.; Morra, L.; Benotti, D.; Gresia, D.; Stacul, E.R.; Cicchella, D.; Sciarrillo, R. Identification of native-metal tolerant plant species in situ: Environmental implications and functional traits. Sci. Total Environ. 2019, 650, 3156–3167. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Yang, G.; Liu, Z.; Cai, J. Overview of phytoremediation technology for heavy metal contaminated soil. E3S Web Conf. 2022, 350, 01006. [Google Scholar] [CrossRef]
- Vardumyan, H.; Singh, A.; Rajput, V.D.; Minkina, T.; El-Ramady, H.R.; Ghazaryan, K. Additive-mediated phytoextraction of copper-contaminated soils using Medicago lupulina L. Egypt. J. Soil Sci. 2024, 64, 599–618. [Google Scholar]
- Bortoloti, G.A.; Baron, D. Phytoremediation of toxic heavy metals by Brassica plants: A biochemical and physiological approach. Environ. Adv. 2022, 8, 100204. [Google Scholar] [CrossRef]
- Evans, K.M.; Gatehouse, J.A.; Lindsay, W.P.; Shi, J.; Tommey, A.M.; Robinson, N.J. Expression of the pea metallothionein-like gene PsMT A in Escherichia coli and Arabidopsis thaliana and analysis of trace metal ion accumulation: Implications for PsMT A function. Plant Mol. Biol. 1992, 20, 1019–1028. [Google Scholar] [CrossRef] [PubMed]
- Čabala, R.; Slováková, L.; El-Zohri, M.; Frank, H. Accumulation and translocation of Cd metal and the Cd-induced production of glutathione and phytochelatins in Vicia faba L. Acta Physiol. Plant. 2011, 33, 1239–1248. [Google Scholar] [CrossRef]
- Sun, Y.; Ye, H.; Wei, Z.; Kong, X.; Wu, Q. Root cell walls and phytochelatins in low-cadmium cultivar of Brassica parachinensis. Pedosphere 2020, 30, 426–432. [Google Scholar] [CrossRef]
- Agnihotri, A.; Seth, C.S. Does jasmonic acid regulate photosynthesis, clastogenecity, and phytochelatins in Brassica juncea L. in response to Pb-subcellular distribution? Chemosphere 2020, 243, 125361. [Google Scholar] [CrossRef]
- Pinto, E.; Aguiar, A.; Ferreira, I. Influence of soil chemistry and plant physiology in the phytoremediation of Cu, Mn, and Zn. CRC. Crit. Rev. Plant Sci. 2014, 33, 351–373. [Google Scholar] [CrossRef]
Site | * Sampling Point | PH | EC (µS/cm) | WC (%) | OM (%) | Soil Texture | |||
---|---|---|---|---|---|---|---|---|---|
Coarse Sand (%) | Sand (%) | Silt (%) | Clay (%) | ||||||
Wadi Marik | A | 8.00 | 0.34 | 49.21 | 4.86 | 28.97 | 60.46 | 6.21 | 0.68 |
B | 7.79 | 0.28 | 49.33 | 4.82 | 12.21 | 78.21 | 8.95 | 0.63 | |
C | 7.74 | 1.18 | 49.34 | 4.83 | 14.72 | 78.51 | 5.63 | 0.57 | |
Bahra | D | 7.84 | 1.71 | 49.13 | 4.79 | 18.16 | 70.54 | 9.57 | 0.01 |
E | 7.93 | 0.34 | 48.95 | 4.74 | 16.33 | 78.17 | 4.44 | 0.61 | |
F | 7.70 | 0.74 | 49.09 | 4.75 | 12.38 | 78.64 | 6.17 | 1.55 | |
Khumrah | G | 7.67 | 0.46 | 49.68 | 4.86 | 22.44 | 63.03 | 10.57 | 3.47 |
H | 7.62 | 1.10 | 49.42 | 4.88 | 25.99 | 66.9 | 4.41 | 1.19 | |
I | 7.69 | 0.40 | 49.80 | 4.90 | 23.1 | 68.93 | 5.53 | 1.07 |
Site | * Sampling Point | Al | Ni | Zn | Co | Fe | Pb | Mn | Cr | Ba |
---|---|---|---|---|---|---|---|---|---|---|
Wadi Marik | A | 68.23 ± 3.40 a | 0.24 ± 0.01 d | 0.24 ± 0.01 c | 0.04 ± 0 bc | 61.56 ± 5.90 a | 0.47 ± 0.02 b | 1.58 ± 0.03 a | 0.11 ± 0 ab | 0.42 ± 0 a |
B | 20.04 ± 0.94 fg | 0.41 ± 0.01 a | 0.12 ± 0 d | 0.04 ± 0 abc | 18.97 ± 1.70 g | 0.68 ± 0 a | 0.36 ± 0.02 ef | 0.03 ± 0 gh | 0.08 ± 0 g | |
C | 28.32 ± 0.73 d | 0.32 ± 0.02 bc | 0.15 ± 0.01 d | 0.03 ± 0 bcd | 25.87 ± 2.60 de | 0.37 ± 0.02 c | 0.55 ± 0 bc | 0.09 ± 0 bc | 0.12 ± 0 bcd | |
Bahra | D | 34.53 ± 1.53 c | 0.34 ± 0.01 abc | 0.23 ± 0.01 c | 0.06 ± 0 a | 29.21 ± 1.33 cd | 0.32 ± 0.01 cde | 0.56 ± 0.02 bc | 0.07 ± 0 cde | 0.13 ± 0 bc |
E | 10.05 ± 1.87 h | 0.27 ± 0.04 cd | 0.05 ± 10 e | 0.04 ± 0 abcd | 8.24 ± 0.55 h | 0.45 ± 0.02 b | 0.15 ± 0.03 h | 0.04 ± 0.01 fgh | 0.04 ± 0 h | |
F | 14.77 ± 0.40 gh | 0.20 ± 0.1 d | 0.11 ± 0 d | 0.04 ± 0 bcd | 11.43 ± 1.50 h | 0.30 ± 0 de | 0.22 ± 0.07 gh | 0.06 ± 0.01 de | 0.04 ± 0 h | |
Khumrah | G | 24.8 ± 0.89 ef | 0.32 ± 0.01 bc | 0.03 ± 0 e | 0.02 ± 0 de | 21.78 ± 3.90 fg | 0.36 ± 0.01 cd | 0.38 ± 0.01 ef | 0.03 ± 0 h | 0.08 ± 0 fg |
H | 33.8 ± 0.46 cd | 0.38 ± 0.05 ab | 0.25 ± 0 c | 0.02 ± 0 cde | 26.97 ± 4.20 de | 0.37 ± 0.04 c | 0.45 ± 0 de | 0.09 ± 0.01 bc | 0.07 ± 0 g | |
I | 49.80 ± 2.19 b | 0.34 ± 0.02 abc | 0.67 ± 0.03 a | LD ** | 35.42 ± 1.55 b | 0.34 ± 0 cde | 0.61 ± 0.02 b | 0.10 ± 0 a | 0.12 ± 0 bcd | |
Tolerable Level (g/kg) for soil [54] | - | 0.04 | 0.30 | 0.10 | 50 | 0.10 | 2 | 0.004 | - |
Site | Plant Species | Al | Ni | Zn | Co | Fe | Pb | Mn | Cr | Ba |
---|---|---|---|---|---|---|---|---|---|---|
Wadi Marik | A. javanica | 0.95 ± 0.10 cd | 0.37 ± 0.01 ab | 0.08 ± 0 c | 0.05 ± 0 ab | 2.72 ± 0.26 a | 0.50 ± 0.03 b | 0.11 ± 10 a | 0.30 ± 0 c | 0.06 ± 0 b |
P. oleracea | 1.13 ± 0.07 bc | 0.42 ± 0.03 a | 0.15 ± 0 b | 0.04 ± 0 d | 2.27 ± 0.02 ab | 0.20 ± 0.01 f | 0.06 ± 0 b | 0.42 ± 0.01 a | 0.11 ± 0 a | |
E. indica | 0.86 ± 0.08 d | 0.41 ± 0.01 a | 0.26 ± 0.02 a | 0.05 ± 0 ab | 1.63 ± 0.03 bc | LD | 0.05 ± 10 bc | 0.19 ± 0.01 e | 0.03 ± 0 d | |
Bahra | C. ciliaris | 0.47 ± 0.01 e | 0.30 ± 0.01 cd | 0.06 ± 0 f | 0.04 ± 0 bc | LD | 0.27 ± 0 e | LD | 0.13 ± 0.02 f | 0.01 ± 0 ef |
T. nubica | 0.71 ± 0.1 de | 0.30 ± 0.01 cd | 0.03 ± 0 ef | 0.03 ± 0 d | LD | 0.20 ± 0 f | 0.01 ± 0 cd | 0.19 ± 0.01 e | 0.01 ± 0 ef | |
D. glaucoma | 0.39 ± 0 ef | 0.25 ± 0.01 de | 0.03 ± 0 ef | LD | LD | 0.17 ± 0 g | 0.02 ± 0 bcd | 0.12 ± 0 f | 0.01 ± 0 ef | |
Khumrah | P. divisum | 0.19 ± 0.07 f | 0.34 ± 0.01 bc | 0.04 ± 0 de | 0.02 ± 0 e | 0.48 ± 0 d | 0.07 ± 0 h | LD | 0.34 ± 0 b | 0.01 ± 0 e |
T. coccinea | LD * | 0.35 ± 0 bc | 0.02 ± 0 f | 0.03 ± 0 e | LD | LD | LD | 0.29 ± 0.02 c | LD | |
F. indica | 1.41 ± 0 a | 0.22 ± 0.01 e | 0.05 ± 0 de | 0.02 ± 0 e | 0.54 ± 0.11 d | 0.30 ± 0 d | 0.01 ± 0 cd | 0.24 ± 0 d | 0.01 ± 0 f | |
Tolerable Level (g/kg) for plants [58,59,60] | - | 0.01 | 0.05 | 0.05 | 0.07 | 0.0001–0.0003 | 0.5 | 0.0001–0.0003 | - |
Site | Plant Species | Al | Ni | Zn | Co | Fe | Pb | Mn | Cr | Ba |
---|---|---|---|---|---|---|---|---|---|---|
Wadi Marik | A. javanica | 6.47 ± 0.13 g | LD * | 0.08 ± 0.01 h | 0.03 ± 0 ef | 11.59 ± 0.10 g | 0.38 ± 0 b | 0.35 ± 0 g | 0.52 ± 30 a | 0.21 ± 0 c |
P. oleracea | 3.34 ± 0.02 hi | LD | 0.99 ± 0.01 c | LD | 7.05 ± 0.01 h | 0.38 ± 0.01 b | 1.11 ± 0.01 d | 0.45 ± 0.02 b | 0.30 ± 0 b | |
E. indica | 8.61 ± 0.14 f | LD | 1.92 ± 0.01 a | 0.11 ± 0 a | 68.65 ± 0.61 a | 0.20 ± 0 ef | 1.39 ± 0.01 c | 0.19 ± 0.01 d | 0.13 ± 30 e | |
Bahra | C. ciliaris | 44.03 ± 1.96 b | LD | 1.75 ± 0.11 b | 0.07 ± 0 b | 53.12 ± 0.18 b | 0.35 ± 0.01 b | 2.09 ± 0.07 b | 0.30 ± 0.02 c | 0.35 ± 0 a |
T. nubica | 31.47 ± 0.30 c | LD | 0.31 ± 0.02 d | 0.02 ± 0 f | 29.91 ± 0.38 d | 0.23 ± 0 de | 0.77 ± 0 f | 0.14 ± 0.01 de | 0.19 ± 0 c | |
D. glaucoma | 11.98 ± 0.13 e | LD | 0.17 ± 0.01 efg | 0.02 ± 0 f | 14.70 ± 0.19 f | 0.36 ± 0.01 b | 0.31 ± 0.01 g | 0.03 ± 0.02 gh | 0.06 ± 0 fg | |
Khumrah | P. divisum | 85.02 ± 0.34 a | LD | 0.28 ± 0 d | 0.05 ± 0 c | 47.71 ± 0.19 c | 0.29 ± 0 c | 2.62 ± 0.02 a | 0.52 ± 0.02 a | 0.35 ± 0 a |
T. coccinea | 2.87 ± 0.11 ij | LD | 0.12 ± 0 gh | 0.03 ± 0 ef | 4.91 ± 0.11 i | 0.19 ± 0 f | 0.11 ± 0 i | LD | 0.04 ± 0 gh | |
F. indica | 4.87 ± 0.05 h | LD | 0.25 ± 0 def | 0.01 ± 0 gh | 6.48 ± 0.07 h | 0.25 ± 0.01 d | 0.16 ± 0 hi | 0.10 ± 0.04 ef | 0.05 ± 0 gh |
Site | Plant Species | Heavy Metal | Function |
---|---|---|---|
Wadi Marik | A. javanica | Cr Co | Phytostabilization, Phytoextraction |
P. oleracea | Zn, Mn, Cr, Ba Co | Phytostabilization, Phytoextraction | |
E. indica | Zn, Co, Fe, Mn, Cr | Phytostabilization | |
Bahra | C. ciliaris | Zn, Co, Fe, Mn, Cr, Ba | Phytostabilization |
T. nubica | Zn, Fe, Mn, Cr, Ba Cr | Phytostabilization, Phytoextraction | |
D. glaucoma | Zn, Fe, Pb, Mn, Ba Co, Cr | Phytostabilization, Phytoextraction | |
Khumrah | P. divisum | Zn, Co, Fe, Mn, Ba | Phytostabilization |
T. coccinea | Co Cr | Phytostabilization, Phytoextraction | |
F. indica | Co, Cr | Phytoextraction |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alghamdi, S.A.; El-Zohri, M. Phytoremediation Characterization of Heavy Metals by Some Native Plants at Anthropogenic Polluted Sites in Jeddah, Saudi Arabia. Resources 2024, 13, 98. https://doi.org/10.3390/resources13070098
Alghamdi SA, El-Zohri M. Phytoremediation Characterization of Heavy Metals by Some Native Plants at Anthropogenic Polluted Sites in Jeddah, Saudi Arabia. Resources. 2024; 13(7):98. https://doi.org/10.3390/resources13070098
Chicago/Turabian StyleAlghamdi, Sameera A., and Manal El-Zohri. 2024. "Phytoremediation Characterization of Heavy Metals by Some Native Plants at Anthropogenic Polluted Sites in Jeddah, Saudi Arabia" Resources 13, no. 7: 98. https://doi.org/10.3390/resources13070098
APA StyleAlghamdi, S. A., & El-Zohri, M. (2024). Phytoremediation Characterization of Heavy Metals by Some Native Plants at Anthropogenic Polluted Sites in Jeddah, Saudi Arabia. Resources, 13(7), 98. https://doi.org/10.3390/resources13070098