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Abstract: High-resolution remote sensing platforms are crucial to map land use/cover (LULC) types.
Unmanned aerial vehicle (UAV) technology has been widely used in the northern hemisphere, ad-
dressing the challenges facing low- to medium-resolution satellite platforms. This study establishes
the scalability of Sentinel-2 LULC classification with ground-linked UAV orthoimages to large African
ecosystems, particularly the Burunge Wildlife Management Area in Tanzania. It involved UAV flights
in 19 ground-surveyed plots followed by upscaling orthoimages to a 10 m × 10 m resolution to
guide Sentinel-2 LULC classification. The results were compared with unguided Sentinel-2 using
the best classifier (random forest, RFC) compared to support vector machines (SVMs) and maxi-
mum likelihood classification (MLC). The guided classification approach, with an overall accuracy
(OA) of 94% and a kappa coefficient (k) of 0.92, outperformed the unguided classification approach
(OA = 90%; k = 0.87). It registered grasslands (55.2%) as a major vegetated class, followed by wood-
lands (7.6%) and shrublands (4.7%). The unguided approach registered grasslands (43.3%), followed
by shrublands (27.4%) and woodlands (1.7%). Powerful ground-linked UAV-based training samples
and RFC improved the performance. The area size, heterogeneity, pre-UAV flight ground data, and
UAV-based woody plant encroachment detection contribute to the study’s novelty. The findings
are useful in conservation planning and rangelands management. Thus, they are recommended for
similar conservation areas.

Keywords: community wildlife management areas; random forest algorithm; remote sensing tech-
nologies; Sentinel-2; pre-UAV flight ground data; unmanned aerial vehicles

1. Introduction

The sustainability of wildlife conservation worldwide is threatened by the loss, degra-
dation, and fragmentation of wildlife habitats, as exemplified in Africa [1–8]. These threats
have been linked to anthropogenic pressure [9–11]. In Tanzania, these threats have been
reported in many places around core protected areas, leading to blockages and the loss of
corridors, buffer zones, and dispersal areas [8,12–18]. Tanzania an African country where
reliable high-resolution land use/cover (LULC) classification maps are needed, portraying
the status quo or trends of habitats in protected areas and entire landscapes/ecosystems.
The information would adequately inform ecologists and wildlife managers to appropri-
ately solve the habitat-related challenges in protected areas, including Burunge community
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wildlife management areas (BWMA). Burunge is one of the 21 operational wildlife manage-
ment areas (WMAs) in Tanzania, established on village lands, managed by communities,
and overseen by the Wildlife Division in the Ministry of Natural Resources and Tourism
(MNRT) to safeguard wildlife habitats including migratory corridors, buffers, and dispersal
areas. Another practical use of the land use/land cover (LULC) classification maps includes
detecting and monitoring wildlife habitats [19–21].

Depending on the purpose, timely, high-resolution LULC classification maps with a high
accuracy are essential for effectively managing and monitoring wildlife habitats [22–29]. Nev-
ertheless, many LULC maps have been produced using space-borne remote sensing platforms
such as Landsat [30–32] and Sentinel-2 [26,29,32], which have lower spatial resolutions than
UAV platforms [33–36]. For example, the spatial resolution for MODIS is 250 m, 500 m and
1 km, while LANDSAT is 30 m, and Sentinel-2 is 10 m, 20 m, and 60 m. At the same time,
UAV-based imagery can yield resolutions down to a few millimeters based on the sensor and
flight characteristics. Low spatial resolutions affect accuracies in predicting LULC classes [37].
Extracting appropriate habitat-related information in complex and heterogeneous conserva-
tion settings is much more challenging using LULC maps produced from low-resolution
imagery [35,38].

High-quality LULC classification maps can be produced with a high spatial resolution
from UAV-based remote sensing products, as opposed to those satellite products with a
>5 m resolution. Yet, the use of UAV platforms is still limited in African countries [39],
including Tanzania. UAV-derived images have been used more extensively in the northern
than southern hemispheres (Tables 1 and 2). The studies covered small- to medium-sized
areas and less-complex areas [40], areas with only a few land cover types [41,42], experi-
mental study sites [43,44], and agricultural and grazing areas [45]. For instance, a study
conducted in Serbia regarding land cover classification used UAV-derived orthoimages but
focused on only four small sites comprising a total of 12 ha [23]. Another study conducted
in Bangladesh successfully used multispectral UAV images to map agricultural land use
and land cover in the area [46]. A study by Daryaei et al. [47] in Iran focused on riparian
landscapes, whereas an experimental study by Duke et al. [48] in Ghana focused on crop
type classification. Many studies did not start with ground surveys to ensure that the
UAV flight missions were planned and executed in the true LULC classes to generate
strongly reliable UAV-derived orthoimages. A key question remained: to what extent
do high-resolution UAV-based RGB orthoimages, aided by pre-UAV flight ground data
in sampled LULC types, reliably guide Sentinel-2 imagery to detect, classify, and assess
the LULC classes in large and heterogenous conservation areas in comparison with the
unguided Sentinel-2 LULC classification model? This formed the basis of this study to
scale up the ground-linked UAV-based LULC classification approach to large and highly
heterogeneous conservation areas in the southern hemisphere, taking a case study from the
Burunge community wildlife management area (BWMA) in Northern Tanzania.

The ground-linked UAV-guided Sentinel-2 LULC classification approach means that
the ground surveys are conducted in sampled land cover types followed by UAV-based
flight mission planning and execution, producing UAV-RGB images that are processed to
generate orthoimages to guide the Sentinel-2 LULC classification model. On the other hand,
the unguided Sentinel-2 LULC classification approach is referred to as the widely used
Sentinel-2 satellite platform. We therefore hypothesized that upscaling the ground-linked
UAV-derived RGB orthoimages to Sentinel-2 resolution and obtaining powerful training
samples depicting a remote sensing signature of a true LULC class would improve the
Sentinel-2-based LULC classification process, producing almost-perfect products. We used
random forest classifier (RFC), support vector machine (SVM), and maximum likelihood
classification (MLC) algorithms, which are commonly used in the literature [49], to obtain
the best LULC classification product based on classification accuracies and quality, as well as
a clear delineation of different classes, providing practically useful information for wildlife
habitat management. All of these machine learning algorithms (MLA) have been reported to
be effective and efficient in LULC classification [50]. The RFC algorithm has been reported
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as effective in handling high-dimensional data [51]. Despite its effectiveness, the SVM
requires many parameters for adjustment and imposes some barriers to automation [50].
The MLC has a high practicality and can delineate different cover classes [52].

Hence, this study is anchored on the rationale that attaining sustainable wildlife
conservation objectives requires adequate and timely information, mostly extracted from
high-quality LULC classification maps. Deficiencies in such data may lead to wildlife loss
due to delayed actions to address the drivers of habitat change [12,29]. High-resolution
LULC classification maps are useful in conservation planning, rangeland management,
poverty reduction, improving tourism development in protected areas, and informing
policy reviews for sustainable biodiversity conservation. In turn, these enhance biodi-
versity financing, partly by avoiding future conservation costs likely to be attributed to
inadequate relevant information for managing protected areas and ecosystems/landscapes.
The information would also help with effective and efficient delivery in wildlife manage-
ment practice. Ultimately, it contributes to achieving the targets of the United Nations
Sustainable Development Goals (SDGs), such as SDG 15 and the Kunming-Montreal Global
Biodiversity Framework. SDG 15 focuses on protecting, restoring, and promoting the
sustainable use of terrestrial ecosystems. The Goal also urges the sustainable management
of forests, combating desertification, halting and reversing land degradation, and halting
biodiversity loss. The contributions of scientific and environmental information derived
from UAV-based remote sensing imageries have been underscored [53,54].
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Table 1. Examples of similar studies conducted in the northern hemisphere.

UAV Type Satellite
System Research and Major Findings Location, Size, and Habitats Scope Reference

mX-SIGHT, Germany -
Analyzed and revealed the potential use of
UAV-derived imagery to measure areas of land
plots for monitoring land policies

Spain: experimental sites
(0.3–29 ha of crops) Limited to land plots [35]

DJI-Phantom 2 with a spatial
resolution of 2.8 cm Pleiades-IB

Compared and established the higher capability
of the UAV over the satellite in mapping
mangroves in terms of image quality:
accuracies, area coverage, and costs (time and
user). Reported that better spectral resolution
provides Pleiades-IB with more advantages over
UAV-derived RGB orthoimages for assessing
health and biomass.

Setiu wetland in Malaysia:
mangroves (4.18 km2)

Focused on small areas of
mangroves [55]

Bormatec-MAJA: Bormatec,
Mooswiesen,
Ravensburg, Germany

Satellite tracking tool

Assessed and demonstrated the usefulness of
combining UAV and satellite tracking of
individual animals (e.g., proboscis monkey) for
detecting key conservation issues such as
deforestation and influencing policy reviews

Sabah, Malaysian Borneo.
Riparian habitats (273.51 ha)

Riparian habitats for a
proboscis monkey [56]

Octocopter (OktoXL–HiSystems
GmbH) Sentinel-2

Developed a methodological framework for
estimating the fractional coverage (FC%) of an
invasive shrub species, Ules Europaeus
(common gorse)

Chiloé Island (south–central
Chile): Ten flown sites, each
50 ha

Selected areas invaded
with shrubs [57]

Parrot Bluegrass quadcopter and
DJI Phantom 4 Pro Sentinel-2

Assessed and quantitatively demonstrated the
improvements of a multispectral UAV mapping
technique for higher-resolution images used for
advanced mapping and assessing coastal land
cover. It also compared UAV and satellite
capabilities in the same area.

Indian River Lagoon along
the central Atlantic coast of
Florida, USA

Coastal habitats [58]

Fixed-wing Sense fly eBee-S.O.D.A.
and Parrot Sequoia cameras -

Evaluated the potential of UAVs for the
collection of ultra-high spatial resolution
imagery for mapping tree line ecotone land
covers, showing a higher efficiency

Norway: 32 tree-line
ecotone sites Alpine tree-line ecotone [59]
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Table 1. Cont.

UAV Type Satellite
System Research and Major Findings Location, Size, and Habitats Scope Reference

Phantom 4-Pro with MicaSense
RedEdge-M multispectral camera
system

WorldView-4 satellite

Utilized high-spatial-resolution drone and
WorldView-4 satellite data to map and monitor
grazing land cover change and pasture quality
pre- and post-flooding. The two platforms were
found to be useful in detecting grazing land
cover change at a finer scale.

Cheatham County, middle
Tennessee, USA Cattle grazing land [60]

DJI INSPIRE 1 quad-rotor with
Zenmuse × 5 onboard cameras. -

Quantified the spatial pattern distributions of
dominated vegetation along the elevation
gradient

Luntai County, China:
22 sample plots Field experimental plots [34]

DJI Inspire 1 v2 (Shenzen, China).
MicaSense RedEdge camera World-View 3 Sentinel-2

Investigated using UAV and satellite platforms
to monitor and classify aquatic vegetation in
irrigation channels. The UAV was found to be
effective for intensive monitoring of weeds in
small areas of irrigation channels.

Murrumbidgee Irrigation
Area (MIA), Australia:
38.5 km2

Irrigation channels [61]

Sensefly eBee with multispectral
Parrot Sequoia and RGB sensors -

Examined object-based classification accuracies
for different cover types and vegetation species
using data from UAV-based multispectral
cameras

Trent University campus,
Central Ontario, Canada:
10 ha

Small, mixed forest and
agricultural area [62]

Octocopter (University of Tehran)
with a MAPIR Survey1 Visible
Light Camera (San Diego,
CA, USA)

Sentinel-2

Assessed and proved the suitability of
integrating UAV-obtained RGB images,
Sentinel-2 data, and ML models for estimating
forest canopy cover (FCC), intended for precise
and fast mapping at the landscape-level scale.

Kheyrud Experimental Forest,
Northern Iran. Four flown
plots: 20 ha, 15 ha, 17 ha and
19 ha.

Canopy cover in a Forest [63]

DJI Phantom 4 Pro (DJI,
Shenzhen, China) Sentinel-2

Assessed and revealed that UAV-based RGB
orthophotos and CHM data have a very good
ability to detect and classify scattered trees and
different land covers along the narrow river.

Chaharmahal-va-Bakhtiari
province of Iran: Five plots

Riparian landscape adjoining
a narrow river [47]
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Table 2. Examples of similar studies conducted in the southern hemisphere.

UAV Type Satellite System Research and Major Findings Location, Size, and Habitats Scope Reference

DJI Inspire, Ebee (senseFly
SA, Cheseaux-sur-Lausanne,
Switzerland) and Parrot
Disco (Parrot, Paris, France)

S1 SAR and S2

Used UAV-based imagery to create a
ground-truthing dataset for mapping
cropped areas, establishing a higher
potential use of UAVs compared to
satellite platforms.

Rwanda: Small mono-cropped
fields, intercropped and
natural vegetation (80 ha each
location)

Crops, mixed crops and
grassland, small tree stands,
woodlands and small forests.

[64]

SenseFly eBeeX with a Parrot
Sequoia+
multispectral camera

Synthetic aperture radar
(SAR)

Assessed the synergistic approach of a
multispectral UAV-based dataset and
SAR on understanding the spectral
features of intended objects. Used
SVM and RFC.

Nigeria International Institute
of Tropical Agriculture (IITA)
agricultural fields.

Experimental plots [48]

DJI Mavic Pro
micro-quadcopter and a
Sequoia parrot multispectral
sensor

-

Explored whether fractional vegetation
component (FVC) estimates vary with
different classification approaches
(pixel- and segment-based random
forest classifiers) applied to very
high-resolution small
UAV-derived imagery.

Botswana: Chobe Enclave,
Southern African dryland
savanna: nine sites

Savanna cover: grass-, shrub-,
and tree-dominated sites [65]

Micro-quadcopter and a
multispectral sensor
(Micasense)

-

Assessed the efficacy of UAS for
monitoring vegetation structural
characteristics in a mixed savanna
woodland using UAS imagery.

Botswana: Chobe Enclave,
grass, shrub, and tree sites (9)

Savanna cover and woody
vegetation structure [38]

eBeeX fixed-wing (Airinov
multispec 4C sensor) --

Successfully mapped the spatial extent
of banana farmland mixed with
buildings, bareland, and other areas of
vegetation in 4 villages in Rwanda.

Rwanda:
Small-holder farmland

Small plots of
Banana farmland [66]

DJI Phantom 4 Pro Sentienl-2

Assessed the coastal shoreline changes
using multi-platform data drones, a
shore-based camera, Sentinel satellite
images, and a dumpy level for
effective monitoring. The UAV and
local video cameras were more
effective than Sentinel-2.

Elmina Bay, Ghana:
1.5 m beach. Beach area [67]
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2. Materials and Methods
2.1. Study Area

This study was conducted in the Burunge WMA, with an area of approximately
300 km2. Its core area is 243 km2. It is located between Lake Manyara and the Tarangire
National Parks in Northern Tanzania between the latitudes of 3◦38′31.22′′ to 3◦56′55.78′′ S
and longitudes of 35◦43′43.98′′ to 36◦34.65′′ E (Figure 1). The WMA was established in 2003
with the participation of ten villages (Minjingu, Mwada, Vilima Vitatu, Sangaiwe, Magara,
Manyara, Maweni, Ngolei, Kakoi, and Olasiti). It is both a buffer around the two national
parks and a part of the large Kwakuchinja wildlife migratory corridor (approximately
1280 km2) connecting the parks. Its average elevation is 1000 m [68]. The monthly average
temperature ranges from 8 ◦C to 33 ◦C [69]. The area experiences low and unpredictable
annual rainfall [70]. The critical migratory animals found in the Burunge WMA include
wildebeest (Connochaetes taurinus), zebra (Equus quagga), and African elephants (Loxodonta
africana). Other large mammals found in the area include wild dogs (Lycaon pictus), buffalo
(Syncerus caffer), waterbuck (Kobus ellipsiprymnus), bushbuck (Tragelaphus scriptus), giraffes
(Giraffa camelopadalis), lions (Panthera leo) and leopards (Panthera pardus).

Figure 1. Map of Burunge WMA with a terrain model background indicating the survey sample
plots. The blue point inside the small red circle in the insert map of Tanzania shows the location of
the Burunge WMA reproduced with permission from [71]; published by MDPI, 2022.

2.2. Data Collection
2.2.1. Ground Survey for the Determination of Land Cover Types

Before conducting UAV flight mission planning, pre-UAV flight ground data were
collected for each land cover type between July and August 2021. To obtain a broad range of
ground-based cover types, we surveyed plots along a gradient from the Tarangire National
Park boundary on the eastern side of the Burunge WMA to the Lake Manyara National
Park boundary on the western side [18,72,73]. We used the definitions of LULC classes pro-
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vided by researchers in the ecosystem and other similar areas (Table 3). Based on the high
resolution of Google Earth images (https://www.google.com/earth/about/versions/)
accessed on 8 July 2021 and direct observations, we identified and purposively selected
uniform areas for each cover type, reflecting their likely physiognomy and floristic com-
position [72,73]. We then used a ground sampling scheme following Braun-Blanquet [72].
After identifying a uniform area for the land cover type, plots of 50 × 50 m were randomly
selected for vegetation assessments, focusing on the percentage canopy cover and species
composition. The tree percentage canopy cover was estimated in the 50 × 50 m plots,
whereas shrubs were estimated in 20 × 20 m sub-plots nested within the tree plot, and
grasses/herbs were assessed in 2 × 2 m sub-plots nested within the shrub plot.

Table 3. Definitions of LULC classes determined in BWMA.

LULC Description Reference

Bare land Exposed soil, sand, or rocks; vegetation % cover
of <2% [18,74–76]

cultivation/
Agriculture

Characterized by a clear farm pattern covered by
crops, harvested or with bare soil. Includes
perennial woody crops cultivated inside or
adjacent to protected areas.

[18,24,74,75,77]

Settlement/Built-up areas
Houses (scattered or clustered) inside and adjacent
to the protected area. May include trees, shrubs,
grasses, and roads, each with various proportions

[18,74–77]

Water bodies
Rivers, streams, lakes, ponds, and impoundments
are composed of water, grasses, forbs, sedges,
and reeds.

[18,24,74,75]

Grasslands

Dominated by grasses and herbs. Includes
savanna grassland (widely scattered trees and
shrub cover ≤ 2%) and wooded grassland
(scattered tree and shrub cover < 10%)

[18,74–76]

Shrublands

Woody vegetation (evergreen or deciduous)
composed of shrubs (multi-stemmed woody
plants ≤ 5 m tall) and trees ≤ 2 m tall; combined
canopy cover of 10–60%

[18,24,74,75,77]

Woodlands

Woody vegetation (evergreen or deciduous)
comprises trees > 2 m tall. It includes open
woodland/woody savanna (canopy cover 20–60%)
and closed woodland (60–100% cover with canopy
not thickly interlaced). The understory consists of
small proportions of grasses, shrubs, and forbs.

[74,76,77]

Mosaic Plant community characterized by relatively
similar proportions of two or more LULC classes [78]

Riverine vegetation
Trees dominate vegetation along rivers. Includes
mixtures of riverine forests, riverine woodlands,
and dense shrubs.

[77]

Forests

Trees forming closed or nearly closed canopies.
May comprise an upper story of trees with heights
of 40–50 m, a lower story (8–15 m), an understory
(2–8 m), and vines. Degraded open/patched
forests may look like intact open woodland.

[23]

The ground survey determined the major vegetation cover types (grasslands, shrub-
lands, woodlands, riverine, and mosaic) (Table 4). Since the small, forested area in the
extreme western part of the Burunge WMA was not accessed for ground or UAV-based
surveys due to accessibility logistical challenges, we relied on Google Earth for identifica-

https://www.google.com/earth/about/versions/
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tion. Other LULC types recorded on the ground were water, settlement and cultivation,
and bareland.

Table 4. Average percentage cover of plant layers in each vegetation cover type.

Layer

Tree Shrub Herbaceous Bare

Land Cover Type Height (m) Cover (%) Height (m) Cover (%) Cover (%) Cover (%)

Plain grassland 0 0 0 0 93.7 6.3
Wooded grassland 7.9 8.5 1.8 21 40.4 30.1
Shrubland 6.7 2.8 2.1 72.9 18.4 5.9
Palm woodland 7.1 26.6 2.9 25.8 37.5 10.1
Acacia woodland 6.8 15.5 1.5 13.1 50.8 20.6
Riverine vegetation 8.5 9.8 2.8 39.0 43.2 8.0
Mosaic 7 12.9 1.8 13.8 45.2 28.1

2.2.2. UAV-Based Survey
UAV Used and Flight Mission Planning

We used a DJI Phantom 3 UAV outfitted with an RGB camera (DJI, Shenzen, China)
and a built-in global positioning system (GPS) to collect field data from July to August
2021. The camera had a 1/2.3” CMOS sensor with 12 MP images of 4000 × 3000 pixels.
We planned 19 flight missions for eight LULC types determined during the ground survey
(Figure 1). Each mission plan was designed at a flight altitude of 120 m above ground level
(AGL), a velocity of 5 m/s, and a camera set to nadir. During the reconnaissance phase, the
forward (75%) and side (65%) overlaps without the use of ground control points (GCPs)
did not produce high-quality orthoimages. This necessitated an increase in the forward
and side overlaps to 85% and 75%, respectively, and utilized GCPs in each plot. Some
researchers have used overlaps ranging from 60 to 80% [47,49,57,62,79]. Other researchers
suggest higher forward and side overlaps, such as 85% or above [38,65,80–82]. However,
higher overlaps require substantial flight endurance and computer processing times to
generate orthoimages [83].

The total ground area captured from each flight mission ranged from 16.3 to 47.9 ha.
The wind speed measured using an anemometer ranged from 0 to 2 m/s. The sky cloud
cover varied during flight missions. It was measured using the Oktas scale, as described
by Ahmad et al. [84]. The sky was covered by a few clouds, defined as FEW, 1/8, and 2/8
coverage at 1 and 2 Oktas, and scattered clouds (SCT), defined as 3/8 and 4/8 coverage at
3 and 4 Oktas.

Image Processing to Create RGB Orthoimages

The UAV RGB images were processed into georectified orthomosaics using Pix4Dmapper
software package version 4.8.4 with the standard option. The Linear Standard option was
selected in the Linear Rolling Model to correct for any rolling shutter effects, followed by
optimization of the camera’s internal and external parameters. The number of GCPs ranged
from 5 to 10 per plot. The numbers aligned with other researchers who used 5–12 GCPs
per 100 ha [47,59,85–88]. A standard calibration method was selected within the ‘All-Prior’
option in Pix4Dmapper. After completing the next three steps (Point Cloud and Mesh, DSM
orthomosaic, and Index processing), UAV RGB orthoimages were created, possessing an
average resolution of 0.043 m/pixel. The GCPs and rolling shutter correction significantly
improved the accuracy indicated by the obtained very low georeferencing mean RMS error
values (0.004–0.02 m) for all the orthoimages produced.

Upscaling Orthoimages to Sentinel-2 Grid Cell Resolutions

The derived UAV-RGB orthoimages were classified using the MLC, SVM, and RFC
algorithms to compare the accuracies at a plot level based on the Kappa coefficient (k). The
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UAV RGB orthoimages and classified plot-level images were upscaled to 10 m × 10 m grid
cells: the resolution of the overlaid Sentinel-2 imagery [47,64]. The dominant pixels in the
classified plot-level orthoimages determined its cover type (Figures 2 and 3). Before upscal-
ing, the alignment of orthomosaics was also visually checked against satellite imagery.

2.3. Collection of Training and Validation Sample Points

The upscaled UAV-orthoimages were used to create a training dataset (Figures 2
and 3). The dataset was split into 70% for training data and 30% for testing data (Table 5).
This dataset was used for the ground-linked UAV-guided sentinel-2 LULC classification
approach. The accuracy of the classified images of both classifiers was assessed post-
classification using a confusion matrix to generate the producer accuracy (PA), user accuracy
(UA), overall accuracy (OA), and kappa coefficient index (k). A similar approach was noted
in Iran [47].

Table 5. Training and testing samples for LULC classification using the RFC classifier. Columns
(i) and (ii) are for ground-linked UAV-guided Sentinel-2 and unguided Sentinel-2 LULC classification
approaches, respectively.

LULC
Class

MLC SVM RFC

Training Set Testing Set Training Set Testing Set Training Set Testing Set

(i) (ii) (i) (ii) (i) (ii) (i) (ii) (i) (ii) (i) (ii)

Grassland 234 132 101 81 244 115 105 87 265 363 114 156
Shrubland 74 89 32 38 50 101 22 31 143 67 61 29
Woodland 139 99 59 65 92 113 40 22 111 57 47 24
Bareland 91 102 39 25 63 98 27 12 39 46 17 22
Water 39 58 17 20 39 32 17 23 27 30 12 11
Riverine 32 76 14 15 53 26 23 35 25 31 10 13
Forest 22 56 9 20 34 36 15 18 23 34 10 14
Cultivation 19 25 12 3 49 47 21 23 31 35 9 11
Settlement 25 31 8 8 38 59 16 28 13 15 10 10
Mosaic 25 32 10 25 37 73 16 21 23 22 10 10

Total 700 700 300 300 700 700 300 300 700 700 300 300

For the unguided Sentinel-2 LULC classification approach, the training samples were
generated from sentinel RGB images. Validation sample points for accuracy assessments of
unguided Sentinel-2 classification were derived from Google Earth imagery from the same
date. For each classification approach, the training dataset was split into 70% and 30% for
the training and testing data sets, respectively (Table 5).

In both classification approaches, we determined the number of training samples
for each LULC class, as suggested by ref. [89]. For less frequent land cover types (water,
settlements, and forests), additional training samples were obtained from Google Earth at a
10 m × 10 m scale. We considered the kappa coefficient to select the best classified LULC
map [28,89,90] for comparative agreement and statistical tests between UAV-guided and
unguided sentinel-2 classification approaches.
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Figure 2. Cont.
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Figure 2. Examples of UAV RGB orthoimages in upper rows (A) from (i–v) for different land cover types, classified using the MLC, SVM, and RFC algorithms to
determine the different cover types at the plot level compared with Sentinel-2-based classification presented in the respective lower rows (B). Plots of different
cover types are presented: Grassland plot (i), shrubland (ii,iii), woodland (iv), and riverine vegetation with bare areas and alternating patches of shrubs, trees, and
mosaic (v).
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2.4. Satellite Image Acquisition and Pre-Processing

We downloaded Top-of-Atmosphere, Level-2A Sentinel-2 images that had been pro-
cessed for atmospheric correction. The scene had Path N0301 and Row R092. The effects of
vegetation phenology were minimized by downloading dry season images from August
2021. The downloaded image had 13 spectral bands. For this classification scheme, we
used bands 2 (blue), 3 (green), 4 (red), and near-infrared (NIR) band 8. We also calculated
the normalized difference vegetation index (NDVI) and normalized difference water index
(NDWI). The bands were clipped to the Burunge WMA boundary and projected to the Arc
1960 datum; the specific projection for East Africa.

Figure 3. Example of sections from upscaled heterogenous UAV-RGB orthoimages to Sentinel-2 grid
cells of a 10 m × 10 m resolution in each land cover type: mosaic cover with fairly close mixture of
trees, shrubs, and bushes (A,E), water pond in a woodland plot (B), woodland (C,I–K), cultivated
land (D), grassland (F,H), shallow muddy water ponds in shrubland plot (G), and bareland (L). The
dominant cover (≥75%) in each grid cell determined its corresponding landcover type [47,64].

2.5. Image Classification

We used ArcGIS Version 10.7.1 spatial analysis tools (segmentation and classification)
using the MLC, SVM, and RFC algorithms to classify UAV orthoimages at the plot level,
UAV-guided sentinel-2, and unguided Sentinel-2. For RFC, we used 500 as the maximum
number of trees, 300 as the maximum number of tree depths, and 10,000 for several samples
per class. The number of active variables used to split an RFC node was set to the square
root of the number of input variables [91]. The number of trees and depth were selected due
to their ability to ensure stability, robustness, and classification accuracy [50,92]. For the
SVM, we used 1000 maximum samples per class in the pixel-based classification. For both
models, the selected number of samples per class was useful in balancing the respective
training dataset, providing adequate examples to enhance the algorithm’s learning.
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The MLC is a standard and widely used parametric algorithm whose use requires
the assumption that the data for each LULC class are normally distributed [93,94]. Similar
UAV-based images have been classified for LULC in Bangladesh [46]. The SVM is a non-
parametric, supervised machine learning algorithm that does not assume a normal data
distribution [94]. The RFC is a non-parametric and robust machine-learning classification
algorithm with a high classification accuracy [95]. It can assign missing values and rank
variables in order of importance, allowing for a reliable assessment [95].

2.6. Accuracy Assessment

The agreement between the validation data and the classified map was assessed
using an error matrix table, with 30% of the samples used as the test dataset [96,97].
The overall classification accuracy (OA) and Kappa coefficient (k) were computed. The
Kappa coefficient measures how well the classified map and reference data match [98].
The acceptable classification threshold for all classes is 85%, and each LULC type has a
minimum of 75% accuracy [99,100].

2.7. Combining UAV-Guided and Unguided Sentinel-2 LULC Classification Maps

We combined the two LULC classification maps (RFC) to show where the two LULC
classification approaches match or mismatch in predicting each pixel with the same LULC
class. The “0” value was classified as a non-zero integer for raster values. For each pixel,
if both algorithms agreed that the predicted pixel belonged to the same LULC class, that
pixel was assigned a value of 2 and a blue color code. Where pixels in the unguided
Sentinel-2 LULC classification map did not match with the UAV-guided classification map
in assigning a pixel to the same LULC class, the pixels were assigned a value of zero (0)
and a red color code.

We used the combined tool in ArcGIS 10.7.1 to match the UAV-guided and unguided
Sentinel-2 LULC classification maps pixel-to-pixel [48]. We used 29 plots, including the
UAV-flown plots, in the combined map to test for the agreement between the two classifica-
tion approaches. We calculated the agreement ratio (AR) between UAV-guided (AO) and
unguided Sentinel-2 (Bo) LULC classification combined map following Duke et al. [48],
as indicated in Table 6 below. The following important values were calculated for the
computation: matched pixels (AOBO) of the two classification approaches and unmatched
pixels for UAV-guided (A1) and unguided Sentinel-2 (B1).

Table 6. Template table with examples of data for three LULC classes used for the computation to
compare the agreement ratio (AR) between the two LULC classification approaches. Adopted and
customized from Duke et al. [48].

Pixel Counts Matched
Pixels

Unmatched
Pixels

Proportion of
Matched Pixels
of Unguided
Sentinel-2 (AR1)

Agreement
Ratio for Total
Pixels (AR2)

LULC
Class Ao % Bo % AoBo A1 B1

AR1 =(
A0B0

B0

)
× 100

AR2 =(
A0B0
∑ A0

)
× 100

Grassland 60,221 73 33,403 57.4 25,216 35,005 8187 75.5 30.4
Shrubland 5820 7 18,980 32.6 2121 3699 16,859 11.2 2.6
Woodland 16,782 20 5786 9.9 1516 15,266 4270 26.2 1.8
Total 82,823 58,169 28,853 53,970 29,316 34.8

A methodological flowchart guided the research team in accomplishing various com-
ponents of the research (Figure 4).
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Figure 4. Overall methodological flowchart adopted and modified from other researchers [47,48].

3. Results
3.1. Accuracy Assessment for Ground-Linked UAV-Guided Sentinel-2 LULC Classification
Approach

The RFC was the best algorithm for the ground-linked UAV-guided Sentinel-2 LULC
classification approach. It registered the highest overall accuracy (94%) and kappa co-
efficient (0.91), followed by SVM (OA = 91%; k = 0.89) and MLC (OA = 90%; k = 0.88)
(Tables 7 and S1–S3). All three algorithms attained UA values above 0.90 for grassland
and water cover classes. The RFC attained higher UA values of shrublands (0.96) and
woodlands (0.95) than the other algorithms.
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Table 7. Classification accuracies of the ground-linked UAV-guided Sentinel-2 LULC approach.

LULC Class

LULC Classification Algorithm

MLC SVM RFC

UA PA UA PA UA PA

Grassland 0.98 0.97 0.94 0.98 0.94 0.98
Woodland 0.83 0.88 0.80 0.87 0.95 0.94
Shrubland 0.88 0.90 0.91 0.91 0.96 0.94
Bareland 0.92 0.87 0.92 0.86 0.89 0.86
Water 0.93 0.82 1.00 0.93 1.00 0.87
Riverine 0.79 0.82 0.78 0.81 0.89 0.89
Forest 0.90 0.86 0.90 0.88 0.85 0.85
Cultivation 0.81 0.86 0.96 0.87 0.90 0.87
Settlement 0.89 0.91 1.00 0.8 0.91 0.86
Mosaic 0.79 0.81 0.75 0.84 0.82 0.90

OA (%) 90 91 94
k 0.88 0.89 0.92

3.2. Accuracy Assessment for Unguided Sentinel-2 LULC Classification Approach

The RFC algorithm, when compared with SVM and MLC, gave the best unguided
Sentinel-2 LULC classification. Its accuracy was also higher (OA = 90; k = 0.87) than those
registered by SVM (OA = 87%; k = 0.85) and MLC (OA = 80%; k = 0.77), (Table 8; and
Supplementary Materials Tables S4–S6). The RFC registered the largest UA values com-
pared to SVM and MLC for woodland, shrubland, bareland, water, forest, and cultivation
LULC classes. Its UA value for grasslands was second to that registered by the SVM.

Table 8. Accuracies for unguided Sentinel-2 LULC classification approach.

LULC Class

LULC Classification Algorithm

MLC SVM RFC

UA PA UA PA UA PA

Grassland 0.85 0.92 0.97 0.96 0.93 0.99
Woodland 0.77 0.75 0.78 0.86 0.84 0.83
Shrubland 0.75 0.80 0.82 0.82 0.86 0.76
Bareland 0.80 0.76 0.90 0.78 0.92 0.84
Water 0.87 0.76 0.86 0.91 0.98 0.84
Riverine 0.75 0.74 0.84 0.84 0.75 0.88
Forest 0.78 0.85 0.90 0.83 0.96 0.92
Cultivation 0.84 0.76 0.79 0.90 0.91 0.80
Settlement 0.79 0.75 0.76 0.78 0.78 0.76
Mosaic 0.77 0.75 0.75 0.77 0.82 0.75

OA (%) 80 87 90

k 0.77 0.85 0.87

3.3. Comparative Extent and Spatial Distribution Patterns of LULC Classes Derived from
UAV-Guided and Unguided Sentinel-2 Classification Approaches

Considering the RFC algorithm as the best classifier, the ground-linked UAV-guided
LULC classification map showed clear differences between the two classification ap-
proaches. It registered the largest proportional area coverage of grasslands (55.20%),
followed by water (24.28%), woodlands (7.59%), shrublands (4.69%), and bareland (3.96%).
The proportional coverage areas of all these cover classes, except shrublands and bareland,
were higher than those registered by the unguided Sentinel-2 LULC classification approach.
The UAV-guided classification approach also showed lower proportional coverage areas
for cultivation (1.6%), settlements (0.01%), and mosaic (1.05%) than those generated by the
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unguided Sentinel-2 LULC classification approach (3.30%, 0.03%, and 1.90%, respectively)
(Figures 5 and 6 and Table S7).

Figure 5. Proportional area coverage (%) of LULC classes identified and predicted by UAV-guided
Sentinel-2 (brown bars) and unguided Sentinel-2 (blue bars).

Figure 6. Ground-linked UAV-guided Sentinel-2 LULC classification maps using MLC, SVM, and
RFC (A) showing the spatial distribution of different cover types predicted compared with unguided
Sentinel-2 LULC classification maps (B) using the same algorithms. Since the RFC algorithm showed
the highest overall classification accuracy and Kappa coefficient (k) values, the RFC-based thematic
maps for the two classification approaches were selected for subsequent comparisons.

On the other hand, the unguided Sentinel-2 classification approach registered grassland
(43.33%) as the largest cover type, followed by shrubland (27.37%), water (15.34%), bareland
(6.02%), and cultivation (3.3%) (Figure 5 and Table S7). It showed the proportional coverage
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areas for shrublands, bareland, cultivation, and mosaic as larger than those registered by the
ground-linked UAV-based LULC classification approach (Figure 5 and Table S5).

3.4. Agreement of UAV-Guided and Unguided Sentinel-2 LULC Classification Maps—RFC

The agreement ratio (%) of pixels matched between the UAV-guided and unguided
Sentinel-2 LULC classification maps was determined using 29 plots in the combined classi-
fication map (Figures 7 and 8, Table S8). The first agreement test considered the proportions
(%) of each LULC class identified and predicted by the unguided Sentinel-2 LULC classifi-
cation approach (RFC) that matched with the UAV-guided Sentinel-2 classification map
(Figure 8A). The results showed a high agreement in the LULC classes of forests (83.8%),
grasslands (75.5%), and water (55.2%). The lowest agreement was recorded in settlement
LULC (0.4%), followed by cultivation (8.9%), shrublands (11.2%), and woodlands (26.2%).
The agreement ratios for the bareland, riverine, and mosaic cover classes were also below
50%. Similar agreements were revealed based on the coverage areas (ha) determined by
each platform (Figure 8B). The combined map clearly showed where the predictions of one
LULC pixel class by the two platforms matched and where they did not. A t-test affirmed
a statistically significant difference in the means for grasslands, shrublands, woodlands,
water, and cultivation (Table 9).

Figure 7. Agreement between the LULC classification map of the Burunge WMA after combining
UAV-guided and unguided Sentinel-2 LULC classification maps using the RFC algorithm. The
combined map’s blue and red color codes visually show matching and mismatching pixels for
particular classes at a 10 m × 10 m grid cell resolution. This is revealed in the given examples of
pixels from high-resolution UAV RGB images (left column) and the respective pixels from UAV-
guided (middle column) and unguided (right column) LULC classification maps. BWMA_01 is from
the grassland in Figure 2i; BWMA_02 is from a woodland plot with mixed palms, Vachellia tortilis,
and shrubs in Figure 3I; BWMA_14 is from a shallow water pond located in the woodland plot in
Figures 2iv and 3B; BWMA_20 is from riverine vegetation near the river bank in Figure 2v.
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Figure 8. The proportions (%) of class-wise pixels (A) from the unguided classification map that
matched with the same class of pixels of the ground-linked UAV-guided Sentinel-2 LULC classification
map in a combined map based on 29 plots (A). Their area coverages (ha) were compared (B). Cover
areas (ha) of each LULC class with different letters for UAV-guided and unguided Senitnel-2 LULC
classification approaches present statistically significant differences.

Table 9. The table shows statistical tests for the means of area coverage of each LULC class determined
using the two classification approaches. The p-values with a significance code “*” show significant
differences (p ≤ 0.05).

LULC Class t df p-Value

Grassland 2.0938 66.5710 0.0426 *
Shrubland 2.5890 28.7600 0.0149 *
Woodland 2.4134 41.8260 0.0128 *
Bareland 0.0281 59.1220 0.9777

Water 2.8099 8.2062 0.0171 *
Riverine 1.1118 12.7630 0.1084

Forest 1.6851 17.2380 0.1100
Cultivation 2.2809 51.4020 0.0267 *
Settlement 1.9667 7.3144 0.1226

Mosaic 1.2129 25.2310 0.2364
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4. Discussion

Precise detection, prediction, and mapping of LULC classes in protected areas are
central to sustainable wildlife conservation, including habitat management practices. This
study sought to establish the scalability of the ground-linked UAV-based Sentinel-2 LULC
classification approach to large and complex conservation areas in the southern hemisphere.
Our results suggest that undertaking ground surveys in different LULC types followed by
high-resolution UAV flights generates reliable orthoimages for each covet type. Upscaling
to a 10 × 10 m resolution and obtaining effective training samples from these products for
Sentinel-2 LULC classification improves the performance accuracies. In this study, focusing
on the Burunge WMA, we demonstrate that this classification approach using the RFC
algorithm generated LULC classification maps with higher accuracies than those produced
from the unguided Sentinel-2 LULC classification approach.

This study has provided interesting insights regarding the proportional area coverages
of LULC classes generated using the UAV-guided LULC classification approach compared
with the unguided Sentinel-2 LULC classification approach. The UAV-guided approach
effectively delineated the LULC classes mainly attributed to the flight missions executed
in ground-surveyed cover types. The observed reliable performance of the ground-linked
UAV-guided LULC classification approach is explained by the UAV-based training samples
that led to both high user and overall accuracy values [47]. For instance, the unguided
Sentinel-2 LULC classification approach experienced lower user accuracy values for the
riverine, woodland, and shrubland classes than those attained by the ground-linked UAV-
guided LULC classification approach. It incorrectly assigned one class to other classes
due to its medium resolution (Tables S7 and S8). This is particularly expected in highly
heterogeneous habitats such as riverine vegetation [101,102]. The riverine cover class in
our study area was highly heterogeneous, composed of alternating and mixed vegetation
classes, with both open- and closed-canopy woodlands, shrublands, mosaics, bareland,
and dry riverbeds.

The large proportional area coverage of the grassland (75.5%) and forest (83.8%)
cover classes predicted by the unguided Sentinel-2 that matched with those predicted
by the UAV-guided Sentinel-2 classification approach provide insights into the ability of
Sentinel-2 to remain reliable for these classes (Figure 8A). This is well-supported by the
high user and producer accuracy values attained using RFC (Tables S7 and S8). The bands
in Sentinel-2 are well-recognized for improving LULC classifications, such as grasslands
and forests [103,104]. For the water class (55.2%), the 29 plots from the combined LULC
classification map did not include any open water. Hence, the lower accuracy can be
explained by problems identifying shallow water [105–107], such as lake shores, water
ponds, reservoirs, and small streams that were easily discriminated from other classes in
the ground-linked UAV-guided classification approach. The ability of the UAV-guided
Sentinel-2 LULC classification approach to detect small and sparse cultivated areas and few
settlements and tourism facilities in the area would be explained by the low flight heights
from the ground and its high resolution, leading to high user accuracies. The unguided
Sentinel-2 LULC classification approach experienced detection confusion between other
classes and the settlements, leading to relatively lower user accuracies, as indicated in the
confusion matrix tables (Table S7).

The recorded agreement gaps between the LULC classification maps produced from
the two classification approaches make the ground-linked UAV-guided classification ap-
proach useful as the ground truth for the unguided Sentinel-2 LULC classification approach.
A similar agreement gap between UAV-based and Sentinel-2 classification was reported in
the Chobe Enclave, Botswana [65]. The UAV-guided classification approach registered a
significantly smaller proportional area coverage of the cultivation LULC class compared
to the unguided approach, which was quite similar to the reality on the ground. The
agreement ratio test confirmed this result. Few pixels predicted by the unguided Sentinel-2
classification approach matched those predicted by the UAV-guided approach. The lack of
a statistically significant difference in the proportional area coverages detected using the
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two classification approaches for the forest and riverine cover types would be explained by
the bands in Sentinel-2 that improve its capacity to detect well-established vegetated cover
types [108].

Another study in the same landscape used Landsat TM5 and Landsat-8 imagery
to evaluate the performance of the Kwakuchinja wildlife corridor (1280 km2), including
the Burunge WMA, reported that grasslands dominate (33.34%), followed by shrublands
(22.11%) and woodlands (11.95%), with declining trends of woodlands and increasing
shrublands and cultivation from 2008–2018 [109]. Another study in the Kwakuchinja
wildlife corridor, covering 407 km2, including parts of the Burunge WMA, delineated only
three classes (agriculture, woodlands, and mixed) and reported an increasing trend of
agriculture and declining woodland and mixed cover classes from 2002 to 2018 [13]. These
results differ from our findings, in that the ground-linked high-resolution UAV-guided
training samples assured a higher accuracy in predicting and delineating LULC classes.
Furthermore, while underscoring the possible limitations of the platforms used in these
studies, our findings revealed the novel power of the ground-linked high-resolution UAV-
guided Sentinel-2 LULC classification approach in providing practically useful information
for appropriate wildlife habitat management practices.

Although our study scope did not include the trends of LULC change, the UAV-guided
Sentinel-2 classification approach revealed that the woodland cover class was the second
vegetated cover type after grasslands. On the other hand, the unguided Sentinel-2 LULC
classification approach registered shrublands as second after grasslands. The detected
extent of the woodland and cultivated LULC classes revealed by the UAV-guided Sentinel-2
LULC classification approach reflected the reality on the ground. The differences between
the two classification approaches would be explained by the confusion matrix, where some
woodland pixels detected by the unguided Sentinel-2 were confused with shrublands. The
UAV-guided Sentinel-2 LULC classification approach provided reliable information and
was hence useful for appropriate decision-making.

This work provides the first scientific evidence showing the second-largest vegetation
cover class inside the WMA. Forage improvement for browsers and grazers is one of the
primary goals for establishing the WMA. The findings reflect on the effectiveness of the
Burunge WMA in protecting wildlife habitats. There has been improvements in vegetation
cover following integrated conservation efforts involving tourism-related investors in
collaboration with communities, the Ministry of Natural Resources and Tourism (MNRT),
and other stakeholders since its establishment in 2023. Unlike the protected Burunge WMA,
a large part of the Kwakuchinja wildlife corridor is not protected, and the village land use
plans are inadequate to guide the different land uses.

In the context of biodiversity conservation, the second position of woodland cover
after grassland, registered by the UAV-guided classification approach, contrary to the un-
guided Sentine-2 classification approach and the other reported studies in the area [13,109],
provides an early warning sign of its potential excessive expansion in the WMA. The
expansion would reduce grassland cover unnoticed. It informs WMA management, ecolo-
gists, researchers, and other stakeholders to take possible interventions to ensure balanced
grazing and browsing forages in the WMA. As woody plants increase in cover, density,
and biomass, the result is a decline of other cover types such as grasslands and shrub-
lands [110]. A study in South Africa reported that the expanding woodland cover in the
grassy biome threatens the productivity of its rangelands [111]. In the Serengeti ecosystem,
small and medium-sized prey species declined in some woodland areas due to woody
plants, especially young trees, making dense cover available for lions to ambush [112]. A
study on the Maswa Game Reserve in Tanzania reported woody plant cover encroach-
ment and its negative impact on the other plant species, cover types, and grazers [113].
This study, therefore, provides a novel contribution to advancing LULC classifications in
large and heterogeneous African conservation ecosystems using UAV technology. The
novelty includes the size and heterogeneous complexity of the study area, pre-UAV flight
ground data, and UAV-based woody plant encroachment detection. In addition, the first
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UAV-based detection of a relatively true proportional area coverage of woodland cover is
similar to the ground situation in the area, reflecting expansion into the grasslands. Unlike
other studies in the southern hemisphere that also used UAV platforms in small and less
heterogeneous landscapes, this study explored and revealed the feasibility and utility of
the ground-linked UAV-guided Setinel-2 LULC classification of large conservation areas in
generating highly reliable information.

The role of UAV technology in generating significantly reliable information and data
in large environments and their contributions to SDGs has been underscored [53,114].
Likewise, its usefulness in mapping rangelands has been emphasized [115], contributing
to SDGs. The high-resolution LULC classification maps (RFC) with clearly delineated
LULC classes generated using the ground-linked UAV-guided approach provide useful
information for effective conservation planning, sustainable management, and monitoring
of wildlife habitats in the Burunge WMA. The information is useful as input to the review
process of the general management plan (GMP) for Burunge WMA, particularly for the
zoning scheme that assigns the type and level of resource utilization. As a community-
based conservation area, livestock grazing is allowed at a limit of acceptable use (LAU) in
the earmarked zones. The generated information would be integrated with the pastorals’
indigenous knowledge for appropriate community rangeland management and to reduce
land resource use conflicts in the WMA. The potential usefulness of our study findings
contributes to the SDGs.

For instance, SDG 15 urges countries to “Protect, restore and promote sustainable
use of terrestrial ecosystems, sustainably manage forests, combat desertification, and halt
and reverse land degradation and halt biodiversity loss”. This study’s findings regarding
effective habitat management and conservation operations would enhance wildlife pop-
ulations and biodiversity, encouraging further tourism investment and other sustainable
socioeconomic activities and providing worthwhile employment opportunities (SDG 8).
The achievements from these activities would contribute to poverty reduction (SDG 1)
and to combating climate change and its impacts (SDG 13). Since the Kunming-Montreal
Global Biodiversity Framework (GBF) needs urgent action over the decade to 2030, the
methodological approach demonstrated in this study will support countries in producing
timely and reliable information contributing to appropriate actions toward reaching the
GBF targets. The stated contributions to achieving the SDGs are reflected in the practical
values of the LULC analysis in landscapes and ecosystems. Many other practical values are
underscored, for instance, (i) detecting, monitoring, and predicting any changes for timely
interventions [116], and (ii) integrating the status of LULC and habitats for wildlife popula-
tions, which helps us to link anthropogenic activities with the degradation of habitats [117].
Hence, this study has established the first UAV-based baseline data of the LULC classifi-
cation map of the Burunge WMA with well-delineated LULC classes showing detailed
information on its current status. It will be useful for monitoring and predicting changes in
the future using a similar approach.

Although the UAV technology is promising for large areas, the large dataset generated
for this study required time to process. Similar observations have been reported [49].
The use of appropriate training samples [118], powerful licensed Pix4Dmapper, a robust
classification algorithm (RFC) selected against SVM and MLC based on accuracies, and
a large number of trees for the RFC produced reliable LULC classification products at
high-performance accuracies. A similar conclusion was drawn from a study reported
by Bhatt and Maclean [49], whereby the RFC algorithm, appropriate training samples,
and ancillary dataset improved their classification performance. Interestingly, their study
achieved high accuracies for the RFC algorithm: the overall accuracies (87.3–93.7%) and
kappa values (0.83–0.92) were categorized as “almost perfect”, similar to those achieved in
this study (Table 8). Hence, the methodological flow demonstrated in this study assured
the scalability of the ground-linked UAV-guided Sentinel-2 LULC classification approach
to community wildlife management areas. However, this study did not cover extra-large
protected areas.
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5. Conclusions and Recommendations
5.1. Conclusions

This study has established the scalability of the ground-linked high-resolution UAV-
guided Sentinel-2 LULC classification approach to large heterogenous conservation areas in
Africa, taking the case study of the Burunge WMA in Tanzania. UAV technology has been
used in small- to medium-sized areas with less heterogenous habitats. High-quality LULC
classification maps for conservation areas are needed for appropriate management practices.
This requires powerful training samples and a strong machine learning classifier algorithm.
The classification approach using the RFC algorithm outperformed the unguided Sentinel-2
LULC classification approach. It produced high-quality LULC classification maps clearly
showing almost perfect delineated classes, supported by the higher overall accuracy and
Kohen’s kappa coefficient values than those obtained from the unguided Sentinel-2 LULC
classification approach. It also revealed the interesting finding that woodlands are the
second most prominent vegetated cover class after grasslands, followed by shrublands
for the proportional area coverage. On the other hand, the unguided Sentine-2 LULC
classification approach showed that shrublands were second after grasslands, followed by
woodlands. A similar unguided LULC analysis using LANDSAT in the same landscape
reported the same results. Hence, this is the first UAV-based record of its kind in the area
to almost perfectly map the proportional area coverages of grasslands, woodlands, and
shrublands. These findings were attributed to the powerful training samples obtained
from the ground-linked UAV-guided Sentinel-2 LULC classification approach and the RFC
algorithm used.

The comparative pixel-wise agreement ratio test of the combined LULC classification
map (RFC) affirmed the high outperformance of the ground-linked UAV-guided Sentinel-2
LULC classification over the unguided approach in predicting each pixel with the same
LULC class. High agreement ratios were only obtained for the grassland, water, and forest
cover classes. The revealed high performance makes the LULC classification products
generated using this approach reliable ground-truth data. Hence, it has strong potential
contributions to sustainable development goals, particularly SDG 15, followed by SDGs
1, 8, and 13. The methodological approach would support countries in generating timely
and reliable information for effective monitoring and management of habitats, appropriate
decision-making, and ultimately, effective actions towards reaching the Kunming-Montreal
Global Biodiversity Framework (GBF) targets.

This study has established the first UAV-based baseline data of the LULC classification
map of the Burunge WMA, with well-delineated LULC classes showing detailed informa-
tion on its current status. It will be useful for monitoring and predicting changes in the
future using a similar approach. It has provided alerting management implications of the
woodland and shrubland cover classes, altogether urging for close monitoring to safeguard
the grassland areas for grazers. Linking the ground-linked high-resolution UAV data to
the Sentinel-2 data has thus provided a novel dual-validation approach for LULC classi-
fication. It has provided a novel contribution to advancing LULC classifications in large
and heterogeneous African conservation ecosystems using UAV technology. The novelty of
this study is mainly invested in the size and heterogeneous complexity of the study area in
Africa, pre-UAV flight ground data and UAV-based woody plant encroachment detection.
Researchers and conservation practitioners interested in LULC classifications in Africa and
beyond would use the approach to generate information for sustainable wildlife habitat
management, rangeland assessment and management, and conservation planning, such as
general management plans of conservation areas. Generally, a research gap remains for
extra-large protected areas.

5.2. Recommendations

• Scale up this approach to the entire Kwakuchinja wildlife corridor (1280 km2), which is
less protected in the landscape than the Burunge WMA (~300 km2), forming part of the
important corridor. Two studies conducted in the entire corridor used Landsat, which
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has a medium resolution. This calls for an application of the approach we deployed in
this study to the entire corridor, since there are different levels of protection concerning
the legal status of lands.

• Scale up this approach to other community wildlife management areas in the country
whose sizes range from 61 to 5372 km2 for updating their LULC maps. Using the same
approach would generate high-resolution baseline information for future assessments
of any LULC changes. For significantly large core protected areas such as national
parks, further studies are necessary regarding how to address key challenges: costs
(time and resources), the magnitude of heterogeneity, and levels of LULC classes (e.g.,
intact and disturbed forests with canopy gaps and regenerating ecosystems recovering
from disturbances).

• A follow-up study in the study area to assess the woody plant expansion to other
vegetation types, mainly grasslands, to inform management, government, and other
key players about appropriate interventions.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/resources13080113/s1, Tables S1–S3: Error matrices for ground-
linked UAV-guided LULC classification (RFC, SVM, and MLC, respectively); Tables S4–S6: Error ma-
trices for unguided Sentinel-2 LULC classification (RFC, SVM, and MLC, respectively); Table S7: Com-
parative proportional coverage area (%) of LULC classes derived from UAV-guided and unguided
Sentinel-2 classification approaches (total area = 299.93 km2); Table S8: Agreement test between the
ground-linked UAV-guided Sentinel-2 and unguided Sentinel-2 classification approaches (RFC).
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