Evaluating the Effects of Parameter Uncertainty on River Water Quality Predictions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Analysis Procedure
2.2. Statistical Criteria Evaluation
2.3. Uncertainty and Sensitivity Analyses
3. Results and Discussion
3.1. Model Calibration and Validation
3.2. Uncertainty Analysis
3.3. Sensitivity Analysis
3.4. Implications for Water Resources Management
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Beck, M.B. Water Quality Modeling: A Review of the Analysis of Uncertainty. Water Resour. Res. 1987, 23, 1393–1442. [Google Scholar] [CrossRef]
- van Straten, G. Models for Water Quality Management: The Problem of Structural Change. Water Sci. Technol. 1998, 37, 103–111. [Google Scholar] [CrossRef]
- Doherty, J.; Johnston, J.M. Methodologies for Calibration and Predictive Analysis of a Watershed Model. JAWRA J. Am. Water Resour. Assoc. 2003, 39, 251–265. [Google Scholar] [CrossRef]
- Donigian, A.S. Watershed Model Calibration and Validation: The HSPF Experience. Proc. Water Environ. Fed. 2002, 2002, 44–73. [Google Scholar] [CrossRef]
- Fonseca, A.; Ames, D.P.; Yang, P.; Botelho, C.; Boaventura, R.; Vilar, V. Watershed Model Parameter Estimation and Uncertainty in Data-Limited Environments. Environ. Model. Softw. 2014, 51, 84–93. [Google Scholar] [CrossRef]
- Gallagher, M.; Doherty, J. Parameter Estimation and Uncertainty Analysis for a Watershed Model. Environ. Model. Softw. 2007, 22, 1000–1020. [Google Scholar] [CrossRef]
- Keith, L.H. Environmental Sampling: A Summary. Environ. Sci. Technol. 1990, 24, 610–617. [Google Scholar] [CrossRef]
- Mac Berthouex, P.; Brown, L.C. Solutions Manual for Statistics for Environmental Engineers, S on Living Systems; CRC Press: Boca Raton, FL, USA, 2002; ISBN 1566705932. [Google Scholar]
- Wagenschein, D.; Rode, M. Modelling the Impact of River Morphology on Nitrogen Retention—A Case Study of the Weisse Elster River (Germany). Ecol. Modell. 2008, 211, 224–232. [Google Scholar] [CrossRef]
- Jakeman, A.J.; Letcher, R.A.; Norton, J.P. Ten Iterative Steps in Development and Evaluation of Environmental Models. Environ. Model. Softw. 2006, 21, 602–614. [Google Scholar] [CrossRef]
- Sudheer, K.P.; Lakshmi, G.; Chaubey, I. Application of a Pseudo Simulator to Evaluate the Sensitivity of Parameters in Complex Watershed Models. Environ. Model. Softw. 2011, 26, 135–143. [Google Scholar] [CrossRef]
- Hope, A.S.; Stein, A.K.; McMichael, C.E. Uncertainty in Monthly River Discharge Predictions in a Semi-Arid Shrubland Catchment. In British Hydrological Society International Conference; Imperial College: London, UK, 2004; ISBN 1-903741-10-6. [Google Scholar]
- Christiaens, K.; Feyen, J. Analysis of Uncertainties Associated with Different Methods to Determine Soil Hydraulic Properties and Their Propagation in the Distributed Hydrological MIKE SHE Model. J. Hydrol. 2001, 246, 63–81. [Google Scholar] [CrossRef]
- Hornberger, G.M.; Spear, R.C. Eutrophication in Peel Inlet—I. The Problem-Defining Behavior and a Mathematical Model for the Phosphorus Scenario. Water Res. 1980, 14, 29–42. [Google Scholar] [CrossRef]
- Beven, K.; Binley, A. The Future of Distributed Models: Model Calibration and Uncertainty Prediction. Hydrol. Process. 1992, 6, 279–298. [Google Scholar] [CrossRef]
- Kuczera, G.; Parent, E. Monte Carlo Assessment of Parameter Uncertainty in Conceptual Catchment Models: The Metropolis Algorithm. J. Hydrol. 1998, 211, 69–85. [Google Scholar] [CrossRef]
- Freni, G.; Mannina, G. Bayesian Approach for Uncertainty Quantification in Water Quality Modelling: The Influence of Prior Distribution. J. Hydrol. 2010, 392, 31–39. [Google Scholar] [CrossRef]
- Willems, P. Quantification and Relative Comparison of Different Types of Uncertainties in Sewer Water Quality Modeling. Water Res. 2008, 42, 3539–3551. [Google Scholar] [CrossRef] [PubMed]
- Novotny, V.; Witte, J.W. Ascertaining Aquatic Ecological Risks of Urban Stormwater Discharges. Water Res. 1997, 31, 2573–2585. [Google Scholar] [CrossRef]
- Reda, A.L.L.; Beck, M.B. Ranking Strategies for Stormwater Management under Uncertainty: Sensitivity Analysis. Water Sci. Technol. 1997, 36, 357–371. [Google Scholar] [CrossRef]
- Moriasi, D.N.; Arnold, J.G.; Van Liew, M.W.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model Evaluation Guidelines for Systematic Quantification of Accuracy in Watershed Simulations. Trans. ASABE 2007, 50, 885–900. [Google Scholar] [CrossRef]
- Donigian, A.S.; Davis, H.H. User’s Manual for Agricultural Runoff Management (ARM) Model; Environmental Research Laboratory, Office of Research and Development: Washington, DC, USA, 1978. [Google Scholar]
- Donigian, A.S.; Crawford, N.H. Modeling Nonpoint Pollution from the Land Surface; US Environmental Protection Agency, Office of Research and Development: Washington, DC, USA, 1976. [Google Scholar]
- Donigian, A.S.; Huber, W.C. Modeling of Nonpoint-Source Water Quality in Urban and Non-Urban Areas; AQUA TERRA Consultants: Mountain View, CA, USA, 1991. [Google Scholar]
- Donigian, A.S.; Bicknell, B.R.; Imhoff, J.C. Hydrological Simulation Program—Fortran (HSPF). In Computer Models of Watershed Hydrology; Water Resource Publications: Littleton, CO, USA, 1995; Volume 12, pp. 395–442. ISBN 978-0-918334-91-6. [Google Scholar]
- Bicknell, B.R.; Imhoff, J.C.; Kittle, J.L., Jr.; Jobes, T.H.; Donigian, A.S., Jr.; Johanson, R.C. Hydrological Simulation Program–FORTRAN: HSPF Version 12 User’s Manual; Cooperation with the US Geological Survey and US Environmental Protection Agency; AQUA TERRA Consultants: Mountain View, CA, USA, 2001. [Google Scholar]
- Fonseca, A.R.; Santos, M.; Santos, J.A. Hydrological and Flood Hazard Assessment Using a Coupled Modelling Approach for a Mountainous Catchment in Portugal. Stoch. Environ. Res. Risk Assess. 2018, 32, 2165–2177. [Google Scholar] [CrossRef]
- Fonseca, A.R.; Santos, J.A. A New Very High-Resolution Climatological Dataset in Portugal: Application to Hydrological Modeling in a Mountainous Watershed. Phys. Chem. Earth 2019, 109, 2–8. [Google Scholar] [CrossRef]
- Fonseca, A.R.; Santos, J.A. Predicting Hydrologic Flows under Climate Change: The Tâmega Basin as an Analog for the Mediterranean Region. Sci. Total Environ. 2019, 668, 1013–1024. [Google Scholar] [CrossRef] [PubMed]
- Bennett, N.D.; Croke, B.F.W.; Guariso, G.; Guillaume, J.H.A.; Hamilton, S.H.; Jakeman, A.J.; Marsili-Libelli, S.; Newham, L.T.H.; Norton, J.P.; Perrin, C.; et al. Characterising Performance of Environmental Models. Environ. Model. Softw. 2013, 40, 1–20. [Google Scholar] [CrossRef]
- Legates, D.R.; McCabe, G.J., Jr. Evaluating the Use of “Goodness-of-fit” Measures in Hydrologic and Hydroclimatic Model Validation. Water Resour. Res. 1999, 35, 233–241. [Google Scholar] [CrossRef]
- Santhi, C.; Arnold, J.G.; Williams, J.R.; Dugas, W.A.; Srinivasan, R.; Hauck, L.M. Validation of the Swat Model on a Large Rwer Basin with Point and Nonpoint Sources. JAWRA J. Am. Water Resour. Assoc. 2001, 37, 1169–1188. [Google Scholar] [CrossRef]
- Singh, J.; Knapp, H.V.; Arnold, J.G.; Demissie, M. Hydrological Modeling of the Iroquois River Watershed Using HSPF and SWAT. JAWRA J. Am. Water Resour. Assoc. 2005, 41, 343–360. [Google Scholar] [CrossRef]
- Roy, T.; Gupta, H. How Certain Are Our Uncertainty Bounds? Accounting for Sample Variability in Monte Carlo-Based Uncertainty Estimates. Environ. Model. Softw. 2021, 136, 104931. [Google Scholar] [CrossRef]
- Mishra, A.; Ahmadisharaf, E.; Benham, B.L.; Gallagher, D.L.; Reckhow, K.H.; Smith, E.P. Two-phase Monte Carlo simulation for partitioning the effects of epistemic and aleatory uncertainty in TMDL modeling. J. Hydrol. Eng. 2019, 24, 04018058. [Google Scholar] [CrossRef]
- Mishra, A. Estimating Uncertainty in HSPF Based Water Quality Model: Application of Monte-Carlo Based Techniques. Ph.D. Thesis, Virginia Tech, Blacksburg, VA, USA, 2011. [Google Scholar]
- Tang, M.; Zeng, H.; Wang, K. Bayesian water quality evaluation model based on generalized triangular fuzzy number and its application. Environ. Process. 2022, 9, 6. [Google Scholar] [CrossRef]
- Yang, X.; Chen, Z. A hybrid approach based on Monte Carlo simulation-VIKOR method for water quality assessment. Ecol. Indic. 2023, 150, 110202. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; The R Foundation: Vienna, Austria, 2013. [Google Scholar]
- Chang, F.; Delleur, J.W. Systematic Parameter Estimation of Watershed Acidification Model. Hydrol. Process 1992, 6, 29–44. [Google Scholar] [CrossRef]
- Choi, J.; Hulseapple, S.M.; Conklin, M.H.; Harvey, J.W. Modeling CO2 Degassing and PH in a Stream–Aquifer System. J Hydrol. 1998, 209, 297–310. [Google Scholar] [CrossRef]
- Hornberger, G.M.; Spear, R.C. Approach to the Preliminary Analysis of Environmental Systems. J. Environ. Manag. 1981, 12, 7–18. [Google Scholar]
- Asadollah, S.B.H.S.; Sharafati, A.; Motta, D.; Yaseen, Z.M. River water quality index prediction and uncertainty analysis: A comparative study of machine learning models. J. Environ. Chem. Eng. 2021, 9, 104599. [Google Scholar] [CrossRef]
- Sharafati, A.; Asadollah, S.B.H.S.; Hosseinzadeh, M. The potential of new ensemble machine learning models for effluent quality parameters prediction and related uncertainty. Process Saf. Environ. Prot. 2020, 140, 68–78. [Google Scholar] [CrossRef]
- Uddin, M.G.; Nash, S.; Rahman, A.; Olbert, A.I. A novel approach for estimating and predicting uncertainty in water quality index model using machine learning approaches. Water Res. 2023, 229, 119422. [Google Scholar] [CrossRef] [PubMed]
- Georgescu, P.L.; Moldovanu, S.; Iticescu, C.; Calmuc, M.; Calmuc, V.; Topa, C.; Moraru, L. Assessing and forecasting water quality in the Danube River by using neural network approaches. Sci. Total Environ. 2023, 879, 162998. [Google Scholar] [CrossRef] [PubMed]
- Man, X.; Lei, C.; Carey, C.C.; Little, J.C. Relative Performance of 1-D versus 3-D Hydrodynamic, Water-Quality Models for Predicting Water Temperature and Oxygen in a Shallow, Eutrophic, Managed Reservoir. Water 2021, 13, 88. [Google Scholar] [CrossRef]
- Zheng, Y.; Han, F. Markov Chain Monte Carlo (MCMC) uncertainty analysis for watershed water quality modeling and management. Stoch. Environ. Res. Risk Assess. 2016, 30, 293–308. [Google Scholar] [CrossRef]
- Liu, Y.; Heuvelink, G.B.; Bai, Z.; He, P. Uncertainty quantification of nitrogen use efficiency prediction in China using Monte Carlo simulation and quantile regression forests. Comput. Electron. Agric. 2023, 204, 107533. [Google Scholar] [CrossRef]
- Maia, A.G.; Camargo-Valero, M.A.; Trigg, M.A.; Khan, A. Uncertainty and Sensitivity Analysis in Reservoir Modeling: A Monte Carlo Simulation Approach. Water Resour. Manag. 2024, 38, 2835–2850. [Google Scholar] [CrossRef]
- Motlaghzadeh, K.; Eyni, A.; Behboudian, M.; Pourmoghim, P.; Ashrafi, S.; Kerachian, R.; Hipel, K.W. A multi-agent decision-making framework for evaluating water and environmental resources management scenarios under climate change. Sci. Total Environ. 2023, 864, 161060. [Google Scholar] [CrossRef] [PubMed]
- Dinar, A. Challenges to water resource management: The role of economic and modeling approaches. Water 2024, 16, 610. [Google Scholar] [CrossRef]
- Armas Vargas, F.; Nava, L.F.; Gómez Reyes, E.; Olea-Olea, S.; Rojas Serna, C.; Sandoval Solís, S.; Meza-Rodríguez, D. Water and environmental resources: A multi-criteria assessment of management approaches. Water 2023, 15, 2991. [Google Scholar] [CrossRef]
- Rong, Q.; Liu, Q.; Yue, W.; Xu, C.; Su, M. Optimal design of low impact development at a community scale considering urban non-point source pollution management under uncertainty. J. Clean. Prod. 2024, 434, 139934. [Google Scholar] [CrossRef]
- Fabian, P.S.; Kwon, H.H.; Vithanage, M.; Lee, J.H. Modeling, challenges, and strategies for understanding impacts of climate extremes (droughts and floods) on water quality in Asia: A review. Environ. Res. 2023, 225, 115617. [Google Scholar] [CrossRef]
Parameter | Description | Range | Distribution |
---|---|---|---|
FSTDEC | First order decay rate of bacteria (day−1) | (0.1, 5) | Uniform |
WSQOP | Rate of surface runoff that will remove 90% of stored fecal coliform from pervious land use | (0.5, 1.0) | Uniform |
WSQOP * | Rate of surface runoff that will remove 90% of stored quality constituent from pervious land use | (0.5, 2.4) | Uniform |
KBOD20 | BOD5 decay rate at 20 °C (h−1) | (0.0001, 1) | Uniform |
KODSET | Rate of BOD5 settling (ft h−1) | (0, 1) | Uniform |
BENOD | Benthal oxygen demand at 20 °C (mg m−2 h−1) | (0, 500) | Uniform |
REAK | Empirical constant to calculate the reaeration coefficient (h−1) | (0.01, 2) | Uniform |
KTAM20 | Nitrification rate of ammonia at 20 °C (h−1) | (0.001, 1) | Uniform |
KNO220 | Nitrification rate of nitrites at 20 °C (h−1) | (0.001, 1) | Uniform |
KNO320 | Nitrate denitrification rate at 20 °C (h−1) | (0.001, 1) | Uniform |
ACQOP ** | Accumulation of fecal coliform on pervious land per day (CFU day−1) | (2 × 108, 2 × 1010, 2 × 1012) | Triangular |
SQOLIM Factor | Factor, which is multiplied by ACQOP to obtain maximum accumulation of fecal coliform on pervious land | (2, 10) | Triangular |
ACQOPNO3 ** | Accumulation of nitrates on pervious land per day (lb ac−1 day−1) | (0.05, 30) | Triangular |
ACQOPPO4 ** | Accumulation of nitrates on pervious land per day (lb ac−1day−1) | (0.001, 1) | Triangular |
Parameters (Ave River) | Dv | E | R2 | MSE | RMSE | R4MS4E | RVE | IOAD | RSR |
---|---|---|---|---|---|---|---|---|---|
Calibration | |||||||||
Q (daily) | 10 | 0.54 | 0.67 | 1.31 | 0.66 | 1.36 | 0.09 | 0.90 | 0.68 |
Q (monthly) | 10 | 0.69 | 0.74 | 0.80 | 0.40 | 0.68 | 0.09 | 0.92 | 0.55 |
T | 0 | 0.70 | 0.72 | 7.99 | 2.83 | 4.05 | 0.00 | 0.92 | 0.55 |
FC | –13 | 0.71 | 0.72 | 8.0 × 107 | 8966 | 13327 | –0.16 | 0.90 | 0.54 |
DO | –10 | 0.38 | 0.53 | 3.47 | 1.86 | 2.61 | –0.11 | 0.82 | 0.79 |
BOD5 | 7 | 0.63 | 0.64 | 6.76 | 2.60 | 3.22 | 0.06 | 0.89 | 0.61 |
NO3 | –1 | 0.60 | 0.68 | 3.02 | 1.74 | 2.16 | –0.01 | 0.90 | 0.63 |
PO4 | 9 | 0.72 | 0.75 | 0.11 | 0.32 | 0.42 | 0.08 | 0.93 | 0.53 |
Validation | |||||||||
Q (daily) | –9 | 0.72 | 0.75 | 1.28 | 0.64 | 1.16 | –0.10 | 0.93 | 0.53 |
Q (monthly) | –9 | 0.87 | 0.90 | 0.62 | 0.31 | 0.41 | –0.10 | 0.97 | 0.37 |
T | –3 | 0.69 | 0.73 | 7.08 | 2.66 | 3.78 | –0.04 | 0.92 | 0.56 |
FC | –12 | 0.33 | 0.34 | 3.6 × 107 | 6031 | 9839 | –0.13 | 0.73 | 0.82 |
DO | –1 | 0.56 | 0.58 | 1.92 | 1.39 | 1.76 | –0.01 | 0.87 | 0.66 |
BOD5 | 8 | 0.28 | 0.21 | 5.79 | 2.41 | 2.80 | 0.08 | 0.69 | 0.96 |
NO3 | –8 | 0.37 | 0.46 | 9.34 | 3.06 | 3.96 | –0.09 | 0.81 | 0.79 |
PO4 | –13 | 0.63 | 0.70 | 0.12 | 0.35 | 0.46 | –0.15 | 0.91 | 0.61 |
Parameters (Este River) | Dv | E | R2 | MSE | RMSE | R4MS4E | RVE | IOAD | RSR |
Calibration | |||||||||
Q (daily) | 4 | 0.60 | 0.64 | 0.38 | 0.19 | 0.45 | 0.04 | 0.89 | 0.63 |
Q (monthly) | 4 | 0.92 | 0.93 | 0.11 | 0.06 | 0.09 | 0.04 | 0.98 | 0.28 |
T | 2 | 0.50 | 0.77 | 7.50 | 2.74 | 3.54 | 0.02 | 0.91 | 0.71 |
FC | –13 | 0.43 | 0.46 | 9.6 × 107 | 9815 | 16489 | –0.15 | 0.81 | 0.75 |
DO | –1 | 0.42 | 0.67 | 1.02 | 1.01 | 1.18 | –0.01 | 0.88 | 0.76 |
BOD5 | 0 | 0.43 | 0.62 | 1.68 | 1.30 | 1.72 | 0.00 | 0.88 | 0.75 |
NO3 | –2 | 0.42 | 0.61 | 69.51 | 8.34 | 10.78 | –0.02 | 0.87 | 0.76 |
PO4 | –2 | 0.55 | 0.56 | 0.04 | 0.19 | 0.29 | –0.02 | 0.86 | 0.67 |
Validation | |||||||||
Q (daily) | 8 | 0.58 | 0.64 | 0.28 | 0.14 | 0.34 | 0.07 | 0.89 | 0.65 |
Q (monthly) | 8 | 0.70 | 0.81 | 0.01 | 0.01 | 0.01 | 0.08 | 0.94 | 0.54 |
T | 0 | 0.41 | 0.68 | 8.70 | 2.95 | 3.57 | 0.00 | 0.89 | 0.77 |
FC | –31 | 0.64 | 0.77 | 4.5 × 107 | 6690 | 9671 | –0.45 | 0.86 | 0.60 |
DO | 2 | 0.49 | 0.56 | 1.02 | 1.01 | 1.31 | 0.02 | 0.86 | 0.72 |
BOD5 | 1 | 0.45 | 0.54 | 2.04 | 1.43 | 1.75 | 0.01 | 0.85 | 0.74 |
NO3 | –11 | 0.27 | 0.66 | 67.28 | 8.20 | 8.68 | –0.12 | 0.86 | 0.86 |
PO4 | –13 | 0.63 | 0.70 | 0.12 | 0.35 | 0.46 | –0.15 | 0.91 | 0.61 |
FC | NO3 | PO4 | BOD5 | DO | |
---|---|---|---|---|---|
Parameter Sets | |||||
Ave | 2909 | 643 | 876 | 2610 | 6243 |
Este | 1210 | 594 | 1012 | 413 | 631 |
Contingency | |||||
Ave | 29% | 36% | 48% | 61% | 58% |
Este | 27% | 48% | 27% | 26% | 28% |
Constituent | Parameter | |||
---|---|---|---|---|
Fecal coliforms | FSTDEC | WSQOP | ||
Biochemical oxygen demand * | KBOD20 | KODSET | ||
Dissolved oxygen | BENOD | KNO320 | ||
Nitrates | WSQOP | KNO320 | KNO220 | KBOD20 |
Orthophosphorus | WSQOP | BENOD |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fonseca, A.; Botelho, C.; Boaventura, R.A.R.; Vilar, V.J.P. Evaluating the Effects of Parameter Uncertainty on River Water Quality Predictions. Resources 2024, 13, 106. https://doi.org/10.3390/resources13080106
Fonseca A, Botelho C, Boaventura RAR, Vilar VJP. Evaluating the Effects of Parameter Uncertainty on River Water Quality Predictions. Resources. 2024; 13(8):106. https://doi.org/10.3390/resources13080106
Chicago/Turabian StyleFonseca, André, Cidália Botelho, Rui A. R. Boaventura, and Vítor J. P. Vilar. 2024. "Evaluating the Effects of Parameter Uncertainty on River Water Quality Predictions" Resources 13, no. 8: 106. https://doi.org/10.3390/resources13080106
APA StyleFonseca, A., Botelho, C., Boaventura, R. A. R., & Vilar, V. J. P. (2024). Evaluating the Effects of Parameter Uncertainty on River Water Quality Predictions. Resources, 13(8), 106. https://doi.org/10.3390/resources13080106