Mathematical Modeling for Predicting Growth and Yield of Halophyte Hedysarum scoparium in Arid Regions under Variable Irrigation and Soil Amendment Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Field Conditions
2.2. Experimental Design
2.3. Growth Trails
2.4. Calculation of Growing Degree Days (GDDs)
2.5. Leaf Area Index Growth Models
2.6. Statistical Analysis
3. Results and Discussion
3.1. Simulation of LAI Models Based on GDD
3.2. Relationship between Leaf Area Index and Water Quality under Soil Amendment Treatments
3.3. Mathematical Models for Biomass Production under Soil Amendments
4. Conclusions
- (a)
- Soil amendments like manure+sandy soil and compost+sandy soil boost the growth of Hedysarum scoparium under saline water irrigation compared with sandy soil.
- (b)
- Mathematical models between LAI and different water qualities of irrigation have been developed under different soil amendment treatments.
- (c)
- The relationship between RLAI and GDD has been developed under different soil amendment treatments.
- (d)
- Mathematical models between plant biomass production, GDD, and LAI have been developed under different water qualities of irrigation along with various soil amendment treatments.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Azeem, A.; Javed, Q.; Sun, J.; Nawaz, M.I.; Ullah, I.; Kama, R.; Du, D. Functional traits of okra cultivars (Chinese green and Chinese red) under salt stress. Folia Hortic. 2020, 32, 159–170. [Google Scholar] [CrossRef]
- Che, Z.; Wang, J.; Li, J. Effects of water quality, irrigation amount and nitrogen applied on soil salinity and cotton production under mulched drip irrigation in arid Northwest China. Agric. Water Manag. 2021, 247, 106738. [Google Scholar] [CrossRef]
- Ma, K.; Wang, Z.; Li, H.; Wang, T.; Chen, R. Effects of nitrogen application and brackish water irrigation on yield and quality of cotton. Agric. Water Manag. 2022, 264, 107512. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, L.; Bai, Y.L.; Lu, Y.L.; Ni, L.; Wang, Y.H.; Xu, M.Z. Quantitative relationship between effective accumulated temperature and plant height & leaf area index of summer maize under different nitrogen, phosphorus and potassium levels. Sci. Agric. Sin. 2021, 54, 4761–4777. [Google Scholar]
- Liu, B.; Wang, S.; Kong, X.; Liu, X.; Sun, H. Modeling and assessing feasibility of long-term brackish water irrigation in vertically homogeneous and heterogeneous cultivated lowland in the North China Plain. Agric. Water Manag. 2019, 211, 98–110. [Google Scholar] [CrossRef]
- Zhu, M.; Wang, Q.; Sun, Y.; Zhang, J. Effects of oxygenated brackish water on germination and growth characteristics of wheat. Agric. Water Manag. 2021, 245, 106520. [Google Scholar] [CrossRef]
- He, P.; Yu, S.; Zhang, F.; Ma, T.; Ding, J.; Chen, K.; Chen, X.; Dai, Y. Effects of soil water regulation on the cotton yield, fiber quality and soil salt accumulation under mulched drip irrigation in southern Xinjiang, China. Agronomy 2022, 12, 1246. [Google Scholar] [CrossRef]
- Guarnieri, S.F.; Nascimento, E.C.D.; Costa, R.F.; Faria, J.L.B.D.; Lobo, F.D.A. Coconut fiber biochar alters physical and chemical properties in sandy soils. Acta Sci. Agron. 2021, 43, e51801. [Google Scholar] [CrossRef]
- Zhang, T.; Fan, J.; Wang, S.; Xu, X.; Chai, Z. Photosynthetic characteristics of Haloxylon ammodendron under high salinity water irrigation. J. Desert Res. 2020, 40, 112. [Google Scholar]
- Guo, Y.; Wang, Q.; Zhao, X.; Li, Z.; Li, M.; Zhang, J.; Wei, K. Field irrigation using magnetized brackish water affects the growth and water consumption of Haloxylon ammodendron seedlings in an arid area. Front. Plant Sci. 2022, 13, 929021. [Google Scholar] [CrossRef]
- Feizi, Z.; Ayoubi, S.; Mosaddeghi, M.R.; Besalatpour, A.A.; Zeraatpisheh, M.; Rodrigo-Comino, J. A wind tunnel experiment to investigate the effect of polyvinyl acetate, biochar, and bentonite on wind erosion control. Arch. Agron. Soil Sci. 2019, 65, 1049–1062. [Google Scholar] [CrossRef]
- Asl, F.N.; Asgari, H.R.; Emami, H.; Jafari, M. Combined effect of micro silica with clay, and gypsum as mulches on shear strength and wind erosion rate of sands. Int. Soil Water Conserv. Res. 2019, 7, 388–394. [Google Scholar]
- Mi, J.; Gregorich, E.G.; Xu, S.; McLaughlin, N.B.; Liu, J.; Zhao, B. Bentonite effects on soil physical properties and millet yield components in a semi-arid region in China. Can. J. Soil Sci. 2021, 101, 749–760. [Google Scholar] [CrossRef]
- Mi, J.; Gregorich, E.G.; Xu, S.; McLaughlin, N.B.; Ma, B.; Liu, J. Changes in soil biochemical properties following application of bentonite as a soil amendment. Eur. J. Soil Biol. 2021, 102, 103251. [Google Scholar] [CrossRef]
- Su, L.; Tao, W.; Sun, Y.; Shan, Y.; Wang, Q. Mathematical models of leaf area index and yield for grapevines grown in the turpan area, xinjiang, China. Agronomy 2022, 12, 988. [Google Scholar] [CrossRef]
- Wang, K.; Su, L.; Wang, Q. Cotton growth model under drip irrigation with film mulching: A case study of Xinjiang, China. Agron. J. 2021, 113, 2417–2436. [Google Scholar] [CrossRef]
- Su, L.; Wang, Q.; Wang, C.; Shan, Y. Simulation models of leaf area index and yield for cotton grown with different soil conditioners. PLoS ONE 2015, 10, e0141835. [Google Scholar] [CrossRef] [PubMed]
- Liben, F.; Wortmann, C.; Yang, H.; Lindquist, J.; Tadesse, T.; Wegary, D. Crop model and weather data generation evaluation for conservation agriculture in Ethiopia. Field Crops Res. 2018, 228, 122–134. [Google Scholar] [CrossRef]
- Manivasagam, V.; Rozenstein, O. Practices for upscaling crop simulation models from field scale to large regions. Comput. Electron. Agric. 2020, 175, 105554. [Google Scholar] [CrossRef]
- Azeem, A.; Mai, W.; Ali, R. Modeling Plant Height and Biomass Production of Cluster Bean and Sesbania across Diverse Irrigation Qualities in Pakistan’s Thar Desert. Water 2024, 16, 9. [Google Scholar] [CrossRef]
- Liu, J.-H.; Yan, Y.; Ali, A.; Yu, M.-F.; Xu, Q.-J.; Shi, P.-J.; Chen, L. Simulation of crop growth, time to maturity and yield by an improved sigmoidal model. Sci. Rep. 2018, 8, 7030. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Sánchez-Molina, J.; Li, M.; Berenguel, M.; Yang, X.; Bienvenido, J. Leaf area index estimation for a greenhouse transpiration model using external climate conditions based on genetics algorithms, back-propagation neural networks and nonlinear autoregressive exogenous models. Agric. Water Manag. 2017, 183, 107–115. [Google Scholar] [CrossRef]
- Chianucci, F.; Cutini, A.; Corona, P.; Puletti, N. Estimation of leaf area index in understory deciduous trees using digital photography. Agric. For. Meteorol. 2014, 198, 259–264. [Google Scholar] [CrossRef]
- Liu, Y.; Su, L.; Wang, Q.; Zhang, J.; Shan, Y.; Deng, M. Comprehensive and quantitative analysis of growth characteristics of winter wheat in China based on growing degree days. Adv. Agron. 2020, 159, 237–273. [Google Scholar]
- Wang, Q.J.; Lin, S.D.; Su, L.J. Quantitative analysis of response of potato main growth index to growing degree days. Trans. Chin. Soc. Agric. Mach 2020, 51, 306–316. [Google Scholar]
- Liu, F.; Liu, Y.; Su, L.; Tao, W.; Wang, Q.; Deng, M. Integrated growth model of typical crops in China with regional parameters. Water 2022, 14, 1139. [Google Scholar] [CrossRef]
- Su, L.; Liu, Y.; Wang, Q. Rice growth model in China based on growing degree days. Trans. Chin. Soc. Agric. Eng 2020, 36, 162–174. [Google Scholar]
- Setiyono, T.; Weiss, A.; Specht, J.E.; Cassman, K.G.; Dobermann, A. Leaf area index simulation in soybean grown under near-optimal conditions. Field Crops Res. 2008, 108, 82–92. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, K.; Su, L.; Zhang, J.; Wei, K. Effect of irrigation amount, nitrogen application rate and planting density on cotton leaf area index and yield. Trans. Chin. Soc. Agric. Mach 2021, 52, 300–312. [Google Scholar]
- Xue, J.; Wang, X.; Du, X.; Mao, P.; Zhang, T.; Zhao, L.; Han, J. Influence of salinity and temperature on the germination of Hedysarum scoparium Fisch. et Mey. Afr. J. Biotechnol. 2012, 11, 3244–3249. [Google Scholar]
- Ma, J.; Wang, H.; Jin, L.; Zhang, P. Comparative analysis of physiological responses to environmental stress in Hedysarum scoparium and Caragana korshinskii seedlings due to roots exposure. PeerJ 2023, 11, e14905. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.; Yu, M.; Ding, G.; Gao, G.; He, Y.; Wang, G. Effects of Hedysarum leguminous plants on soil bacterial communities in the Mu Us Desert, northwest China. Ecol. Evol. 2020, 10, 11423–11439. [Google Scholar] [CrossRef] [PubMed]
- Mai, W.; Xue, X.; Azeem, A. Growth of cotton crop (Gossypium hirsutum L.) higher under drip irrigation because of better phosphorus uptake. Appl. Ecol. Environ. Res. 2022, 20, 4865–4878. [Google Scholar] [CrossRef]
- Azeem, A.; Mai, W.; Tian, C.; Javed, Q. Dry Weight Prediction of Wedelia trilobata and Wedelia chinensis by Using Artificial Neural Network and MultipleLinear Regression Models. Water 2023, 15, 1896. [Google Scholar] [CrossRef]
- Mai, W.; Xue, X.; Azeem, A. Plant Density Differentially Influences Seed Weight in Different Portions of the Raceme of Castor. Pol. J. Environ. Stud. 2023, 32, 3247–3254. [Google Scholar] [CrossRef]
- McMaster, G.S.; Wilhelm, W. Growing degree-days: One equation, two interpretations. Agric. For. Meteorol. 1997, 87, 291–300. [Google Scholar] [CrossRef]
- Yang, L.; Wang, Y.; Kang, M.; Dong, Q. Simulation of tomato fruit individual growth rule based on revised logistic model. Trans. Chin. Soc. Agric. Mach. 2008, 39, 81–84. [Google Scholar]
- Wang, R.; Li, S.; Wang, Q.; Zheng, J.; Fan, J.; Li, S. Evaluation of simulation models of spring-maize leaf area and biomass in semiarid agro-ecosystems. Chin. J. Eco-Agric. 2008, 16, 139–144. [Google Scholar] [CrossRef]
- Wei, C.; Ren, S.; Xu, Z.; Zhang, M.; Wei, R.; Yang, P. Effects of irrigation water salinity and irrigation water amount on greenhouse gas emissions and spring maize growth. Trans. Chin. Soc. Agric. Mach. 2021, 52, 251–260. [Google Scholar]
- Younas, T.; Cabello, G.; Taype, M.; Cardenas, J.; Trujillo, P.; Salas-Contreras, W.; Yaulilahua-Huacho, R.; Areche, F.; Rodriguez, A.; Nieto, D.C. Conditioning of desert sandy soil and investigation of the ameliorative effects of poultry manure and bentonite treatment rate on plant growth. Braz. J. Biol. 2023, 82, e269137. [Google Scholar] [CrossRef] [PubMed]
- Arora, A.; Nandal, P.; Chaudhary, A. Critical evaluation of novel applications of aquatic weed Azolla as a sustainable feedstock for deriving bioenergy and feed supplement. Environ. Rev. 2022, 31, 195–205. [Google Scholar] [CrossRef]
- Vanuytrecht, E.; Raes, D.; Steduto, P.; Hsiao, T.C.; Fereres, E.; Heng, L.K.; Vila, M.G.; Moreno, P.M. AquaCrop: FAO’s crop water productivity and yield response model. Environ. Model. Softw. 2014, 62, 351–360. [Google Scholar] [CrossRef]
- Wypych, A.; Sulikowska, A.; Ustrnul, Z.; Czekierda, D. Variability of growing degree days in Poland in response to ongoing climate changes in Europe. Int. J. Biometeorol. 2017, 61, 49–59. [Google Scholar] [CrossRef] [PubMed]
- Cardei, P.; Nenciu, F.; Ungureanu, N.; Pruteanu, M.A.; Vlăduț, V.; Cujbescu, D.; Găgeanu, I.; Cristea, O.D. Using Statistical Modeling for Assessing Lettuce Crops Contaminated with Zn, Correlating Plants Growth Characteristics with the Soil Contamination Levels. Appl. Sci. 2021, 11, 8261. [Google Scholar] [CrossRef]
- Azeem, A.; Javed, Q.; Sun, J.; Du, D. Artificial neural networking to estimate the leaf area for invasive plant Wedelia trilobata. Nord. J. Bot. 2020, 38. [Google Scholar] [CrossRef]
- Azeem, A.; Wenxuan, M.; Changyan, T.; Qamar, M.U.; Buttar, N.A. Prediction of Wedelia trilobata Growth under Flooding and Nitrogen Enrichment Conditions by Using Artificial Neural Network Model. Pol. J. Environ. Stud. 2024, 33, 1007–1015. [Google Scholar] [CrossRef]
- Javed, Q.; Azeem, A.; Sun, J.; Ullah, I.; Du, D.; Imran, M.A.; Nawaz, M.I.; Chattha, H.T. Growth prediction of Alternanthera philoxeroides under salt stress by application of artificial neural networking. Plant Biosyst.-Int. J. Deal. All Asp. Plant Biol. 2022, 156, 61–67. [Google Scholar]
- Li, L.; Chen, S.; Yang, C.; Meng, F.; Sigrimis, N. Prediction of plant transpiration from environmental parameters and relative leaf area index using the random forest regression algorithm. J. Clean. Prod. 2020, 261, 121136. [Google Scholar] [CrossRef]
- Yadav, S.; Modi, P.; Dave, A.; Vijapura, A.; Patel, D.; Patel, M. Effect of abiotic stress on crops. Sustain. Crop Prod. 2020, 3, 5–16. [Google Scholar]
- Garbowski, T.; Bar-Michalczyk, D.; Charazińska, S.; Grabowska-Polanowska, B.; Kowalczyk, A.; Lochyński, P. An overview of natural soil amendments in agriculture. Soil Tillage Res. 2023, 225, 105462. [Google Scholar] [CrossRef]
- Hailu, B.; Mehari, H. Impacts of soil salinity/sodicity on soil-water relations and plant growth in dry land areas: A review. J. Nat. Sci. Res 2021, 12, 1–10. [Google Scholar]
- Adhikari, S.; Timms, W.; Mahmud, M.P. Optimising water holding capacity and hydrophobicity of biochar for soil amendment–A review. Sci. Total Environ. 2022, 851, 158043. [Google Scholar] [CrossRef] [PubMed]
- Azeem, A.; Sun, J.; Javed, Q.; Jabran, K.; Du, D. The effect of submergence and eutrophication on the trait’s performance of Wedelia trilobata over its congener native Wedelia chinensis. Water 2020, 12, 934. [Google Scholar] [CrossRef]
- Liu, L.-W.; Lu, C.-T.; Wang, Y.-M.; Lin, K.-H.; Ma, X.; Lin, W.-S. Rice (Oryza sativa L.) growth modeling based on growth degree day (GDD) and artificial intelligence algorithms. Agriculture 2022, 12, 59. [Google Scholar] [CrossRef]
- Ghamghami, M.; Ghahreman, N.; Irannejad, P.; Ghorbani, K. Comparison of data mining and GDD-based models in discrimination of maize phenology. Int. J. Plant Prod. 2019, 13, 11–22. [Google Scholar] [CrossRef]
- Azeem, A.; Wenxuan, M.; Ali, R.; Abbas, A.; Hussain, N.; Kazmi, A.H.; Butt, U.A. Evaluating salt tolerance in fodder crops: A field experiment in the dry land. Open Agric. 2024, 9, 20220307. [Google Scholar] [CrossRef]
- Davoodi, E.; Ghasemieh, H.; Batelaan, O.; Abdollahi, K. Spatial-temporal simulation of LAI on basis of rainfall and growing degree days. Remote Sens. 2017, 9, 1207. [Google Scholar] [CrossRef]
Water Quality | EC (dS·m−1) | Total Dissolved Solids (ppm) | Nitrate (ppm) | Nitrite (ppm) | Chloride (ppm) | Fluoride (ppm) | Manganese (ppm) |
---|---|---|---|---|---|---|---|
Saline water | 4.368 | 6240 | 0.4 | 0.002 | 2231.03 | 1.15 | 0.006 |
Fresh water | 0.357 | 510 | 0.4 | 0.015 | 196.75 | 0.35 | 0.006 |
Soil Types | GDD | RLAI | Mean RLAI | Standard Deviation | |
---|---|---|---|---|---|
Fresh Water | Saline Water | ||||
Sandy | 181.5 | 0.154 | 0.165 | 0.159 | 0.008 |
374 | 0.475 | 0.420 | 0.447 | 0.038 | |
554 | 0.645 | 0.603 | 0.624 | 0.029 | |
746.5 | 0.821 | 0.805 | 0.813 | 0.011 | |
932.5 | 0.870 | 0.900 | 0.885 | 0.021 | |
1117.5 | 1 | 1 | 1 | 0 | |
1297.5 | 0.939 | 0.960 | 0.949 | 0.015 | |
Clay+Sandy | 181.5 | 0.132 | 0.147 | 0.139 | 0.010 |
374 | 0.332 | 0.339 | 0.336 | 0.005 | |
554 | 0.484 | 0.479 | 0.481 | 0.003 | |
746.5 | 0.696 | 0.707 | 0.702 | 0.007 | |
932.5 | 0.815 | 0.845 | 0.830 | 0.020 | |
1117.5 | 1 | 1 | 1 | 0 | |
1297.5 | 0.943 | 0.961 | 0.952 | 0.012 | |
Manure+Sandy | 181.5 | 0.129 | 0.134 | 0.132 | 0.0034 |
374 | 0.392 | 0.345 | 0.369 | 0.033 | |
554 | 0.567 | 0.541 | 0.554 | 0.017 | |
746.5 | 0.743 | 0.698 | 0.721 | 0.031 | |
932.5 | 0.835 | 0.834 | 0.835 | 0.0005 | |
1117.5 | 1 | 1 | 1 | 0 | |
1297.5 | 0.953 | 0.927 | 0.940 | 0.018 | |
Compost+Sandy | 181.5 | 0.122 | 0.128 | 0.126 | 0.004 |
374 | 0.383 | 0.373 | 0.378 | 0.006 | |
554 | 0.574 | 0.533 | 0.554 | 0.029 | |
746.5 | 0.729 | 0.698 | 0.713 | 0.02 | |
932.5 | 0.897 | 0.883 | 0.890 | 0.0100 | |
1117.5 | 1 | 1 | 1 | 0 | |
1297.5 | 0.966 | 0.958 | 0.962 | 0.005 |
Soil Types | Expression | RE % | RMSE | R2 |
Sandy | ||||
Logistic model | 4.6 | 0.0054 | 0.99 | |
Gaussian model | 4.2 | 0.0037 | 0.97 | |
Modified Gaussian model | 3.3 | 0.0025 | 0.99 | |
Cubic model | 3.7 | 0.0032 | 0.99 | |
Clay+Sandy | ||||
Logistic model | 4.4 | 0.0075 | 0.99 | |
Gaussian model | 3.1 | 0.0055 | 0.99 | |
Modified Gaussian model | 1.5 | 0.0043 | 0.99 | |
Cubic model | 1.9 | 0.0049 | 0.99 | |
Manure+Sandy | ||||
Logistic model | 3.5 | 0.062 | 0.98 | |
Gaussian model | 2.1 | 0.057 | 0.98 | |
Modified Gaussian model | 1.5 | 0.032 | 0.99 | |
Cubic model | 1.9 | 0.047 | 0.99 | |
Compost+Sandy | ||||
Logistic model | 2.9 | 0.085 | 0.98 | |
Gaussian model | 2.1 | 0.071 | 0.98 | |
Modified Gaussian model | 1.3 | 0.051 | 0.99 | |
Cubic model | 1.7 | 0.058 | 0.99 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Azeem, A.; Mai, W. Mathematical Modeling for Predicting Growth and Yield of Halophyte Hedysarum scoparium in Arid Regions under Variable Irrigation and Soil Amendment Conditions. Resources 2024, 13, 110. https://doi.org/10.3390/resources13080110
Azeem A, Mai W. Mathematical Modeling for Predicting Growth and Yield of Halophyte Hedysarum scoparium in Arid Regions under Variable Irrigation and Soil Amendment Conditions. Resources. 2024; 13(8):110. https://doi.org/10.3390/resources13080110
Chicago/Turabian StyleAzeem, Ahmad, and Wenxuan Mai. 2024. "Mathematical Modeling for Predicting Growth and Yield of Halophyte Hedysarum scoparium in Arid Regions under Variable Irrigation and Soil Amendment Conditions" Resources 13, no. 8: 110. https://doi.org/10.3390/resources13080110
APA StyleAzeem, A., & Mai, W. (2024). Mathematical Modeling for Predicting Growth and Yield of Halophyte Hedysarum scoparium in Arid Regions under Variable Irrigation and Soil Amendment Conditions. Resources, 13(8), 110. https://doi.org/10.3390/resources13080110