Precious and Base Metal Minerals in Black Sands of the Egyptian Mediterranean Coast: Mineralogical and Geochemical Attributes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sampling and Mineral Separation
2.3. Microscopic Study and Mineral Chemistry
3. Results
3.1. Minerals of the Precious Metals
3.1.1. Gold
3.1.2. Silver
3.1.3. Platinum Group Minerals (PGM)
3.2. Base Metals
3.2.1. Minerals of Copper
3.2.2. Minerals of Lead
4. Discussion
4.1. Mineral Transport and Reworking
4.2. Sources of the Precious and Base Metal Minerals
4.2.1. Grain Rims and Grain Inclusions
4.2.2. Micro-Chemical Signature
4.2.3. Fineness Data for Au–Ag and Au–Ag–Cu Alloys
4.3. Implications for Ore Sources and Their Exploration Approaches for Nubian Shield Covered Areas
5. Conclusions
- (1)
- The high Au content (94–99 wt.%) and gold fineness value are consistent with Au–Ag sulfidation deposits that originate from the weathered basement terrains of Central Africa, Ethiopian Highlands, and Red Sea Hills. The narrow range of gold composition, high fineness, and association with Cu–PGE deposits suggest that the minerals are similar to those found in Neoproterozoic plutonic and meta-sedimentary rocks, which are commonly found in the Nubian shield covered areas.
- (2)
- The investigated gold grains are allogenic in nature; rims on authigenic gold are not recorded because that gold forms in equilibrium with surface conditions, exactly like rims. This feature is owed to the enormous transport distances that are frequently associated with the effect that eventually obliterates the original particle’s Ag-rich core. Pb and Cu rims form as a result of chemical alteration.
- (3)
- The studied PGE grains are Pt–Fe alloys connected to the PPGE subgroup and dominated by Pt (45.05 wt.%). The analyzed sperrylite grains are Au-bearing As–Pt type. Their source can be related to ultramafic–mafic complexes and Alaskan-type mafic–ultramafic intrusions.
- (4)
- The variations in the morphology, surfaces, inclusion types, rims, and micro-chemistry of the grains investigated could reflect differences in their lithologies, weathering surfaces, transport distances, and multiple source provenances.
- (5)
- Minerals that are unstable in the surface environment are one of this study’s highlights. Native copper may be of an anthropogenic origin. The same is true for lead because, even if a native lead (spherical particles sound like smelted lead) source existed considerably further upstream, the chances of a malleable and reactive metal surviving should be zero. Furthermore, the accompanying galena is a common mineral that is neither chemically nor physically resilient.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rozendaal, A.; Philander, C.; Heyn, R. The coastal heavy mineral sand deposits of Africa. S. Afr. J. Geol. 2017, 120, 133–152. [Google Scholar] [CrossRef]
- Trujillo, W.; Cobo, J.; Vera-Cedeño, D.; Palma-Cando, A.; Toro-Álava, J.; Viloria, A.; Ricaurte, M. Magnetic Separation and Enrichment of Fe–Ti Oxides from Iron Titaniferous Beach Sands: Process Design Applied to Coastal Ecuador. Resources 2022, 11, 121. [Google Scholar] [CrossRef]
- Hou, B.; Keeling, J.; Van Gosen, B.S. Geological and Exploration Models of Beach Placer Deposits, Integrated from Case-Studies of Southern Australia. Ore Geol. Rev. 2017, 80, 437–459. [Google Scholar] [CrossRef]
- Peristeridou, E.; Melfos, V.; Papadopoulou, L.; Kantiranis, N.; Voudouris, P. Mineralogy and Mineral Chemistry of the REE-Rich Black Sands in Beaches of the Kavala District, Northern Greece. Geosciences 2022, 12, 277. [Google Scholar] [CrossRef]
- Nayak, B. Gold in the beach placer sands of Chavakkad-Ponnani, Kerala Coast, India. J. Geol. Soc. India 2011, 78, 345–348. [Google Scholar] [CrossRef]
- Uddin, M.R.; Khandaker, M.U.; Akter, N.; Ahmed, M.F.; Hossain, S.M.M.; Gafur, A.; Abedin, M.J.; Rahman, M.A.; Idris, A.M. Identification and Economic Potentiality of Mineral Sands Resources of Hatiya Island, Bangladesh. Minerals 2022, 12, 1436. [Google Scholar] [CrossRef]
- Batapola, N.; Dushyantha, N.; Ratnayake, N.; Premasiri, R.; Abeysinghe, B.; Dissanayake, O.; Rohitha, S.; Ilankoon, S.; Dharmaratne, P. Rare earth element potential in the beach placers along the southwest coast of Sri Lanka. In Proceedings of the Moratuwa Engineering Research Conference (MERCon), Moratuwa, Sri Lanka, 27–29 July 2021; pp. 415–420. [Google Scholar] [CrossRef]
- Belkin, H.E.; Grosz, A.E. Platinum and gold placer from Tugidak Island, Alaska: Platinum-group minerals and their inclusions, gold, and chromite mineralogy. Can. Mineral. 2021, 59, 667–712. [Google Scholar] [CrossRef]
- Kasper-Zubillaga, J.J.; Carranza-Edwards, A.; Morton-Bermea, O. Heavy Minerals and Rare Earth Elements in Coastal and Inland Dune Sands of El Vizcaino Desert, Baja California Peninsula, Mexico. Mar. Georesources Geotechnol. 2008, 26, 172–188. [Google Scholar] [CrossRef]
- Tzifas, I.T.; Misaelides, P.; Godelitsas, A.; Gamaletsos, P.N.; Nomikou, P.; Karydas, A.G.; Kantarelou, V.; Papadopoulos, A. Geochemistry of coastal sands of Eastern Mediterranean: The case of Nisyros volcanic materials. Geochemistry 2017, 77, 487–501. [Google Scholar] [CrossRef]
- Gonçalves, C.C.; Braga, P.F.A. Heavy Mineral Sands in Brazil: Deposits, Characteristics, and Extraction Potential of Selected Areas. Minerals 2019, 9, 176. [Google Scholar] [CrossRef]
- Abdel-Karim, A.M.; Zaid, S.; Moustafa, M.I.; Barakat, M.G. Mineralogy, chemistry and radioactivity of the heavy minerals in the black sands, along the Northern coast of Egypt. J. Afr. Earth Sci. 2016, 123, 10–20. [Google Scholar] [CrossRef]
- Mooiman, M.B.; Sole, K.C.; Dinham, N. The Precious Metals Industry. In Metal Sustainability: Global Challenges, Consequences, and Prospects; Izatt, M.R., Ed.; Wiley: Hoboken, NJ, USA, 2016. [Google Scholar] [CrossRef]
- Zaccarini, F.; Economou-Eliopoulos, M.; Kiseleva, O.; Garuti, G.; Tsikouras, B.; Pushkarev, E.; Idrus, A. Platinum Group Elements (PGE) Geochemistry and Mineralogy of Low Economic Potential (Rh-Pt-Pd)-Rich Chromitites from Ophiolite Complexes. Minerals 2022, 12, 1565. [Google Scholar] [CrossRef]
- Tolstykh, N.; Shapovalova, M.; Podlipsky, M. Au-Ag-Se-Te-S Mineralization in the Maletoyvayam High-Sulfidation Epithermal Deposit, Kamchatka Peninsula. Minerals 2023, 13, 420. [Google Scholar] [CrossRef]
- Sinyakova, E.F.; Vasilyeva, I.G.; Oreshonkov, A.S.; Goryainov, S.V.; Karmanov, N.S. Formation of Noble Metal Phases (Pt, Pd, Rh, Ru, Ir, Au, Ag) in the Process of Fractional Crystallization of the CuFeS2 Melt. Minerals 2022, 12, 1136. [Google Scholar] [CrossRef]
- Syaeful, H.; Ciputra, R.C.; Adimedha, T.B.; Sumaryanto, A.; Sukadana, I.G.; Indrastomo, F.D.; Pratiwi, F.; Sucipta, S.; Pratama, H.A.; Mustika, D.; et al. Radiometric Signatures of Gold Mineralization Zone in Pongkor, West Java, Indonesia: A Baseline for Radiometric Mapping Application on Low-Sulfidation Epithermal Deposit. Resources 2024, 13, 2. [Google Scholar] [CrossRef]
- Knight, J.B.; Morison, S.; Mortensen, J. The relationship between Placer Gold Particle Shape, Rimming and Distance of Fluvial Transport as Exemplified by Gold from the Klondike District, Yukon Territory, Canada. Econ. Geol. 1999, 94, 635–648. [Google Scholar] [CrossRef]
- Townley, B.K.; Herail, G.; Maksaev, V.; Palacios, C.; de Parseval, P.; Sepulveda, F.; Orellana, R.; Rivas, P.; Ulloa, C. Gold grain morphology and composition as an exploration tool: Application to gold exploration in covered areas. Geochem. -Explor. Environ. Anal. 2003, 3, 29–38. [Google Scholar] [CrossRef]
- Chapman, R.J.; Mortensen, J.K.; Lafarge, W.P. Styles of lode gold mineralization contributing to the placers of the Indian River and Black Hills Creek, Yukon Territory, Canada, as deduced from micro chemical characterization of placer gold grains. Miner. Depos. 2011, 57, 881–903. [Google Scholar] [CrossRef]
- Chapman, R.J.; Mortensen, J.K. Characterization of gold mineralization in the Northern Cariboo Gold District, British Columbia, Canada, through integration of compositional studies of lode and detrital Gold with historical placer production: A template for evaluation of orogenic gold districts. Econ. Geol. 2016, 111, 1321–1345. [Google Scholar] [CrossRef]
- Stewart, J.; Kerr, G.; Prior, D.; Halfpenny, A.; Pearce, M.; Hough, R.; Craw, D. Low temperature recrystallization of alluvial gold in paleoplacer deposits. Ore Geol. Rev. 2017, 88, 43–56. [Google Scholar] [CrossRef]
- Nikiforova, Z. Criteria for Determining the Genesis of Placers and Their Different Sources Based on the Morphological Features of Placer Gold. Minerals 2021, 11, 381. [Google Scholar] [CrossRef]
- Lalomov, A.V.; Chefranov, R.M.; Naumov, V.A.; Naumova, O.B.; LeBarge, W.; Dilly, R.A. Typomorphic features of placer gold of Vagran cluster (the Northern Urals) and search indicators for primary bedrock gold deposits. Ore Geol. Rev. 2017, 85, 321–335. [Google Scholar] [CrossRef]
- dos Santos Alves, K.; Barrios Sánchez, S.; Gómez Barreiro, J.; Merinero Palomares, R.; Compaña Prieto, J.M. Morphological and Compositional Analysis of Alluvial Gold: The Fresnedoso Gold Placer (Spain). Ore Geol. Rev. 2020, 121, 103489. [Google Scholar] [CrossRef]
- Knight, J.; Mortensen, J.; Morison, S. Lode and Placer Gold Composition in the Klondike District, Yukon Territory, Canada: Implications for the Nature and Genesis of Klondike Placer and Lode Gold Deposits. Econ. Geol. 1999, 94, 649–664. [Google Scholar] [CrossRef]
- Ketchaya, Y.B.; Dong, G.; Santosh, M.; Lemdjou, Y.B. Microchemical signatures of placer gold grains from the Gamba district, northern Cameroon: Implications for possible bedrock sources. Ore Geol. Rev. 2022, 141, 104640. [Google Scholar] [CrossRef]
- Marquez-Zavalia, M.F.; Southam, G.; Carig, J.R.; Galliski, M.A. Morphological and chemical study of placer gold from the San Luis Range, Argentina. Can. Mineral. 2004, 42, 69–82. [Google Scholar] [CrossRef]
- Bowles, J.F.W.; Suárez, S.; Prichard, H.M.; Fisher, P.C. The mineralogy, geochemistry and genesis of the alluvial platinum-group minerals of the Freetown Layered Complex, Sierra Leone. Mineral. Mag. 2018, 82 (Suppl. S1), S223–S246. [Google Scholar] [CrossRef]
- Mateen, A.; Wahid, A.; Janjuhah, H.T.; Mughal, M.S.; Ali, S.H.; Siddiqui, N.A.; Shafique, M.A.; Koumoutsakou, O.; Kontakiotis, G. Petrographic and Geochemical Analysis of Indus Sediments: Implications for Placer Gold Deposits, Peshawar Basin, NW Himalaya, Pakistan. Minerals 2022, 12, 1059. [Google Scholar] [CrossRef]
- Chapman, R.J.; Mortensen, J.K.; Crawford, E.C.; Lebarge, W.P. Micro-chemical studies of placer and lode gold in the Klondike District, Yukon, Canada: 1. Evidence for a small, gold rich, orogenic hydrothermal system in the bonanza and Eldorado Creek area. Econ. Geol. 2010, 105, 1369–1392. [Google Scholar] [CrossRef]
- Abdel-Karim, A.M.; Moustafa, M.I.; El-Afandy, A.H.; Barakat, M.G. Mineralogy, Chemical Characteristics and Upgrading of Beach Ilmenite of the Top Meter of Black Sand Deposits of the Kafr Al-Sheikh Governorate, Northern Egypt. Acta Geol. Sin. 2017, 91, 1326–1338. [Google Scholar] [CrossRef]
- Wassef, S.N. Distribution and properties of placer ilmenite in East Rosetta beach sands, Egypt. Miner. Depos. 1981, 16, 259–267. [Google Scholar] [CrossRef]
- El Gemmizi, M.A. Note on the occurrence of gold and cassiterite in the Egyptian beach placer deposits. Econ. Geol. 1985, 80, 769–772. [Google Scholar] [CrossRef]
- El-Kammar, A.A.; Ragab, A.A.; Moustafa, M.I. Geochemistry of economic heavy minerals from Rosetta black sand of Egypt. JKAU Earth Sci. 2010, 22, 33–39. [Google Scholar] [CrossRef]
- Moustafa, M.I. Mineralogical characteristics of the separated magnetic rutile of the Egyptian black sands. Resour. Geol. 2010, 60, 300–312. [Google Scholar] [CrossRef]
- Abdel-Karim, A.M.; El-Shafey, A. Mineralogy and chemical distribution study of placer cassiterite and some associated new recorded minerals, east Rosetta, Egypt. Arab. J. Geosci. 2012, 5, 807–816. [Google Scholar] [CrossRef]
- Abdel-Karim, A.M.; Barakat, M.G. Separation, upgrading and mineralogy of placer magnetite in the black sands, Northern coast of Egypt. Arab. J. Geosci. 2017, 10, 298. [Google Scholar] [CrossRef]
- Moustafa, M.I. Some Mineralogical Characteristics of the Egyptian Black Sand Beach Ilmenite Part I: Homogeneous Ilmenite and Titanhematite-Ferriilmenite Grains. Eng. Technol. Appl. Sci. Res. 2022, 12, 9614–9631. [Google Scholar] [CrossRef]
- Schneiderman, J.S. Detrital opaque oxides as provenance indicators in River Nile sediments. J. Sediment. Res. 1995, A65, 668–674. [Google Scholar] [CrossRef]
- Garzanti, E.; Ando, S.; Padoan, M.; Vezzoli, G.; El Kammar, A. The modern Nile sediment system: Processes and products. Quat. Sci. Rev. 2015, 130, 9–56. [Google Scholar] [CrossRef]
- Garzanti, E.; Vermeesch, P.; Rittner, M.; Simmons, M. The zircon story of the Nile: Time-structure maps of source rocks and discontinuous propagation of detrital signals. Basin Res. 2018, 30, 1098–1117. [Google Scholar] [CrossRef]
- Siegel, F.R.; Gupta, N.; Shergill, B.; Stanley, D.J.; Gerber, C. Geochemistry of Holocene sediments from the Nile Delta. J. Coast. Res. 1995, 11, 415–431. [Google Scholar]
- Moustafa, M.I.; Hegab, O.A.; El-Agami, N.L. Remarks on the physical, mineralogical features and amenability of the northern coast of Egypt. Egypt. Mineral. 2000, 12, 29–49. [Google Scholar]
- Marshall, D.; Nicol, C.-A.; Greene, R.; Sawyer, R.; Stansell, A.; Easterbrook, R. Precious Metal Enrichment at the Myra Falls VMS Deposit, British Columbia, Canada. Geosciences 2018, 8, 422. [Google Scholar] [CrossRef]
- Johnson, P.R.; Zoheir, B.A.; Ghebreab, W.; Stern, R.J.; Barrie, C.T.; Hamer, R.D. Gold-bearing volcanogenic massive sulfides and orogenic-gold deposits in the Nubian Shield. S. Afr. J. Geol. 2017, 120, 63–76. [Google Scholar] [CrossRef]
- Ul-Hamid, A.; Tawancy, H.M.; Mohammed, A.R.I.; Al-Jaroudi, S.S.; Abbas, N.M. Quantitative WDS analysis using electron probe microanalyzer. Mater. Charact. 2006, 56, 192–199. [Google Scholar] [CrossRef]
- Sillén, L.G.; Melander, L. X-ray Studies on 875 the Oxyhalide Minerals Nadorite (Ochrolite) PbSbO2Cl and Ekdemite. Z. Krist.-Cryst. Mater. 2015, 103, 420–430. [Google Scholar] [CrossRef]
- Larizzatti, J.H.; Oliveira, S.B.; Butt, C.M. Morphology and composition of gold in a lateritic profile, Fazenda Pison ‘‘Garimpo’’, Amazon, Brazil. J. S. Am. Earth Sci. 2008, 25, 359–376. [Google Scholar] [CrossRef]
- Hough, R.M.; Butt, C.R.M.; Fischer-Bühner, J. The Crystallography, Metallography and Composition of Gold. Elements 2009, 5, 297–302. [Google Scholar] [CrossRef]
- Khalifa, M.; Gad, A. Assessment of heavy metals contamination in agricultural soil of southwestern Nile Delta, Egypt. Soil Sediment Contam. 2018, 27, 619–642. [Google Scholar] [CrossRef]
- Osman, R.; Melegy, A.; Dawood, Y.; Gad, A. Distribution of some potentially toxic heavy metals in the soil of Shoubra El Kheima, Egypt. Egypt. J. Chem. 2021, 64, 1965–1980. [Google Scholar] [CrossRef]
- Saleh, A.; Dawood, Y.H.; Gad, A. Assessment of Potentially Toxic Elements’ Contamination in the Soil of Greater Cairo, Egypt Using Geochemical and Magnetic Attributes. Land 2022, 11, 319. [Google Scholar] [CrossRef]
- Groen, J.C.; Craig, J.R.; Rimstidt, R.D. Gold-rich rim formation on electrum grains in placers. Can. Mineral. 1990, 28, 207–228. [Google Scholar]
- Chapman, R.J.; Banks, D.A.; Styles, M.T.; Walshaw, R.D.; Piazolo, S.; Morgan, D.J.; Grimshaw, M.R.; Spence-Jones, C.P.; Matthews, T.J.; Borovinskaya, O. Chemical and physical heterogeneity within native gold: Implications for the design of gold particle studies. Miner. Depos. 2021, 56, 1563–1588. [Google Scholar] [CrossRef]
- Knight, J.B.; Leitch, C.H. Phase relations in the system Au-Cu-Ag at low temperatures, based on natural assemblages. Can. Mineral. 2001, 39, 889–905. [Google Scholar] [CrossRef]
- Chapman, R.J.; Mileham, T.J.; Allan, M.M.; Mortensen, J.K. A distinctive Pd-Hg signature in detrital gold derived from alkalic Cu-Au porphyry systems. Ore Geol. Rev. 2017, 83, 84–102. [Google Scholar] [CrossRef]
- Chapman, R.J.; Allan, M.M.; Mortensen, J.K.; Wrighton, T.M.; Grimshaw, M.R. A new indicator mineral methodology based on a generic Bi-Pb-Te-S mineral inclusion signature in detrital gold from porphyry and low/intermediate sulfidation epithermal environments in Yukon Territory, Canada. Miner. Depos. 2018, 53, 815–834. [Google Scholar] [CrossRef]
- Dongmo, F.W.N.; Chapman, R.J.; Bolarinwa, A.T.; Yongue, R.F.; Banks, D.A.; Olajide-Kayode, J.O. Microchemical characterization of placer gold grains from the Meyos-Essabikoula area, Ntem complex, southern Cameroon. J. Afr. Earth Sci. 2018, 151, 189–201. [Google Scholar] [CrossRef]
- Birch, W.D. Minerals in the arrojadite, alluaudite and jahnsite–whiteite groups from the Mount Wills pegmatite field, Victoria, Australia. Eur. J. Mineral. 2018, 30, 635–645. [Google Scholar] [CrossRef]
- Mustafa, Y.S. Trace Elements Mineralization—Gala-En Nahal Area Gadarif State—Sudan. J. Pet. Min. Eng. 2018, 20, 73–79. [Google Scholar] [CrossRef]
- Nikolaeva, L.A.; Nekrasova, A.N.; Milyaev, S.A.; Yablokova, S.V.; Gavrilov, A.M. Geochemistry of Native Gold from Deposits of Various Types. Geol. Ore Depos. 2013, 55, 176–184. [Google Scholar] [CrossRef]
- Craw, D.; McLachlan, C.; Negrini, M.; Becker, N. Quantification and Prediction of Bulk Gold Fineness at Placer Gold Mines: A New Zealand Example. Minerals 2017, 7, 226. [Google Scholar] [CrossRef]
- Liu, H.; Beaudoin, G. Geochemical signatures in native gold derived from Au-bearing ore deposits. Ore Geol. Rev. 2021, 132, 104066. [Google Scholar] [CrossRef]
- Moles, N.R.; Chapman, R.J.; Warner, R.B. The significance of copper concentrations in natural gold alloy for reconnaissance exploration and understanding gold-depositing hydrothermal systems. Geochem.-Explor. Environ. Anal. 2013, 13, 115–130. [Google Scholar] [CrossRef]
- Holwell, D.A.; Adeyemi, A.; Warda, L.A.; Smith, D.J.; Graham, S.D.; McDonald, I.; Smith, J.W. Low temperature alteration of magmatic Ni-Cu-PGE sulfides as a source for hydrothermal Ni and PGE ores: A quantitative approach using automated mineralogy. Ore Geol. Rev. 2017, 91, 718–740. [Google Scholar] [CrossRef]
- Tsushima, N.; Matsueda, H.; Ishihara, S. Polymetallic mineralization at the Nakakoshi copper deposits, central Hokkaido, Japan. Resour. Geol. 1999, 49, 89–97. [Google Scholar] [CrossRef]
- Ciurej, A.; Struska, M.; Wolska, A.; Szczerba, M.; Olszak, J. Copper-Bearing Mineralisation in the Upper Devonian Limestones: A Case Study from the Historical Teresa Adit in the Świętokrzyskie Mountains, Poland. Minerals 2023, 13, 54. [Google Scholar] [CrossRef]
- Redwan, M.; Rammlmair, D.; Berkh, K. Secondary minerals in a calcareous environment: An example from Um Gheig Pb/Zn mine site, Eastern Desert, Egypt. Environ. Earth Sci. 2021, 80, 274. [Google Scholar] [CrossRef]
- Barnes, S.-J.; Naldrett, A.J.; Gorton, M.P. The origin of the fractionation of Platinum-group Elements in Terrestrial Magmas. Chem. Geol. 1985, 5, 303–323. [Google Scholar] [CrossRef]
- Belete, K.H.; Mogessie, A.; Bowles, J.F.W. Platinum-group minerals in the Alaskan Type mafic-ultramafic intrusions of the Yubdo area, Western Ethiopia. Abstract 9. In Extended Abstracts, Proceedings of the 9th International Platinum Symposium, Billings, MT, USA, 21–25 July 2002; Boudreau, A.E., Ed.; Duke University: Durham, North Carolina, 2002. [Google Scholar]
- Jackson, M.T.; Prichard, H.M.; Fisher, P.C.; Bowles, J.F.W.; Belete, K.H. Chrome spinel compositions complexes of the East African Orogen: Indicators of PGE-bearing Alaskan-type intrusions. In Platinum-Group Elements—From Genesis to Benefaction and Environmental Impact, Proceedings of the Extended Abstracts Volume, 10th International Platinum Symposium, Oulu, Finland, 8–11 August 2005; Törmänen, T.O., Alapieti, T.T., Eds.; Geological Survey of Finland: Espoo, Finland, 2005; pp. 381–384. [Google Scholar]
- Bowles, J.F.W.; Suárez, S. The formation of alluvial platinum-group minerals: Present knowledge and the way ahead. Mineral. Mag. 2021, 85, 12–21. [Google Scholar] [CrossRef]
- Morrison, G.W.; Rose, W.J.; Jaireth, S. Geological and geochemical controls on the silver content (fineness) of gold in gold-silver deposits. Ore Geol. Rev. 1991, 6, 333–364. [Google Scholar] [CrossRef]
- McDonald, A.S.; Sistare, G.H. The metallurgy of some carat gold jewellery alloys. Gold Bull. 1978, 11, 66–73. [Google Scholar] [CrossRef]
- Murzin, V.V.; Malyugin, A.A. New data on the instability of natural solid solutions of the gold–silver–copper system at temperatures below 350 °C. Dokl. Acad. Sci. USSR Earth Sci. Sect. 1983, 269, 723–724. [Google Scholar]
- Lang, J.R.; Baker, T. Intrusion-related gold systems: The present level of understanding. Miner. Depos. 2001, 36, 477–489. [Google Scholar] [CrossRef]
- Mathieu, L. Intrusion-Associated Gold Systems and Multistage Metallogenic Processes in the Neoarchean Abitibi Greenstone Belt. Minerals 2021, 11, 261. [Google Scholar] [CrossRef]
- Cabri, L.J. The distribution of trace precious metals in minerals and mineral products. Mineral. Mag. 1992, 56, 289–308. [Google Scholar] [CrossRef]
- Barnes, S.J.; Cruden, A.R.; Arndt, N.; Saumur, B.M. The mineral system approach applied to magmatic Ni–Cu–PGE sulphide deposits. Ore Geol. Rev. 2016, 76, 296–316. [Google Scholar] [CrossRef]
- Berhe, S.M. Ophiolites in northeast and east Africa: Implications for Proterozoic crustal growth. J. Geol. Soc. Lond. 1990, 147, 41–57. [Google Scholar] [CrossRef]
- Stern, R.J.; Johnson, P.; Kröner, A.; Yibas, B. Neoproterozoic Ophiolites of the ArabianNubian Shield. In Precambrian Ophiolites and Related Rocks; Kusky, T.M., Ed.; Elsevier: Amsterdam, The Netherlands, 2004. [Google Scholar]
- Cabri, L.-J.; Oberthür, T.; Keays, R.R. Origin and depositional history of platinum-group minerals in placers–A critical review of facts and fiction. Ore Geol. Rev. 2022, 144, 104733. [Google Scholar] [CrossRef]
- Cabri, L.J.; Harris, D.C. Zoning in Os-Ir alloys and the relation of the geological and tectonic environment of the source rocks to the bulk Pt: (Pt + Ir + Os) ratio for placers. Can. Mineral. 1975, 13, 266–274. [Google Scholar]
- Abdel-Karim, A.M.; Ahmed, Z. Possible origin of the ophiolites of Eastern Desert of Egypt from geochemical prospectives. Arab. J. Sci. Eng. 2010, 35, 115–143. [Google Scholar]
- Augustithis, S.S. Mineralogical and geochemical studies of the platiniferous dunite-birbirite-pyroxenite complex of Yubdo, Birbir, W. Ethiopia. Chem. Der Erde 1965, 24, 159–196. [Google Scholar]
- Ottemann, J.; Augustithis, S.S. Geochemistry and origin of “platinum-nuggets” in lateritic covers from ultrabasic rocks and birbirites of W. Ethiopia. Miner. Depos. 1967, 1, 269–277. [Google Scholar] [CrossRef]
- Bowles, J. The development of platinum-group minerals in laterites. Econ. Geol. 1986, 81, 1278–1285. [Google Scholar] [CrossRef]
- Augé, T.; Legendre, O. Platinum-group element oxides from the Pirogues ophiolitic mineralization, New Caledonia; origin and significance. Econ. Geol. 1994, 89, 1454–1468. [Google Scholar] [CrossRef]
- Aiglsperger, T.; Proenza, J.; Font-Bardia, M.; Baurier-Aymat, S.; Galí, S.; Lewis, J.; Longo, F. Supergene neoformation of Pt-Ir-Fe-Ni alloys: Multistage grains explain nugget formation in Ni-laterites. Miner. Depos. 2017, 52, 1069–1083. [Google Scholar] [CrossRef]
- Abrajano, T.A.; Pasteris, J.D. Zambales ophiolite, Philippines. II. Sulfide petrology of the critical zone of the Acoje Massif. Contrib. Mineral. Petrol. 1989, 103, 64–77. [Google Scholar] [CrossRef]
Mineral Grains | Size (µm) | Shape | Outline | Surface | Color | Rim | Inclusions |
---|---|---|---|---|---|---|---|
Gold | 0.12 × 0.13 to 0.2 × 0.32 | Angular, subangular (abraded) | Irregular, regular | Regular, irregular | Pale to dark yellow | Discontinuous to absent | Apachite |
0.08 × 0.25 to 0.15 × 0.30 | Subround, elongate | Irregular | Regular, irregular | Pale to very dark yellow | Absent to discontinuous | Quartz | |
0.12 × 0.15 to 0.18 × 0.21 | Round to well round | Regular, irregular | Regular | Pale to very dark yellow | Absent to discontinuous | Magnetite, Cu | |
0.06 × 0.10 | Discoid | Regular | Regular | Pale yellow to yellow | Absent | Apachite | |
0.05 × 0.15 | Flake | Regular, irregular | Very regular (folded) | Pale yellow to yellow | Absent | - | |
0.008 × 0.10 to 0.010 × 0.30 | Rod-like | Regular, irregular | Regular (hammered) | Pale yellow to yellow | Absent | - | |
Silver | 0.03 × 0.15 to 0.70 × 0.20 | Elongate, sheaf-like | Regular, irregular | Regular, irregular | Shiny black | Sometimes present | Quartz, acanthite (argentite) |
0.04 × 0.04 to 0.13 × 0.13 | Sphere | Regular | Regular | Silvery white | Absent | Quartz, platinum, ilmenite, titanite | |
PGMs | 0.13 × 0.4 to 0.2 × 0.5 | Angular to elongate | Regular, irregular | Regular, irregular | Silvery white | - | Arrojadite, ilmenite |
0.12 × 0.05 to 0.22 × 0.06 | Elongate particles, euhedral crystals | Regular, irregular | Regular, irregular | White | - | Apachite, galena | |
Copper | 0.05 × 0.05 to 0.12 × 0.12, 0.10 × 0.05 to 0.20 × 0.10 | Sphere to ovoid | Regular | Regular | Reddish brown to black | Continuous to discontinuous | Quartz, titanite, sphalerite |
0.05 × 0.03 to 0.08 × 0.05 | Drop-like | Regular | Regular | Dark brown to black | Continuous to discontinuous | Millerite, galena | |
0.07 × 0.03, 0.17 × 0.04 to 0.10 × 0.02 | Cocoon to bone-like | Regular | Regular | Brown to black | Absent | Quartz, magnetite, sphalerite | |
Lead | 0.4 × 0.4 to 0.10 × 0.10, 0.0.7 × 0.04 to 0.15 × 0.10 | Sphere to ovoid | Regular | Regular | Straw yellow to light brown | Continuous to discontinuous | Apachite, ilmenite |
0.03 × 0.01 to 0.10 × 0.04 | Drop-like | Regular | Regular | Dark brown to black | Continuous to discontinuous | Titanite | |
0.05 × 0.02 | Cocoon | Regular | Regular | Straw yellow to red. | Discontinuous | Apachite |
Element | EMPA | SEM/EDX | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
G.11 | G.12 | G.13 | G.14 | Av.4 | G.1 | G.2 | G.3 | G.4 | Av.4 | |
Au | 94.11 | 96.21 | 95.18 | 98.55 | 96.01 | 99.02 | 98.20 | 95.47 | 95.90 | 97.15 |
Ag | 2.32 | 2.10 | 1.76 | 1.28 | 1.86 | 0.10 | 1.02 | 0.50 | 0.66 | 0.57 |
Cu | 3.15 | 1.43 | 1.45 | 0.16 | 1.87 | 0.20 | 0.50 | 2.08 | 0.86 | 0.91 |
Si | - | - | - | - | - | 0.68 | 0.28 | 1.28 | 2.58 | 1.20 |
Mg | - | - | - | - | - | - | - | 0.67 | - | 0.67 |
Total | 99.58 | 99.74 | 98.39 | 99.99 | 99.73 | 100.00 | 100.00 | 100.00 | 100.00 | - |
Fineness | 975.94 | 978.64 | 981.84 | 987.18 | 981 | 993.2 | 997.2 | 959.7 | 965.6 | 978.9 |
Element | EMPA | SEM/EDX | |||||||
---|---|---|---|---|---|---|---|---|---|
G.21 | G.22 | G.23 | G.24 | Av.4 | G.1 | G.2 | G.3 | Av.3 | |
Ag | 75.56 | 88.13 | 71.66 | 95.34 | 82.67 | 98.42 | 45.64 | 53.05 | 65.70 |
Pb | 3.85 | 5.57 | 6.14 | 1.50 | 4.27 | - | 4.48 | 6.72 | 5.60 |
Ir | 9.86 | 3.75 | 8.46 | 0.11 | 5.55 | - | 16.83 | - | 16.83 |
Se | 3.16 | - | 4.67 | - | 3.93 | - | 4.47 | - | 4.47 |
Ga | - | - | - | - | - | - | 4.25 | - | 4.25 |
Si | - | - | - | - | - | 1.58 | 19.33 | 17.31 | 12.74 |
Y | - | - | - | - | - | - | - | 8.62 | 8.62 |
Ca | - | - | - | - | - | - | 4.82 | 6.22 | 5.52 |
Ti | - | - | - | - | - | - | 0.18 | 0.55 | 0.37 |
FeT | 3.12 | 0.68 | 3.67 | 1.04 | 2.13 | - | - | 1.55 | 1.55 |
Ni | 1.45 | 1.32 | 3.50 | 1.06 | 1.83 | - | - | 2.17 | 2.17 |
Bi | - | - | - | - | - | - | - | 3.81 | 3.81 |
Total | 98.00 | 99.45 | 99.10 | 99.05 | 100.38 | 100.00 | 100.00 | 100.00 | - |
Element | EMPA | SEM/EDX | ||||||
---|---|---|---|---|---|---|---|---|
G.61 | G.62 | G.63 | G.64 | Av.4 | G.1 | G.2 | Av.2 | |
Pt | 40.88 | 44.54 | 45.76 | 42.89 | 43.52 | 43.67 | 46.41 | 45.05 |
Ru | 16.11 | 13.32 | 13.65 | 15.32 | 14.60 | 15.93 | 12.45 | 14.19 |
Os | 28.44 | 24.67 | 26.43 | 25.65 | 26.30 | 26.50 | 25.18 | 25.84 |
Ir | 8.13 | 11.07 | 10.53 | 10.43 | 10.07 | 9.09 | 10.22 | 9.66 |
Cu | 0.11 | 0.10 | 0.14 | 0.10 | 0.12 | - | - | - |
Pb | 5.21 | 4.98 | 3.38 | 5.26 | 4.71 | 4.81 | 5.71 | 5.26 |
FeT | 0.10 | 0.12 | 0.10 | 0.15 | 0.12 | - | - | - |
Total | 98.91 | 98.80 | 99.99 | 99.80 | 99.94 | 100.00 | 100.00 | 100.00 |
100Pt/(Pt+Ir+Os) | 52.78 | 50.45 | 55.32 | 54.31 | 54.47 | 55.10 | 56.73 | 55.93 |
Element | EMPA | SEM/EDX | |||||
---|---|---|---|---|---|---|---|
G.71 | G.72 | G.73 | Av.3 | G.1 | G.2 | Av.2 | |
Pt | 54.76 | 55.87 | 54.88 | 55.17 | 56.42 | 55.54 | 55.98 |
As | 42.55 | 41.21 | 42.65 | 42.14 | 41.79 | 43.44 | 42.62 |
Au | 1.54 | 1.78 | 1.89 | 1.74 | 1.75 | 1.02 | 1.39 |
FeT | 0.18 | 0.10 | 0.15 | 0.11 | - | - | - |
Ca | 0.15 | 0.54 | 0.18 | 0.29 | 0.04 | - | 0.04 |
S | 0.22 | 0.20 | 0.15 | 0.19 | - | - | - |
Total | 99.40 | 99.70 | 99.90 | 99.64 | 100.00 | 100.00 | 100.00 |
Element | EMPA | SEM/EDX | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Native Copper | Cuprite | |||||||||||||
G.31 | G.32 | G.33 | G.34 | Av. 4 | G.1 | G.2 | G.3 | G.4 | Av. 4 | G.1 | G.2 | G.3 | Av. 3 | |
Cu | 90.78 | 95.14 | 92.54 | 98.42 | 94.22 | 98.12 | 91.68 | 99.25 | 79.16 | 92.05 | 85.50 | 83.93 | 85.72 | 85.07 |
O | - | - | - | - | - | - | - | - | - | - | 11. 22 | 10.05 | 10.03 | 10.43 |
Ag | 0.55 | 0.43 | 0.21 | 0.20 | 0.35 | 0.67 | - | - | - | 0.67 | - | - | - | - |
Ca | - | - | - | - | - | 1.22 | 0.73 | - | 0.98 | 1.01 | - | - | - | - |
Al | 1.30 | 0.30 | 1.10 | 0.50 | 0.80 | - | 0.63 | - | 4.57 | 2.6 | - | - | - | - |
Si | 1.00 | 0.20 | 1.00 | - | 0.73 | - | 1.97 | - | 6.59 | 4.28 | 0.25 | 0.55 | 0.10 | 0.30 |
S | 1.50 | 1.00 | 0.80 | - | 1.10 | - | 1.24 | - | 1.60 | 1.42 | - | - | - | - |
Ti | - | - | - | - | - | - | 1.48 | - | 2.39 | 0.89 | - | - | - | - |
FeT | 1.89 | 0.55 | 1.08 | 0.17 | 0.92 | - | 0.80 | - | 1.72 | 1.94 | 0.27 | 0.85 | 0.15 | 0.42 |
Ni | 1.15 | 1.22 | 1.74 | 0.50 | 1.15 | - | 0.40 | - | 0.72 | 0.28 | - | - | - | - |
Zn | 1.00 | 0.48 | 0.53 | 0.23 | 0.56 | - | 1.68 | - | 3.84 | 0.56 | - | - | - | - |
Cl | - | - | - | - | - | - | 0.63 | 0.75 | 1.00 | 0.79 | 2.69 | 4.22 | 3.92 | 3.61 |
Sr | - | - | - | - | - | - | - | - | - | - | 0.07 | 0.40 | 0.08 | 0.18 |
Total | 99.18 | 99.32 | 99.00 | 99.56 | 99.83 | 100.00 | 100.00 | 100.00 | - | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 |
Element | EMPA | SEM/EDX | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
G.41 | G.42 | G.43 | G.44 | Av.4 | G.1 | G.2 | G.3 | G.4 | G.5 | G.6 | G.7 | G.8 | Av.8 | |
Pb | 93.23 | 74.22 | 84.45 | 65.15 | 79.26 | 100.0 | 97.10 | 75.52 | 83.91 | 83.24 | 63.54 | 59.64 | 93.86 | 81.75 |
Si | 2.16 | 6.61 | 1.17 | 8.16 | 4.52 | - | 2.90 | 3.90 | 4.40 | 1.97 | 9.44 | 1.77 | 3.95 | 4.05 |
Mg | 0.40 | 4.43 | 6.12 | 3.12 | 3.52 | - | - | 2.41 | 5.54 | 7.43 | 1.71 | 11.57 | - | 5.73 |
Al | 0.33 | 1.10 | 1.43 | 4.13 | 1.75 | - | - | 1.14 | 1.96 | 2.56 | 3.85 | 4.40 | - | 2.78 |
P | 1.21 | 2.15 | 0.20 | 4.25 | 1.95 | - | - | 6.60 | - | - | 7.72 | - | - | 7.16 |
Ca | 1.32 | 2.28 | 2.50 | 1.34 | 1.86 | - | - | 8.36 | 0.98 | 1.43 | 10.32 | 0.36 | 1.19 | 3.77 |
Ti | 0.32 | 0.30 | 0.34 | 2.13 | 0.77 | - | - | 0.67 | - | - | - | 20.44 | - | 10.56 |
FeT | 0.11 | 3.66 | 0.50 | 2.33 | 1.65 | - | - | 1.39 | - | - | 3.42 | - | - | 2.41 |
Cr | 0.60 | 2.22 | 2.06 | 1.78 | 1.67 | - | - | - | 2.17 | 2.42 | - | - | - | 2.30 |
Cu | 0.40 | 2.43 | 1.16 | 2.17 | 1.54 | - | - | - | 1.05 | 0.95 | - | 1.72 | - | 1.24 |
Total | 100.08 | 99.31 | 99.93 | 98.56 | 98.49 | 100.0 | 100.0 | 100.00 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | - |
Element | EMPA | SEM/EDX | ||||
---|---|---|---|---|---|---|
G.51 | G.52 | Av.2 | G.1 | G.2 | Av.2 | |
Pb | 74.12 | 76.13 | 75.12 | 75.43 | 75.15 | 75.04 |
Sb | 17.34 | 16.98 | 17.16 | 18.13 | 18.65 | 18.39 |
Si | 0.88 | 1.23 | 1.06 | 0.90 | 1.30 | 1.10 |
Al | 0.68 | 0.73 | 0.71 | 0.78 | 0.57 | 0.68 |
Ti | 0.56 | 0.65 | 0.61 | 0.69 | 0.73 | 0.71 |
FeT | 1.43 | 1.54 | 1.49 | 1.12 | 1.66 | 1.39 |
Cu | 0.42 | 0.65 | 0.54 | 0.22 | 0.57 | 0.40 |
Sr | 0.11 | 0.23 | 0.17 | 0.27 | - | 0.27 |
Cl | 2.54 | 1.32 | 1.93 | 2.45 | 1.90 | 2.18 |
Total | 98.08 | 99.46 | 98.79 | 100.00 | 100.00 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdel-Karim, A.-A.M.; Gad, A. Precious and Base Metal Minerals in Black Sands of the Egyptian Mediterranean Coast: Mineralogical and Geochemical Attributes. Resources 2024, 13, 109. https://doi.org/10.3390/resources13080109
Abdel-Karim A-AM, Gad A. Precious and Base Metal Minerals in Black Sands of the Egyptian Mediterranean Coast: Mineralogical and Geochemical Attributes. Resources. 2024; 13(8):109. https://doi.org/10.3390/resources13080109
Chicago/Turabian StyleAbdel-Karim, Abdel-Aal M., and Ahmed Gad. 2024. "Precious and Base Metal Minerals in Black Sands of the Egyptian Mediterranean Coast: Mineralogical and Geochemical Attributes" Resources 13, no. 8: 109. https://doi.org/10.3390/resources13080109
APA StyleAbdel-Karim, A. -A. M., & Gad, A. (2024). Precious and Base Metal Minerals in Black Sands of the Egyptian Mediterranean Coast: Mineralogical and Geochemical Attributes. Resources, 13(8), 109. https://doi.org/10.3390/resources13080109