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Abstract: This study investigates the spatial urban growth patterns of cities along the Democratic
Republic of the Congo (DRC) and Zambia border, a region of significant economic importance
characterized by cross-border trade. This activity has led to rapid but unplanned urban growth. The
objective is to quantify the spatial expansion of Congolese cities (Kipushi, Kasumbalesa, Mokambo,
and Sakania) bordering Zambia and to evaluate associated landscape changes. The methodology of
this study includes the supervised classification of Landsat images with a spatial resolution of 30 m for
the years 1990, 2000, 2010, and 2023. This classification was validated using field data. Subsequently,
landscape metrics such as class area, patch number, Shannon diversity index, disturbance index,
urban expansion intensity index, largest patch index, and mean Euclidean distance were calculated for
each city and each date. The results reveal substantial landscape transformations in the border cities
between 1990 and 2023. These changes are primarily driven by rapid urban expansion, particularly
pronounced in Kasumbalesa. Between 1990 and 2023, forest cover declined from 70% to less than
15% in Kipushi, from 80% to 10% in Kasumbalesa, from 90% to 30% in Mokambo, and from 80% to
15% in Sakania. This forest cover loss is accompanied by an increase in landscape element diversity,
as indicated by the Shannon diversity index, except in Kipushi, suggesting a transition towards
more heterogeneous landscapes. In these border cities, landscape dynamics are also characterized
by the expansion of agriculture and savannas, highlighted by an increase in the disturbance index.
Analysis of spatial pattern changes shows that built-up areas, agriculture, and savannas exhibit
trends of patch creation or aggregation, whereas forests are undergoing processes of dissection
and patch attrition. Congolese cities bordering Zambia are undergoing substantial spatial changes
propelled by intricate interactions between economic, demographic, and infrastructural factors.
Our results underscore the need for sustainable development strategies to address urban sprawl
through smart growth policies and mixed-use developments, mitigate deforestation via stricter
land use regulations and reforestation projects, and enhance cross-border cooperation through joint
environmental management and collaborative research initiatives.

Keywords: spatial growth patterns; urban sprawl; deforestation; remote sensing; sustainable
development strategies

1. Introduction

Urbanization is the process of population concentration in urban areas, leading to
changes in land use, infrastructure, and socioeconomic structures [1]. It involves rural-to-
urban migration, resulting in city growth and the conversion of natural and agricultural
landscapes into urban spaces for various purposes [2]. Infrastructure expands to support
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urban populations, and urban centers become economic hubs, attracting more migrants.
Urbanization impacts include environmental changes, social transformations, and eco-
nomic opportunities and disparities, shaping urban landscapes and regional development
trajectories [2].

Global urbanization is a multifaceted process influenced by demographic, economic,
and social factors [3]. By 2018, over half of the world’s population resided in urban areas,
a figure projected to reach 68% by 2050 [4]. Urbanization rates vary globally, with rapid
acceleration observed in developing regions such as Africa, fueled by migration and popu-
lation growth [5]. Though Africa remains predominantly rural, it is expected to undergo
significant urbanization by 2050 [5–7], with countries like Nigeria, the Democratic Republic
of the Congo (DR Congo), Ethiopia, and Tanzania projected to contribute significantly to
this global urban population increase by 2050 [8,9].

Rapid urbanization in Africa induces profound changes in urban landscapes [10] and
poses challenges such as housing shortages and strained infrastructure, highlighting the
crucial need for effective urban planning and governance [11]. This necessity is particularly
acute in small- and medium-sized border cities, which require tailored policies for sus-
tainable development [12]. These cities, often fraught with uncertainties and complexities,
have concentrated extreme poverty, especially among those with limited options [13,14].
Located strategically near national borders, they experience rapid population growth due
to cross-border activities and economic potential, necessitating careful consideration and
strategic interventions [15]. The unplanned expansion of border cities presents significant
urban planning challenges that exceed local authorities’ capacity, leading to unsustainable
urban sprawl that impacts land use, infrastructure, and the environment [16].

In Central-Southern Africa, the Katangese Copperbelt Area (KCA), situated in south-
eastern DR Congo bordering Zambia, exemplifies this trend. Cities in this area reflect
shared histories and cultural exchanges driven by mining activities and trade. Proximity to
national borders transforms these cities into dynamic economic hubs fostering cross-border
trade and investment [17,18]. Migration, primarily motivated by employment opportuni-
ties, significantly contributes to rapid urbanization and demographic growth, intensifying
the demand for housing and infrastructure [19,20]. Efficient transport infrastructure cru-
cially supports commercial activities and regional connectivity. This infrastructure includes
roads, railways, ports, and airports that facilitate the movement of belongings and people,
boosting economic interactions between cities and regions. Meanwhile, industrial policies
drive urban expansion by promoting the establishment of industries and economic zones.
These policies incentivize investment and job creation, fostering economic growth within
urban areas [21,22]. However, these cities face urban planning and governance challenges,
leading to rapid, unregulated urbanization resulting in a lack of green spaces and inade-
quate infrastructure and services [23]. This issue is particularly acute in the DR Congo due
to rapid population growth, poor governance, and widespread poverty.

Congolese border cities like Kipushi, Kasumbalesa, Mokambo, and Sakania confront
notable challenges concerning urban development and governance, notably housing provi-
sion. Mining activities historically shaped Sakania and Kipushi, attracting workers from
the city of Lubumbashi (the provincial capital) and beyond post-2002 mining sector liber-
alization [24,25]. Kipushi developed residential areas for Congolese army personnel, and
Kasumbalesa, pivotal for cross-border exchanges, expanded without planning due to recent
demographic explosions. Mokambo’s growth stems from the road network and a border
post, fostering economic opportunities. These agglomerations expand spatially but face
largely unplanned, informal urbanization, marked by land use conflicts [26,27]. Social ghet-
tos exacerbate social disparities, and visual landscape degradation leads to biodiversity loss,
as evidenced in the city of Lubumbashi, where 3.6 km2 of green space is lost annually [28].
Yet, urban trees, green belts, and peri-urban forests are essential for sustainable develop-
ment. These cities are the only urban agglomerations in southern Upper Katanga province
with direct terrestrial borders and established crossings with Zambia. Unlike other cities in
the province, which interface with Zambia via natural boundaries like Lake Mweru or the
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Luapula River, these cities benefit from direct land connections, highlighting their strategic
importance in regional trade networks. This fosters intensive economic interactions and
demographic flows pivotal to the region’s socio-economic fabric. Established border posts
enhance their significance as key nodes for cross-border trade, influencing urban growth,
infrastructure development, and socio-cultural dynamics. Understanding these dynamics
is crucial for effective urban planning, governance, and sustainable development tailored
to the unique challenges and opportunities of these border cities.

This study uniquely focuses on the systematic mapping and quantitative assessment
of spatial dynamics in Congolese border cities, a topic not extensively explored in the
previous literature. Existing studies primarily concentrate on urbanization trends in major
African cities such as Lagos and Nairobi [29], overlooking the distinct challenges and
dynamics of small- to medium-sized border cities like those in the KCA. Previous research
has highlighted urbanization’s impacts on large metropolitan areas in Africa, emphasizing
issues like infrastructure development and population density [30–32]. However, there is a
dearth of comprehensive studies examining the specific spatial dynamics, urban sprawl
patterns, and environmental impacts of rapid urbanization in smaller border cities situated
within resource-rich but governance-challenged contexts like the KCA. By focusing on these
cities, this study aims to fill a critical gap in understanding how cross-border economic
activities, demographic shifts, and infrastructural development interact to shape urban
landscapes in this unique geopolitical and environmental setting.

Systematic mapping and quantitative assessment of spatial dynamics in Congolese
border cities are essential for understanding urban development implications. Remote
sensing and landscape ecology techniques offer a robust framework for monitoring spatio-
temporal landscape changes [33,34]. Indeed, landscape ecology analyzes the spatial pattern
of landscapes, as well as their functioning, qualities, functions, and dynamics in space and
time. Additionally, landscape ecology explores landscape structure and ecosystem interac-
tions [35]. The synergy between these approaches fosters a comprehensive understanding
of border urbanization and associated landscape dynamics, facilitating evidence-based
policies for sustainable growth and resource management [36].

The objective of this study is to conduct an in-depth spatial analysis of border urban
dynamics and associated landscape changes between the DR Congo and Zambia from
1990 to 2023. This period allows for identifying long-term trends in urban growth and land-
scape patterns, including the expansion and consolidation of urban areas. The temporal
scope enables the assessment of cumulative impacts on the landscape, such as changes
in vegetation cover, habitat fragmentation, and landscape structure. Additionally, the
multi-decadal data inform urban planning and policy making by providing insights from
historical patterns. The specific objectives are (i) to comprehensively assess landscape com-
position changes across five land-cover types and (ii) to identify the spatial transformation
processes underlying the compositional dynamics observed within each land cover type in
the four mining and border cities studied. The hypothesis being tested is that due to rapid
population growth and economic opportunities, border towns are experiencing accelerated
urban expansion, particularly in medium-sized cities with dynamic economies. This dis-
rupts landscapes by increasing heterogeneity and promotes the expansion of savannas due
to forest fragmentation.

2. Materials and Methods
2.1. Study Area: Congolese Cities Bordering Zambia

The cities of Kipushi, Kasumbalesa, Mokambo, and Sakania are strategically located
in the southeastern region of the DR Congo (Figure 1), within the KCA [37].
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Figure 1. Geographical location of the Congolese cities (2) (red circles) bordering Zambia: Kipushi, 
Kasumbalesa, Mokambo, and Sakania in the south-eastern region of the Democratic Republic of 
Congo (1) (DRC). A geometric center (centroid) was defined for each city. From this center, a 15 km 
radius was drawn, covering the built-up area and the city’s periphery, which were then analyzed. 
This area corresponds to 307.22 km2, 534.87 km2, 424.64 km2, and 468.60 km2, respectively, for the 
cities of Kipushi, Kasumbalesa, Mokambo, and Sakania, respectively. The yellow line corresponds 
to the roads. 

Situated between 10° and 12° S and 26° and 29° E, this region falls under the Cw 
climate according to the Köppen classification system, characterized by a distinct rainy 
season from November to March and a dry season from May to September, with transi-
tional months in April and October [38]. The region receives an annual precipitation of 
approximately 1200 mm and has an average annual temperature of 20 °C [38]. The topog-
raphy is predominantly flat with scattered hills typical of the Katanga landscape, and the 
soils are primarily ferralsol-type [39]. Rapid urbanization and human activities have frag-
mented the original miombo woodland, transitioning it into savannas [40–42]. These cities 
are experiencing continuous population growth, with estimates of 396,000 in Kipushi 
(98,000 in 2004), 700,000 in Kasumbalesa (47,000 in 2004), 47,000 in Mokambo (20,000 in 
2004), and 55,000 in Sakania in 2022 (8600 in 2004) [43]. Economic activities in this region 
are diverse, focusing on mining, agriculture, and cross-border trade, particularly signifi-
cant due to proximity to the Zambian border. Trade between the DR Congo and Zambia 
is dominated by the exchange of minerals, especially copper and cobalt. The DR Congo 
mainly exports these minerals to Zambia, and Zambia provides the DR Congo with man-
ufactured and agricultural products, which transit through these border cities. Kasum-
balesa serves as a major border city with established customs infrastructure; Mokambo 

Figure 1. Geographical location of the Congolese cities (2) (red circles) bordering Zambia: Kipushi,
Kasumbalesa, Mokambo, and Sakania in the south-eastern region of the Democratic Republic of the
Congo (1) (DRC). A geometric center (centroid) was defined for each city. From this center, a 15 km
radius was drawn, covering the built-up area and the city’s periphery, which were then analyzed.
This area corresponds to 307.22 km2, 534.87 km2, 424.64 km2, and 468.60 km2, respectively, for the
cities of Kipushi, Kasumbalesa, Mokambo, and Sakania, respectively. The yellow line corresponds to
the roads.

Situated between 10◦ and 12◦ S and 26◦ and 29◦ E, this region falls under the Cw climate
according to the Köppen classification system, characterized by a distinct rainy season from
November to March and a dry season from May to September, with transitional months
in April and October [38]. The region receives an annual precipitation of approximately
1200 mm and has an average annual temperature of 20 ◦C [38]. The topography is predomi-
nantly flat with scattered hills typical of the Katanga landscape, and the soils are primarily
ferralsol-type [39]. Rapid urbanization and human activities have fragmented the original
miombo woodland, transitioning it into savannas [40–42]. These cities are experiencing con-
tinuous population growth, with estimates of 396,000 in Kipushi (98,000 in 2004), 700,000 in
Kasumbalesa (47,000 in 2004), 47,000 in Mokambo (20,000 in 2004), and 55,000 in Sakania in
2022 (8600 in 2004) [43]. Economic activities in this region are diverse, focusing on mining,
agriculture, and cross-border trade, particularly significant due to proximity to the Zambian
border. Trade between the DR Congo and Zambia is dominated by the exchange of minerals,
especially copper and cobalt. The DR Congo mainly exports these minerals to Zambia, and
Zambia provides the DR Congo with manufactured and agricultural products, which transit
through these border cities. Kasumbalesa serves as a major border city with established
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customs infrastructure; Mokambo features a dry port and critical road connections; Sakania is
influenced by its mining history and industrial potential; and Kipushi is recognized for its
mining legacy and ongoing urban revitalization efforts.

2.2. Methodology
2.2.1. Data

Landsat images with a 30 m spatial resolution and less than 5% cloud cover, spanning
from 1990 to 2023, were utilized for this study. The selected intervals (1990–2000, 2000–2010,
and 2010–2023) enable a decadal analysis, capturing long-term trends and spatial dynamics
changes. The Landsat TM, ETM+, and OLI satellite sensors share several common features,
including a spatial resolution of approximately 30 m for all spectral bands used [44].
These sensors are employed for environmental monitoring, natural resource management,
and studying changes in the Earth’s surface through high-quality multispectral images.
Introduced with Landsat 4 and 5, the TM sensor captures six spectral bands, including
thermal infrared, with a spatial resolution of about 30 m for the visible and infrared bands.
Launched with Landsat 7, the ETM+ sensor captures seven spectral bands, including
thermal infrared, with a spatial resolution of about 30 m for all bands and an improved
thermal resolution of 60 m [45]. Introduced with Landsat 8, the OLI sensors feature nine
spectral bands covering a wide spectrum from ultraviolet to thermal infrared, with a spatial
resolution of about 30 m for all bands. The OLI provides better radiometric accuracy and
improved surface feature discrimination capabilities [46].

The 1990–2000 period was characterized by political turbulence and conflicts in the
Eastern region. The 2000–2010 era witnessed mining sector liberalization (2002), the first
electoral cycle (2006), subsequent infrastructure modernization, and the global financial
crisis (2008). The 2010–2023 period saw additional electoral cycles (2011 and 2018), provin-
cial restructuring (2015), and a change in political regime (2019). The selection of Landsat
images specifically during the dry season minimizes cloud cover, ensuring clear visibility
for accurate interpretation of landscape features [25]. This approach is crucial for precise
mapping and quantification of spatio-temporal landscape changes [47].

2.2.2. Classification

Using the WGS-84 reference ellipsoid, the Landsat images were georeferenced in
the UTM Zone 35S coordinate system, which corresponds to the study region [25], and
preprocessed. First, radiometric calibration corrects sensor readings to ensure consistency
over time and across different sensors. It involves removing sensor biases and accounting
for atmospheric effects. Second, geometric calibration ensures that pixels in the image
accurately represent locations on the Earth’s surface. It corrects for geometric distortions
caused by spacecraft movements and sensor orientation. Finally, through atmospheric
correction, we removed atmospheric effects such as haze and scattering, allowing for more
accurate analysis of surface reflectance [48].

Consecutively, a false color composite of selected Landsat images was meticulously
constructed by combining the mid-infrared, near-infrared, and red bands to enhance
discrimination among diverse vegetation types [49,50]. For precision and clarity, distinctive
land cover units were methodically identified and assigned unique codes across different
scenes. To establish a solid foundation for subsequent analyses, Regions of Interest (ROIs),
representing training areas, were meticulously delineated for each land cover (Table 1)
during the dry season using GPS (64st precision 3 m). The selection of ROIs was guided by
sampling polygons, strategically positioned to avoid transition zones, thereby minimizing
the impact of the mixel phenomenon and enhancing subsequent analysis accuracy [51,52].
To refine analytical capabilities, these carefully crafted ROIs were utilized to construct a
comprehensive model for training the Random Forest classifier under Google Earth Engine.
This ensemble approach, incorporating multiple decision trees, provided a robust and
adaptable foundation for subsequent land cover classification [53].
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Table 1. Description of land cover classes obtained after supervised classification of Landsat images
on GEE, based on the Random Forest classifier. ROI: Regions of Interest.

Land Cover Description ROI (Polygons)

Forest Natural land cover, comprising patches of miombo
woodland, dry dense forest, and gallery forest. 170

Savanna
Generally anthropogenic land cover, characterized

by low tree density and predominance of
herbaceous cover.

170

Agriculture

The anthropogenic land cover class consists of
harvested agricultural lands, abandoned

agricultural lands, or lands occupied by annual
and off-season crops.

120

Built-up and bare soil
Bare land and residential areas with minimal
vegetation, impermeable surfaces, or rarely

paved roads.
150

Other land cover Water and unclassified spaces. 90

The methodology for Landsat image classification, using Google Earth Engine (GEE)
and the Random Forest algorithm, represented a rigorous approach implemented to char-
acterize five land cover types: forest, savanna, agriculture, built-up and bare soil, and
other land cover (Table 1). GEE is widely used for collecting samples for land cover due
to its accessibility to vast remote sensing data archives. It offers powerful cloud-based
computing resources for large-scale spatial data analysis and integrates satellite imagery,
environmental datasets, and analysis tools. GEE ensures consistency and standardized
procedures in data collection across regions and datasets [54].

To evaluate the accuracy of the obtained classifications, we followed the best practices
recommendations of Olofsson et al. [55]. An unbiased surface estimators and estimated
uncertainty was constructed by collecting a sample of reference observations from change
maps between 1990 and 2023. This process relied on truth points collected in each land
cover class. Samples were randomly stratified according to a 9-strata map for each period,
including 5 stable strata (forest, savanna, agriculture, and built-up and bare soil) and
4 relevant change strata for each period (forest lost, savanna gain, agriculture gain, and
built-up and bare soil gain). The sample size was determined using Cochran’s method [56],
with 800 points sampled for each period (1990–2000, 2000–2010, and 2010–2023). Based on
the proportion of each stratum, 250 points were assigned to strata occupying more than
40%, 150 points to strata occupying between 10 and 40%, and 100 points to strata occupying
less than or equal to 10%. Subsequently, QGIS software version 3.26.1 (developed by
the global QGIS community, Buenos Aires, Argentina) was used to calculate the error
matrix, expressed in terms of estimated surface proportions [52]. Measurement accuracies,
including overall accuracies and user and producer accuracies, were also automatically
generated using the same software. Land cover maps were produced using ArcGIS version
10.8 (developed by ESRI (Environmental Systems Research Institute), Redlands, CA, USA).

2.2.3. Quantifying Urban Landscape Pattern Changes

To quantify human impact on landscape morphology, several metrics have been
calculated [57,58]. First, the class area refers to the relative extent of specific land cover
types within a defined landscape. This metric helps in understanding the composition of the
landscape by identifying the predominant land cover matrix. It provides insights into the
dominance or scarcity of certain land cover types and helps in assessing changes in land use
over time. Next, the number of patches was crucial in assessing landscape fragmentation.
A high number of patches indicates fragmentation and scattered distribution, suggesting
significant human impact and disruption of natural habitats. Conversely, a low number
of patches suggests infilling or aggregation, which may indicate a more cohesive and less
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disturbed landscape. The Shannon diversity index was calculated to measure landscape
diversity [59]. It considers both the richness (the number of different land cover types) and
evenness (the relative abundance of each land cover type) within the landscape, providing a
comprehensive view of landscape complexity and diversity. To assess the level of landscape
anthropization, the disturbance index was calculated. This index is defined as the ratio
between the cumulative area of anthropogenic land cover in the landscape and the forest
area [60]. It quantifies the extent of human-induced changes relative to natural land cover
types, highlighting the degree of disturbance and potential ecological impact. The urban
expansion intensity index (UEII) quantified the rate and magnitude of urban growth within
a specified area over time. It provides a comprehensive view of urbanization intensity
and its impacts, helping to determine patterns of urban sprawl and its effects on the
landscape [61]. The largest patch index (LPI), defined as the ratio between the largest patch
area and the class area, provides information on the fragmentation of a land cover following
its reduction [59]. A higher LPI indicates that the largest patch dominates the landscape,
suggesting less fragmentation, whereas a lower LPI suggests greater fragmentation and
distribution of smaller patches. Finally, the average Euclidean distance to the nearest
neighbor indicates the average distance between each patch in the landscape and its closest
neighboring point. It offers an understanding of spatial pattern dispersion, with greater
distances indicating more isolated patches and potential challenges for species movement
and ecological connectivity [52]. These metrics were calculated using Fragstats software
version 4.2 (developed by McGarigal, Amherst, MA, USA).

Between two dates, changes in patch number and class area indicate distinct spatial
transformation processes in landscape dynamics [49,57,62]: decreases in both patch number
and class area indicate attrition, whereas an increased class area with a decreased patch
number suggests aggregation. Unchanged patch numbers with increased class area signify
enlargement, whereas growth in both the class area and patch number reflects the creation
of new patches. Dissection is marked by a reduced class area and an increased patch
number, often with linear disruptions causing minimal area loss. Fragmentation, on the
other hand, involves a patch increase accompanied by a significant class area loss. To
differentiate between fragmentation and dissection, the ratio of total areas at different time
points was examined, with a ratio above 0.75 indicating dissection dominance and a ratio
at or below 0.75 suggesting prevalent fragmentation [63].

3. Results
3.1. Classification Accuracy and Mapping

Table 2 presents the accuracy performance of supervised classifications of Landsat
images using the Random Forest classifier for the years 1990, 2000, 2010, and 2023. The
overall accuracy exceeds 90% for each analyzed period, underscoring the reliability in
distinguishing between different land cover types. The user’s and producer’s accuracy,
ranging from 93% to 100%, further confirm the high quality of the classifications, indicating
minimal errors in classifying the various land cover types. Additionally, applying a 95%
confidence interval to estimate the stratified area of each land cover class across the different
periods reveals a margin of error below 5%. This low uncertainty enhances the credibility
of the results, suggesting that the area estimates for each class are reliable and precise.

The visual (Figure 2) analysis reveals the growth of built-up and bare soil is observed
in different directions: eastward in the city of Kipushi, northward and southwestward in
the city of Kasumbalesa, eastward in the city of Mokambo (C), and westward in the city of
Sakania (D). Additionally, an important decrease in forest cover, particularly around the
city of Kipushi (A) and the city of Kasumbalesa (B), were observed. Concurrently, savannas
are gradually encroaching upon former forested areas around all cities studied, indicating
a shift in ecosystem dynamics. There is also a noticeable increase in agricultural lands
surrounding all four cities, underscoring the significant impacts of human activities on the
landscape. The reduction in forest cover, coupled with the expansion of built-up and bare
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soil areas, agriculture, and savannas, highlights the extensive footprint of deforestation and
urbanization on local landscapes.

Table 2. Evaluation of accuracy and area estimation of land cover change maps from 1990 to 2023
based on supervised classification of Landsat images using the Random Forest classifier and according
to Olofsson’s methodology in Ref. [55]. FR: forest; SV: savanna; AG: agriculture; BBS: built-up and
bare soil; OT: other land cover; UA: user accuracy; PA: producer accuracy; CI: confidence interval.
The change in the “OT” land cover was not evaluated due to its relative stability across all studied
periods and cities.

1990–2000 FR SV AG BBS OT FR Loss SV Gain AG Gain BBS Gain

Accuracy measure

PA [%] 99.09 100 98.97 93.58 100 98.05 100 98.06 93.58

UA [%] 100 99.02 96.04 97.14 100 99.01 97.06 98.06 97.14

Overall accuracy [%] 97.56

Stratified estimators of area ± CI [% of total map area]

Area [%] 18.14 18.23 9.12 9.29 9.20 8.94 8.67 9.65 8.76

95% CI 0.42 0.00 0.35 0.00 0.17 0.17 0.38 0.54 0.30

2000–2010 FR SV AG BBS OT FR Loss SV Gain AG Gain BBS Gain

Accuracy measure

PA [%] 99.00 94.42 98.99 98.00 96.00 98.11 98.10 100.00 100.00

UA [%] 99.01 100.00 98.00 97.09 98.06 99.05 99.04 98.99 95.10

Overall accuracy [%] 97.40

Stratified estimators of area ± CI [% of total map area]

Area [%] 19.30 16.95 9.30 9.21 8.66 9.21 9.21 8.94 9.21

95% CI 0.25 0.47 0.30 0.25 0.18 0.25 0.31 0.31 0.31

2010–2023 FR SV AG BBS OT FR Loss SV Gain AG Gain BBS Gain

Accuracy measure

PA [%] 99.00 96.49 100.00 97.02 100.00 96.04 98.04 97.98 95.06

UA [%] 99.02 98.00 95.17 99.02 98.97 99.00 99.01 98.98 100.00

Overall accuracy [%] 96.30

Stratified estimators of area ± CI [% of total map area]

Area [%] 18.32 17.96 10.30 9.21 8.66 10.21 9.21 9.94 8.21

95% CI 0.26 0.46 0.33 0.25 0.18 0.27 0.31 0.31 0.31
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Figure 2. Mapping spatial land cover dynamics in Kipushi (A), Kasumbalesa (B), Mokambo (C), and Sakania (D) 
landscapes from 1990 to 2023 using supervised classification of Landsat images with the Random Forest classifier. 

 

Figure 2. Mapping spatial land cover dynamics in Kipushi (A), Kasumbalesa (B), Mokambo (C), and
Sakania (D) landscapes from 1990 to 2023 using supervised classification of Landsat images with the
Random Forest classifier.

3.2. Landscape Composition Dynamics

Between 1990 and 2023, there was a marked decrease in forest cover surrounding
Kipushi, Kasumbalesa, Mokambo, and Sakania. Initially, forests dominated these regions,
but by 2023, their extent had drastically diminished, with less than 15% remaining in
Kipushi, 10% in Kasumbalesa, 30% in Mokambo, and 15% in Sakania. Conversely, the
proportion of savannas multiplied fourfold on average, built-up and bare soil increased
eightfold, and the proportion of agriculture surged by a factor of 46 across the four border
cities between 1990 and 2023 (in average). These changes signify a significant reshaping of
the land cover in the region (Figure 3). Furthermore, an analysisusing the Shannon diversity
index indicated shifts in landscape composition, with Kasumbalesa, Mokambo, and Sakania
displaying increased diversity between 1990 and 2023, suggesting a transition toward more
heterogeneous landscapes. This transformation underscores the diversification of land
cover characteristics and types within these border cities (Figure 4).
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Figure 3. Landscape composition evolution in Congolese Cities (Kipushi, Kasumbalesa, Mokambo,
and Sakania) bordering Zambia from 1990 to 2023. The total landscape proportion for each city does
not sum to 100%, as other land cover classes were excluded from the analyses due to their relatively
stable nature. The dynamics of landscape composition are evidenced by deforestation alongside the
expansion of built-up and bare soil, agriculture, and savannas.
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3.3. Intensity of Urban Expansion, Sprawl, and Associated Landscape Anthropization

During the 1990–2000 decade, the urban expansion intensity index for Kipushi, Ka-
sumbalesa, Mokambo, and Sakania was 0.08, 0.14, 0.02, and 0.03, respectively. These results
indicate that Kasumbalesa experienced the most significant urban growth intensity during
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this period. From 2000 to 2010, there was a substantial increase in the urban expansion
intensity index for all border cities studied, with values of 0.32, 0.29, 0.04, and 0.21 for
Kipushi, Kasumbalesa, Mokambo, and Sakania, respectively. Compared to the previous
decade, Kipushi saw a more pronounced urban expansion intensity during this period.
Lastly, from 2010 to 2023, the urbanization intensity index continued to rise, reaching values
of 0.54, 0.12, and 0.21 for Kasumbalesa, Mokambo, and Sakania, respectively. For the city
of Kipushi, the value decreased fourfold during this period. These results indicate a more
important urban expansion intensity in Kasumbalesa, placing it at the forefront in terms of
spatial urban growth compared to the other studied cities (Figure 5).
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Figure 5. Variation in the urban expansion intensity index between 1990 and 2000, 2000 and 2010,
and 2010 and 2023 within the landscapes of the border cities of Kipushi, Kasumbalesa, Mokambo,
and Sakania. Urbanization is significantly more intense in Kasumbalesa, whereas relative stability
was noted in Kipushi between 1990 and 2023.

However, the border cities of Kipushi, Kasumbalesa, Mokambo, and Sakania, along with
their surrounding areas, experienced a progressive anthropization of their landscapes (Table 3).
In 1990, the largest forested patch covered approximately 80% of the class area, with an average
distance between patches of less than 70 m. However, this largest patch area decreased by
approximately 10%, whereas the average distance between forest patches was multiplied nearly
threefold by 2023. Concurrently, an inverse trend was observed for agriculture, savannas, and
built-up and bare soil. Over the 33 years from 1990 and 2023, the average distance between their
patches decreased, and the size of their respective largest patches increased (Table 3), suggesting
a trend towards fragmentation and degradation of landscapes.

Additionally, during the period of 1990–2023, a significant increase in the disturbance
index was observed within the landscapes of the studied border cities (Figure 6). In Kipushi,
this index was multiplied by 14, increasing from 0.5 in 1990 to 6.5 in 2023. In Kasumbalesa, an
even more pronounced increase was noted, with a multiplication factor of 53, raising the index
from 0.2 in 1990 to 11.8 in 2023. For Mokambo, the index was multiplied by 10, increasing
from 0.3 in 1990 to 2.8 in 2023. Lastly, in Sakania, the index was multiplied by 37, reaching 7 in
2023 compared to an initial value of 0.2 in 1990 (Figure 6). These increases reflect a significant
intensification of human activity in these regions over this 33-year period.
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Table 3. Evolution of the largest patch index (LPI) and mean Euclidean nearest neighbor (ENN)
of forest, built-up and bare soil, agriculture, and savanna patches between 1990 and 2023 in the
landscapes of the border cities of Kipushi, Kasumbalesa, Mokambo, and Sakania. A trend towards
fragmentation and degradation of landscapes around the studied border cities is noted.

Border City

Kipushi Kasumbalesa Mokambo Sakania

Indices LPI ENN LPI ENN LPI ENN LPI ENN

1990

Forest 63.84 68.54 79.75 68.40 74.67 67.01 82.43 67.08

Savanna 14.83 83.19 6.35 87.13 10.33 82.27 3.30 87.52

Agriculture 0.01 1986.84 0.00 530.87 0.00 263.60 0.00 438.33

Built-up and bare soil 3.09 210.96 0.21 220.15 0.16 303.63 0.15 271.01

2000

Forest 53.53 64.60 49.44 71.96 66.30 66.33 64.16 73.56

Savanna 12.15 69.37 23.41 77.27 12.09 75.40 10.09 80.00

Agriculture 0.00 217.59 0.11 163.93 0.01 160.89 0.00 266.45

Built-up and bare soil 3.74 187.15 0.87 132.25 0.11 171.10 0.20 189.77

2010

Forest 10.29 75.76 12.53 75.50 15.31 70.99 16.65 77.33

Savanna 55.22 67.24 48.43 73.97 43.32 71.58 52.43 73.17

Agriculture 0.05 163.54 0.02 151.23 0.01 156.72 0.04 183.45

Built-up and bare soil 5.84 119.31 2.43 153.99 0.70 289.83 0.90 171.13

2023

Forest 3.02 88.55 1.14 99.56 13.69 77.15 3.96 91.52

Savanna 75.18 70.95 77.07 77.98 64.43 66.78 78.77 74.15

Agriculture 0.02 138.42 0.02 157.16 0.02 199.42 0.05 132.63

Built-up and bare soil 6.14 133.83 10.33 136.26 1.89 195.50 4.32 180.06
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Figure 6. Evolution of the landscape disturbance index of the cities of Kipushi, Kasumbalesa,
Mokambo, and Sakania between July-1990 and July-2023. There is an increase in the disturbance
index across the time, reflecting a significant intensification of human activity in these cities.
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3.4. Analysis of Landscape Spatial Pattern Dynamics

Applying the decision tree algorithm of Bogaert et al. [57] on the data in Table 4, our
findings underscore that between 1990 and 2000, the forest experienced an increase in
PN and a decrease in CA for the cities of Kipushi, Kasumbalesa, Mokambo, and Sakania,
suggesting a spatial transformation process of dissection (0.83 > 0.75). Conversely, the
savannas, agriculture, and built-up and bare soil recorded an increase in both PN and CA,
indicating a creation process.

Table 4. The variation in class area (CA in km2) and patch number (PN) of land cover classes
in the landscapes of the border cities of Kipushi, Kasumbalesa, Mokambo, and Sakania in 1990,
2000, 2010, and 2023. This variation in CA and PN between two dates enabled the identification of
spatial transformation processes using the decision tree algorithm of Bogaert et al. [57]. Forest is
characterized by the dissection and attrition of patches, as opposed to the creation and aggregation of
patches observed in agriculture, built-up and bare soil, and savannas in the landscapes of the four
studied border cities.

Border City

Kipushi Kasumbalesa Mokambo Sakania

Indices CA NP CA NP CA NP CA NP

1990

Forest 209.0 2335.0 437.3 1567.0 332.1 1994.0 393.4 1431.0

Savanna 86.3 3869.0 89.0 5915.0 90.2 6010.0 73.1 5633.0

Agriculture 0.0 16.0 0.2 119.0 0.4 476.0 0.1 89.0

Built-up and bare soil 11.8 400.0 7.6 613.0 1.9 385.0 1.8 190.0

2000

Forest 178.7 3032.0 336.2 4468.0 300.1 3009.0 314.5 2994.0

Savanna 113.6 6349.0 179.3 6844.0 119.1 7112.0 149.8 7039.0

Agriculture 0.6 546.0 3.9 1643.0 2.8 1683.0 0.6 552.0

Built-up and bare soil 14.1 644.0 14.9 1390.0 2.7 1206.0 3.4 917.0

2010

Forest 91.4 4058.0 204.1 7081.0 201.7 5084.0 174.6 5855.0

Savanna 189.2 2717.0 295.4 3920.0 213.6 4162.0 277.2 3967.0

Agriculture 2.5 1582.0 4.6 2083.0 5.1 2091.0 3.4 1503.0

Built-up and bare soil 23.9 2132.0 30.4 1206.0 4.3 391.0 13.3 1141.0

2023

Forest 40.7 4085.0 41.7 5211.0 111.1 8181.0 58.6 6040.0

Savanna 236.1 878.0 418.7 1147.0 299.3 2581.0 378.6 1387.0

Agriculture 3.0 1624.0 5.9 2191.0 6.2 2212.0 4.9 2189.0

Built-up and bare soil 27.2 1504.0 67.9 2428.0 11.0 697.0 26.0 924.0

During the period from 2000 to 2010, fragmentation was the dominant spatial transfor-
mation process for the forest for all studied border cities (0.58 < 0.75), since the decrease in
CA was accompanied by an increase in PN. Savannas exhibited an increase in CA and a
decrease in PN, suggesting an aggregation-type spatial transformation process. Agriculture
and built-up and bare soil were characterized by an increase in PN and CA, indicating
creation as the spatial transformation process. From 2010 to 2023, the forest showed an
increase in PN and a decrease in CA for the border cities of Kipushi, Mokambo, and
Sakania, indicating a process of fragmentation (0.38 < 0.75). However, around the border
city of Kasumbalesa, there was a simultaneous decrease in both the PN and CA of forest,
indicating attrition as the spatial transformation process. Agriculture exhibited a process of
patch creation, as the increase in CA resulted from an increase in PN. Finally, for savannas



Resources 2024, 13, 107 14 of 22

and built-up and bare soil, there was noted a decrease in PN alongside an increase in CA,
suggesting an aggregation-type spatial transformation process.

4. Discussion
4.1. Urban Expansion Intensity and Associated Landscape Dynamics

The period of 1990–2001 was characterized by a slow urban expansion along the RD
Congo–Zambia border due to political conflicts, leading to economic and social instability.
Moreover, political tensions can disrupt commercial activities and hinder economic growth,
thereby limiting employment opportunities and urban development [64]. Additionally,
during conflict periods, priorities often shift towards addressing immediate security and
political stability issues, relegating urbanization projects to the background [65]. Conversely,
we found an acceleration in the urbanization extent during 2000–2010, which corresponds
to the period of progressive mining liberalization, favoring increased foreign and domestic
investments and stimulating economic growth and creating jobs. This economic growth
also resulted in an increased demand for labor, attracting a growing population to urban
areas near mining zones [66,67]. The findings of Khoji et al. [25] and Cabala et al. [37]
corroborate the acceleration of the urbanization of main agglomerations within the KCA
during the same period. Furthermore, mining companies could finance the construction of
housing for mine workers, promoting the expansion of border cities [68].

The decade of 2010–2023 is characterized by a new phase of rapid urbanization of
the Congolese border cities due to political stabilization and economic recovery after the
global financial crisis. Indeed, the increasing demand for mineral resources attracted new
investments and labor, thereby stimulating urban growth. Yet, the increasing demand for
housing among new citizens is driving uncontrolled urban expansion, extending beyond
any form of government control. Indeed, Congolese cities are generally surpassing their
own limits and encroaching on adjacent rural areas. Consequently, given the expensive
urban lifestyle prevalent in many urban centers, a significant portion of the population
in border cities opts for areas that maintain their rural essence, where land resources
remain relatively affordable [69]. Concurrently, during this decade, the roads connecting
the city of Lubumbashi to Sakania via Mokambo and Kasumbalesa have all been asphalted.
This process has had a significant impact on the spatial expansion of Mokambo, notably
by promoting the purchase of plots with traditional houses and their transformation
into modern houses for customs officers and their families. This pattern aligns with
Arimah’s [70] findings regarding infrastructure’s role in enhancing the prosperity of African
cities. However, this trend of urban modernization can induce the loss of female local
knowledge, particularly regarding the painting of traditional houses.

Unfortunately, the spatial urban expansion observed in border cities between the DRC
and Zambia is largely driven by self-construction, leading to urban sprawl, as revealed by
the increase in CA and PN simultaneously, as well as in UIIE. This self-construction is due
to inadequate urban planning, gaps in land management, corruption, and the influence
of political and economic interests on urban decisions [71]. This process often leads to
the development of informal settlements with excessive low built-up density and limited
access to basic services, as illustrated by Groupe Huit [72] in the city of Lubumbashi.
Additionally, the self-construction favors land speculation and amplifies socio-economic
disparities and food insecurity due to persistent displacement of agricultural activities [73],
despite the general trend of increase in the CA of agriculture between 1990 and 2023.
Indeed, most farmers lack ownership titles, making their land vulnerable. On the other
hand, land speculation makes the conversion of agricultural land into buildable land
economically profitable in the short term and with lower risk [74]. Consequently, the spatial
expansion of border cities leads to the exurbanization of some producers, transforming
urban agriculture into peri-urban and then rural agriculture. This shift is exacerbated by
limited land availability and the prioritization of infrastructure over agricultural activities
in (peri-)urban areas [75].
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The expansion of built-up areas is accompanied by a decline in forest cover and an
increase in savannas around the studied border cities. Urbanization often leads to direct
deforestation for building, road infrastructures, and other urban installations. Trees are
cut down to make space, reducing forest cover, as demonstrated by Cabala et al. [41] in
the Lubumbashi plain and Bamba et al. [76] in the Kisangani region in the DR Congo.
Additionally, urban growth can favor the exploitation of surrounding natural resources
for fuel, wood, or other forest products. Yet, excessive exploitation leads to a significant
decrease in forest cover [50,77]. Moreover, urban expansion can stimulate the conversion
of forested lands into agricultural lands to compensate for the loss of agricultural lands
encroached upon by urbanization to meet the growing food needs of the urban population,
as observed in Freetown [74]. However, the felling of trees promotes sunlight penetration,
a crucial element for the development of herbaceous vegetation dominating savannas [78],
justifying the progression of savannas in the surrounding areas of the studied border
cities. Furthermore, the fragile fertility of agricultural lands in these regions often leads
to their rapid abandonment after 2 to 3 years of cultivation, favoring their colonization by
herbaceous vegetation.

Our research findings affirm the impact of city size on deforestation, a notion sup-
ported by previous research [65,76]. The rapid urban expansion observed in Kasumbalesa
can be attributed to the benefit from significant commercial flows due to its strategic
position at national borders. This dynamic commercial activity creates employment op-
portunities, attracts investments, and stimulates economic growth, leading to rapid urban
expansion. In contrast, territorial capital border cities or mining towns (i.e., Kipushi and
Sakania) exhibited different characteristics, since they may face specific challenges. These
cities are more focused on a specific industry, which can limit their ability to diversify
their economy and attract a more varied population. Similarly, territorial capital border
cities are more focused on administrative and governmental functions, which can impact
their economic dynamism and attractiveness to investors and migrants. Moreover, when
examining the environmental impact of Kisangani, a city of considerable economic and
demographic influence, in contrast to Ubundu, a city of moderate importance, Bamba
et al. [76] discovered a more significant deforestation trend around Kisangani.

Urban expansion significantly impacts deforestation through several mechanisms. It
leads to the direct conversion of forested land into urban areas, roads, and infrastructure,
reducing forest cover and fragmenting habitats [79]. Urban demand for resources like
timber and agricultural products drives deforestation in surrounding rural areas. Urban
areas also alter local climate and hydrology, affecting forest ecosystems. Increased infras-
tructure development, population growth, and economic activities in urban areas exert
more pressure on nearby forests, accelerating deforestation rates [80]. However, the rela-
tionship between city size and deforestation is complex. Larger cities may have stricter
environmental regulations, but their size and intensive land use exert substantial pressure
on forests [81]. Higher per capita consumption rates in larger cities drive deforestation
in surrounding regions to meet urban needs [82]. Urban expansion for infrastructure,
housing, and industrial zones leads to habitat loss and fragmentation. Economic activities
in larger cities increase land and resource demand, accelerating deforestation. The physical
expansion of cities fragments forest habitats, disrupting wildlife corridors and ecological
processes, further impacting biodiversity and ecosystem health [83].

In Kasumbalesa, high UEII correlates with rapid urban expansion driven by economic
activities such as mining, resulting in significant forest cover loss, and decreased forest LPI
suggests fragmentation due to extensive land conversion for urban development, high-
lighting the need for stricter zoning and conservation measures. For Sakania and Kipushi,
moderate UEII alongside substantial forest cover loss indicates a balance between urban
growth and environmental impact. However, lower forest LPI reflects fragmented land-
scapes due to mixed-use development and agricultural expansion, necessitating targeted
reforestation and buffer zone establishment. In Mokambo, moderate UEII with noticeable
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landscape diversity indicates slower urban expansion amidst efforts to preserve remaining
community forests, thus confirming the relative stable forest LPI.

However, our results underline urban densification in Kipushi that can be attributed to
the stable supply of electricity and water in the area. When infrastructures such as electricity
and water are consistently available, it creates an environment conducive to the extension
of former buildings. However, the recent trend of populations moving from Lubumbashi
to settle in Kipushi could justify the urban sprawl observed in this city. This population
movement can be attributed to the increasing insecurity in Lubumbashi. Additionally, job
opportunities in the mining industry may attract workers and their families. In contrast,
the situation in Sakania is different due to the nature of its mining workforce. Though
the town hosts a significant number of mine workers, it is important to note that many of
these workers come from other regions of the country and do not have their families and
residence in Sakania.

It is important to note that the impact of mining activities on landscape dynamics can
be minimal within the studied landscapes because, in some cases, extraction is performed
through underground mines. This can result in minor surface changes, and significant
transformations may occur underground. However, waste materials are generally brought
to the surface. After the mining activity, it is essential to implement actions such as habitat
restoration to mitigate the environmental impact and promote ecological recovery. Habitat
restoration involves rehabilitating the affected areas to their natural state, which can help
restore biodiversity and ecological functions.

4.2. Implications for Regional Urban Planning

Our findings highlight a rapid urban expansion and a trend towards urban sprawl
in the studied border cities. Yet, urban sprawl contributes to community fragmentation,
increased traffic congestion, and diminished quality of life through reduced green spaces
and environmental degradation. It results also in escalated costs for infrastructure and
public services, heightened transport inefficiencies, and reduced productivity associated
with extended commuting times. To mitigate these effects, sustainable urban planning
strategies are imperative. These encompass the implementation of urban densification
policies aimed at optimizing the utilization of existing spatial resources, promotion of
mixed-use urban development to minimize travel distances, and targeted investments in
efficient public transportation infrastructure. Additionally, preserving green spaces and
adopting urban growth management policies are pivotal for enhancing urban resilience
and fostering balanced and sustainable urban development. The expansion of mining cities
presents significant environmental and social challenges. Environmentally, it leads to defor-
estation, soil erosion, water pollution, and loss of biodiversity [84]. Socially, issues such as
population influx, increased crime rates, health risks from pollutants, and conflicts over
land use are common, often resulting in displacement and loss of traditional livelihoods.
Effective management requires integrated urban planning, strengthened environmental
regulations, stakeholder dialogue, and the adoption of sustainable mining practices. Di-
versifying the local economy beyond mining can also contribute to more balanced and
resilient development [85].

Our findings reveal that urban expansion leads to the disappearance of forests, pos-
ing threats to biodiversity conservation. Countless adverse effects of deforestation can
be observed in the region, such as the gradual disappearance of numerous non-timber
forest resources [86], the noticeable reduction in wildlife [38], and the reduction in albedo,
resulting in fewer rainy days [87]. Also, preserving agricultural land is crucial for ensuring
food security in the area given its susceptibility to urban expansion. It is crucial to adopt
environmental protection policies such as creating protected areas, strengthening land
use regulations, and promoting sustainable agricultural practices. For illustration, the
establishment of the Bururi Forest Reserve (near the city of Bururi, Burundi), with active
ecoguards, has facilitated the regeneration of forest resources [88]. Concurrently, in the
plateau des Batéke in Kinshasa (DR Congo), agroforestry practices that involve combining
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Acacia trees with maize crops enable households to enhance their yield and obtain wood
for charcoal production in close proximity [89]. Certainly, reforestation solutions exist near
the city of Kipushi [86]. However, despite ongoing progress, it has become evident that
this positive human influence on the landscape through the planting of exotic species will
not be sufficient to offset the loss of forest [90], while posing the risk of further ecosystem
degradation [91]. It is crucial to utilize native species in reforestation projects and to en-
hance collaboration between traditional authorities and city managers to make more land
available on the outskirts of cities for reforestation projects [92]. Additionally, there is a
need to enhance the capacity of technical public service agents in terms of methodology
and technical expertise to better supervise these types of reforestation projects and preserve
reforested land in the long term [93]. Finally, the promotion of urban forestry in cities
where green spaces are neglected and surrounding forests are disappearing is also an
essential strategy for improving quality of life and the environment. By reducing air pollu-
tion, providing shade, lowering temperatures, and encouraging community participation
through the planting of fruit trees, this approach creates healthier, more resilient, and more
livable urban environments [94,95]. This integrated method is crucial for addressing the
environmental and social challenges of contemporary urban areas, thereby promoting
sustainability and collective well-being.

Based on substantial landscape transformations observed in border cities between
1990 and 2023, tailored land management policies are recommended to address specific
challenges. In Kasumbalesa, where rapid urban expansion has led to a significant decline
in forest cover, sustainable urban planning should be prioritized. Strict zoning regulations
should be implemented to control sprawl and preserve remaining forests. Furthermore,
compact, mixed-use development should be encouraged to minimize land conversion
and maintain crucial green spaces. Kipushi has experienced a substantial decrease in
forest cover and a noticeable shift towards heterogeneous landscapes. To address this,
the focus should be on reforestation efforts with native species. Additionally, sustainable
agricultural practices should be promoted, and effective buffer zones established around
forests to prevent further fragmentation. Mokambo, which has transitioned from high
forest cover to more diverse landscapes, requires enhanced monitoring and conservation
efforts for remaining forest patches. Support for agroforestry initiatives and adoption of
sustainable land use practices are crucial to improve ecological connectivity and enhance
landscape resilience. In Sakania, where forest cover has decreased significantly, urgent
measures should include establishing protected areas and enforcing strict regulations on
land conversion. Indeed, without a rigorous control and management mechanism, the
overexploitation of forest resources in the region’s protected areas degrades their biological
value, ultimately resulting in their downgrading [96]. However, reforestation programs
using native species should be promoted to restore degraded areas and ensure long-term
ecosystem health.

For regional land planners, establishing robust monitoring systems is crucial for reg-
ularly assessing landscape changes and evaluating policy effectiveness. These systems
should incorporate several key elements to enable adaptive management strategies. First,
they should utilize satellite imagery and geographic information systems (GIS) for continu-
ous monitoring of land cover and land use changes. Additionally, implementing long-term
data collection protocols allows for the identification of trends over time and assessment
of policy impacts on the landscape. However, developing specific indicators and metrics
is essential to evaluate landscape health, biodiversity, and ecosystem services effectively.
These metrics should be scientifically sound and relevant to the goals of the policies being
implemented. Moreover, engaging local communities, policymakers, and scientists in
the monitoring process ensures comprehensive data collection and considers multiple
perspectives. This collaborative approach enhances the reliability and actionability of the
data gathered. In the same way, regular reporting of monitoring results to all stakeholders
is crucial. It establishes feedback loops that enable policymakers to adjust strategies based
on new findings, ensuring ongoing effectiveness. Finally, aligning monitoring systems with
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existing environmental and land management frameworks enhances coherence and avoids
duplication of efforts.

5. Conclusions

The study delves into the intricate spatial urban growth and associated landscape
dynamics of Kipushi, Kasumbalesa, Mokambo, and Sakania along the border with Zambia,
an area of variable cross-border trade. Employing a robust methodology that integrates
remote sensing, GIS, and landscape ecology analysis tools has facilitated a comprehensive
mapping and quantification of landscape dynamics over time. The findings confirm the
substantial landscape changes within these cities, materialized by the transformation of
natural landscapes into sprawl urban zones. Population growth and economic activities
significantly influence urban landscape change, with demographic factors driving the
expansion of built-up areas. However, there is variance in the extent of urban expansion
among cities, with those experiencing lower customs activity levels demonstrating more
restrained spatial urban growth. This discrepancy underscores the influential role of eco-
nomic factors in shaping border urban dynamics, highlighting the intricate interplay of
factors driving urban development in these regions. Additionally, the study has identified
a marked acceleration in urban spatial growth since the early 2000s, indicating a swift
transformation of these border agglomerations. This leads to an ecosystem shift, marked
by a decline in forest cover previously dominant in the landscapes of the cities studied in
1990, except for Kipushi, which was replaced by emerging and merging savanna patches in
the landscape in 2023. The anthropization of the landscape of these cities and their hetero-
geneity are further intensified over time by the continuous creation of agricultural patches.
These observations lead to the conclusion that border urban areas in the DRC-Zambia re-
gion are undergoing significant spatial changes driven by a complex interplay of economic,
demographic, and infrastructural factors. Understanding these dynamics is crucial for
informed urban planning and policy formulation. Sustainable development strategies must
be devised to address challenges such as managing urban sprawl, promoting economic
resilience, and fostering cross-border cooperation in border regions.
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