Evaluation of Wetland Area Effects on Hydrology and Water Quality at Watershed Scale
Abstract
:1. Introduction
2. Materials and Methods
2.1. Watershed Description
2.2. SWAT Model Description
2.3. SWAT Model Inputs
2.4. Model Calibration and Validation Procedures
2.5. Wetland Scenario
3. Results
3.1. Streamflow Calibration and Validation
3.2. Total Suspended Solids Calibration and Validation
3.3. Total Phosphorus Calibration and Validation
3.4. Total Nitrogen Calibration and Validation
3.5. Groundwater Level Change Calibration and Validation
3.6. Effects of Wetlands on Flow and Water Quality
3.7. Effects of Wetlands on Shallow Groundwater Change
4. Discussion
4.1. Surface Water Quality
4.2. Groundwater Level Change
4.3. Effects of Wetland Areas
4.4. Study Limitations
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hassan, Z.; Shabbir, R.; Ahmad, S.S.; Malik, A.H.; Aziz, N.; Butt, A.; Erum, S. Dynamics of land use and land cover change (LULCC) using geospatial techniques: A case study of Islamabad Pakistan. SpringerPlus 2016, 5, 812. [Google Scholar] [CrossRef]
- Mitsch, W.J.; Gosselink, J.G. The value of wetlands: Importance of scale and landscape setting. Ecol. Econ. 2000, 35, 25–33. [Google Scholar] [CrossRef]
- Ekumah, B.; Armah, F.A.; Afrifa, E.K.A.; Aheto, D.W.; Odoi, J.O.; Afitiri, A.-R. Assessing land use and land cover change in coastal urban wetlands of international importance in Ghana using Intensity Analysis. Wetl. Ecol. Manag. 2020, 28, 271–284. [Google Scholar] [CrossRef]
- Jogo, W.; Hassan, R. Balancing the use of wetlands for economic well-being and ecological security: The case of the Limpopo wetland in southern Africa. Ecol. Econ. 2010, 69, 1569–1579. [Google Scholar] [CrossRef]
- Cowardin, L.M. Classification of Wetlands and Deepwater Habitats of the United States, Fish and Wildlife Service; US Department of the Interior: Washington, DC, USA, 1979; p. 3. Available online: https://pubs.usgs.gov/publication/2000109 (accessed on 25 August 2022).
- National Research Council. Wetlands: Characteristics and Boundaries; National Academies Press: Washington, DC, USA, 1995. [Google Scholar] [CrossRef]
- Padmanabhan, G.; Bengtson, M.L. Assessing the influence of wetlands on flooding. In Wetlands Engineering & River Restoration; American Society of Civil Engineers: Reston, VA, USA, 2001. [Google Scholar] [CrossRef]
- Bullock, A.; Acreman, M. The role of wetlands in the hydrological cycle. Hydrol. Earth Syst. Sci. 2003, 7, 358–389. [Google Scholar] [CrossRef]
- Johnston, C.A. Sediment and nutrient retention by freshwater wetlands: Effects on surface water quality. Crit. Rev. Environ. Control 1991, 21, 491–565. [Google Scholar] [CrossRef]
- Camacho-Valdez, V.; Ruiz-Luna, A.; Ghermandi, A.; Berlanga-Robles, C.A.; Nunes, P.A.L.D. Effects of land use changes on the ecosystem service values of coastal wetlands. Environ. Manag. 2014, 54, 852–864. [Google Scholar] [CrossRef]
- Worku, T.; Khare, D.; Tripathi, S.K. Modeling runoff–sediment response to land use/land cover changes using integrated GIS and SWAT model in the Beressa watershed. Environ. Earth Sci. 2017, 76, 550. [Google Scholar] [CrossRef]
- Alexakis, D.D.; Grillakis, M.G.; Koutroulis, A.G.; Agapiou, A.; Themistocleous, K.; Tsanis, I.K.; Michaelides, S.; Pashiardis, S.; Demetriou, C.; Aristeidou, K.; et al. GIS and remote sensing techniques for the assessment of land use change impact on flood hydrology: The case study of Yialias basin in Cyprus. Nat. Hazards Earth Syst. Sci. 2014, 14, 413–426. [Google Scholar] [CrossRef]
- Hwang, S.-A.; Hwang, S.-J.; Park, S.-R.; Lee, S.-W. Examining the relationships between watershed urban land use and stream water quality using linear and generalized additive models. Water 2016, 8, 155. [Google Scholar] [CrossRef]
- Souza-Filho, P.W.M.; de Souza, E.B.; Júnior, R.O.S.; Nascimento, W.R., Jr.; de Mendonça, B.R.V.; Guimarães, J.T.F.; Dall’agnol, R.; Siqueira, J.O. Four decades of land-cover, land-use and hydroclimatology changes in the Itacaiúnas River watershed, southeastern Amazon. J. Environ. Manag. 2016, 167, 175–184. [Google Scholar] [CrossRef]
- Day, J.W.; Shaffer, G.P.; Cahoon, D.R.; DeLaune, R.D. Canals, backfilling and wetland loss in the Mississippi Delta. Estuar. Coast. Shelf Sci. 2019, 227, 106325. [Google Scholar] [CrossRef]
- Berkowitz, J.F.; Johnson, D.R.; Price, J.J. Forested Wetland hydrology in a large Mississippi river tributary system. Wetlands 2020, 40, 1133–1148. [Google Scholar] [CrossRef]
- Nepal, D.; Parajuli, P.B. Assessment of Best Management Practices on Hydrology and Sediment Yield at Watershed Scale in Mississippi Using SWAT. Agriculture 2022, 12, 518. [Google Scholar] [CrossRef]
- Clark, B.R.; Hart, R.M.; Gurdak, J.J. Groundwater Availability of the Mississippi Embayment; US Geological Survey: Reston, VA, USA, 2011. [CrossRef]
- Day, J.W., Jr.; Ko, J.-Y.; Rybczyk, J.; Sabins, D.; Bean, R.; Berthelot, G.; Brantley, C.; Cardoch, L.; Conner, W.; Day, J.N.; et al. The use of wetlands in the Mississippi Delta for wastewater assimilation: A review. Ocean Coast. Manag. 2004, 47, 671–691. [Google Scholar] [CrossRef]
- Cheng, F.Y.; Van Meter, K.J.; Byrnes, D.K.; Basu, N.B. Maximizing US nitrate removal through wetland protection and restoration. Nature 2020, 588, 625–630. [Google Scholar] [CrossRef] [PubMed]
- Gratzer, M.C.; Davidson, G.R.; O’Reilly, A.M.; Rigby, J.R. Groundwater recharge from an oxbow lake-wetland system in the Mississippi Alluvial Plain. Hydrol. Process. 2020, 34, 1359–1370. [Google Scholar] [CrossRef]
- Walton, R.; Chapman, R.S.; Davis, J.E. Development and application of the wetlands dynamic water budget model. Wetlands 1996, 16, 347–357. [Google Scholar] [CrossRef]
- Ogawa, H.; Male, J.W. Simulating the flood mitigation role of wetlands. J. Water Resour. Plan. Manag. 1986, 112, 114–128. [Google Scholar] [CrossRef]
- Feldman, A.D. HEC-1 flood hydrograph package. Comput. Model. Watershed Hydrol. 1995, 119, 150. [Google Scholar]
- Konyha, K.D.; Shaw, D.T.; Weiler, K.W. Hydrologic design of a wetland: Advantages of continuous modeling. Ecol. Eng. 1995, 4, 99–116. [Google Scholar] [CrossRef]
- Sun, G.; Riekerk, H.; Comerford, N.B. Comerford, Modeling the forest hydrology of wetland-upland ecosystems in Florida 1. JAWRA J. Am. Water Resour. Assoc. 1998, 34, 827–841. [Google Scholar] [CrossRef]
- Arnold, J.G.; Srinivasan, R.; Muttiah, R.S.; Williams, J.R. Large area hydrologic modeling and assessment part I: Model development 1. JAWRA J. Am. Water Resour. Assoc. 1998, 34, 73–89. [Google Scholar] [CrossRef]
- Bekele, E.G.; Demissie, M.; Lian, Y. Optimizing the placement of best management practices (BMPs) in agriculturally-dominated watersheds in Illinois. In Proceedings of the World Environmental and Water Resources Congress 2011: Bearing Knowledge for Sustainability, Palm Springs, CA, USA, 22–26 May 2011; pp. 2890–2900. [Google Scholar] [CrossRef]
- Lee, S.; Yeo, I.-Y.; Lang, M.; Sadeghi, A.; McCarty, G.; Moglen, G.; Evenson, G. Assessing the cumulative impacts of geographically isolated wetlands on watershed hydrology using the SWAT model coupled with improved wetland modules. J. Environ. Manag. 2018, 223, 37–48. [Google Scholar] [CrossRef]
- Liu, Y.; Yang, W.; Wang, X. Development of a SWAT extension module to simulate riparian wetland hydrologic processes at a watershed scale. Hydrol. Process. 2008, 22, 2901–2915. [Google Scholar] [CrossRef]
- Yang, W.; Wang, X.; Liu, Y.; Gabor, S.; Boychuk, L.; Badiou, P. Simulated environmental effects of wetland restoration scenarios in a typical Canadian prairie watershed. Wetl. Ecol. Manag. 2010, 18, 269–279. [Google Scholar] [CrossRef]
- Bieger, K.; Hörmann, G.; Fohrer, N. The impact of land use change in the Xiangxi Catchment (China) on water balance and sediment transport. Reg. Environ. Change 2015, 15, 485–498. [Google Scholar] [CrossRef]
- Dao, N.K.; Tadashi, S. Impact of climate and land-use changes on hydrological processes and sediment yield—A case study of the Be River catchment, Vietnam. Hydrol. Sci. J. 2014, 59, 1095–1108. [Google Scholar] [CrossRef]
- Ni, X.; Parajuli, P.B.; Ouyang, Y.; Dash, P.; Siegert, C. Assessing land use change impact on stream discharge and stream water quality in an agricultural watershed. CATENA 2021, 198, 105055. [Google Scholar] [CrossRef]
- Zhu, C.; Li, Y. Long-term hydrological impacts of land use/land cover change from 1984 to 2010 in the Little River Watershed, Tennessee. Int. Soil Water Conserv. Res. 2014, 2, 11–21. [Google Scholar] [CrossRef]
- USDA. CropScape—NASS CDL Program. USDA NASS, 2019. Available online: https://nassgeodata.gmu.edu/CropScape/ (accessed on 29 January 2021).
- NRCS. Web Soil Survey—Home. 2012. Available online: https://websoilsurvey.sc.egov.usda.gov/App/HomePage.htm (accessed on 29 January 2021).
- Arthur, J.K. Hydrogeology, Model Description, and Flow Analysis of the Mississippi River Alluvial Aquifer in Northwestern Mississippi; US Department of the Interior, US Geological Survey: Reston, VA, USA, 2001. [CrossRef]
- Arnold, J.G.; Kiniry, J.R.; Srinivasan, R.; Williams, J.R.; Haney, E.B.; Neitsch, S.L. Input/Output Documentation, Soil Water Assessment Tool; Texas Water Resources Institute: College Station, TX, USA, 2012. Available online: https://swat.tamu.edu/media/69296/swat-io-documentation-2012.pdf (accessed on 25 August 2022).
- Neitsch, S.L.; Arnold, J.G.; Kiniry, J.R.; Williams, J.R. Soil and Water Assessment Tool Theoretical Documentation Version 2009; Texas Water Resources Institute: College Station, TX, USA, 2011. Available online: https://swat.tamu.edu/media/99192/swat2009-theory.pdf (accessed on 25 August 2022).
- Arnold, J.G.; Kiniry, J.R.; Srinivasan, R.; Williams, J.R.; Haney, E.B.; Neitsch, S.L. SWAT 2012 Input/Output Documentation; Texas Water Resources Institute: College Station, TX, USA, 2013. Available online: https://hdl.handle.net/1969.1/149194 (accessed on 25 August 2022).
- Dakhlalla, A.O.; Parajuli, P.B.; Ouyang, Y.; Schmitz, D.W. Evaluating the impacts of crop rotations on groundwater storage and recharge in an agricultural watershed. Agric. Water Manag. 2016, 163, 332–343. [Google Scholar] [CrossRef]
- Risal, A.; Parajuli, P.B. Evaluation of the Impact of Best Management Practices on Streamflow, Sediment and Nutrient Yield at Field and Watershed Scales. Water Resour. Manag. 2022, 36, 1093–1105. [Google Scholar] [CrossRef]
- Venishetty, V.; Parajuli, P.B. Assessment of BMPs by Estimating Hydrologic and Water Quality Outputs Using SWAT in Yazoo River Watershed. Agriculture 2022, 12, 477. [Google Scholar] [CrossRef]
- Williams, J.R.; Berndt, H.D. Sediment yield prediction based on watershed hydrology. Trans. ASAE 1977, 20, 1100–1104. [Google Scholar] [CrossRef]
- Gassman, P.W.; Reyes, M.R.; Green, C.H.; Arnold, J.G. The soil and water assessment tool: Historical development, applications, and future research directions. Trans. ASABE 2007, 50, 1211–1250. [Google Scholar] [CrossRef]
- Winchell, M.; Srinivasan, R.; Di Luzio, M.; Arnold, J. ArcSWAT Interface for SWAT2012: User’s Guide; Blackland Research & Extension Center, Texas A&M AgriLife Blackland Research & Extension Center: Temple, TX, USA, 2013; pp. 1–464.
- USGS. The National Map—Advanced Viewer. Nationalmap.Gov, 2019. Available online: https://apps.nationalmap.gov/viewer/ (accessed on 29 January 2021).
- NOAA, National Oceanic and Atmospheric Administration. 2021. Available online: https://www.ncdc.noaa.gov/ (accessed on 5 February 2021).
- TAMU. Global Weather Data for SWAT. Texas A&M University, 2020. Available online: https://swat.tamu.edu/data/ (accessed on 25 February 2022).
- MSU MAFES. MAFES—Variety Trials. 2020. Available online: https://www.mafes.msstate.edu/variety-trials/includes/forage/about.asp (accessed on 25 February 2022).
- Ni, X.; Parajuli, P.B. Evaluation of the impacts of BMPs and tailwater recovery system on surface and groundwater using satellite imagery and SWAT reservoir function. Agric. Water Manag. 2018, 210, 78–87. [Google Scholar] [CrossRef]
- Runkel, R.L.; Crawford, C.G.; Cohn, T.A. Load Estimator (LOADEST): A FORTRAN program for estimating constituent loads in streams and rivers. In Techniques and Methods; Geological Survey: Reston, VA, USA, 2004. [Google Scholar] [CrossRef]
- Niraula, R.; Kalin, L.; Srivastava, P.; Anderson, C.J. Identifying critical source areas of nonpoint source pollution with SWAT and GWLF. Ecol. Model. 2013, 268, 123–133. [Google Scholar] [CrossRef]
- Yen, H.; Jeong, J.; Feng, Q.; Deb, D. Assessment of input uncertainty in SWAT using latent variables. Water Resour. Manag. 2015, 29, 1137–1153. [Google Scholar] [CrossRef]
- Draper, N.R.; Smith, H. Applied Regression Analysis, 3rd ed.; John Wiley & Sons Inc.: New York, NY, USA, 1998; p. 26. [Google Scholar]
- Nash, J.E.; Sutcliffe, J.V. River flow forecasting through conceptual models part I—A discussion of principles. J. Hydrol. 1970, 10, 282–290. [Google Scholar] [CrossRef]
- Abbaspour, K.C. Swat-Cup 2012, SWAT Calibration Uncertainty Program—A User Manual; Swiss Federal Institute of Aquatic Science and Technology: Dübendorf, Switzerland, 2013. [Google Scholar]
- Wu, K.; Johnston, C.A. Hydrologic comparison between a forested and a wetland/lake dominated watershed using SWAT. Hydrol. Process. 2008, 22, 1431–1442. [Google Scholar] [CrossRef]
- Ikenberry, C.D.; Crumpton, W.G.; Arnold, J.G.; Soupir, M.L.; Gassman, P.W. Evaluation of existing and modified wetland equations in the SWAT model. JAWRA J. Am. Water Resour. Assoc. 2017, 53, 1267–1280. [Google Scholar] [CrossRef]
- Wang, X.; Yang, W.; Melesse, A.M. Using hydrologic equivalent wetland concept within SWAT to estimate streamflow in watersheds with numerous wetlands. Trans. ASABE 2008, 51, 55–72. [Google Scholar] [CrossRef]
- Almendinger, J.E.; Debjani, D.; Ahmadi, M.; Zhang, X.; Srinivasan, R. Constructing a SWAT Model of the St, Croix River Basin, Eastern Minnesota Western Wisconsin. 2015. Available online: https://npgallery.nps.gov/GetAsset/10ab6a21-d027-4380-b7fc-c5483b0592e4?/ (accessed on 25 August 2022).
- Babbar-Sebens, M.; Barr, R.C.; Tedesco, L.P.; Anderson, M. Spatial identification and optimization of upland wetlands in agricultural watersheds. Ecol. Eng. 2013, 52, 130–142. [Google Scholar] [CrossRef]
- Kim, H.; Parajuli, P.B. Impacts of reservoir outflow estimation methods in SWAT model calibration. Trans. ASABE 2014, 57, 1029–1042. [Google Scholar] [CrossRef]
- Barlow, J.R.B.; Clark, B.R. Simulation of Water-Use Conservation Scenarios for the Mississippi Delta Using an Existing Regional Groundwater Flow Model; US Department of the Interior, US Geological Survey: Reston, VA, USA, 2011. [CrossRef]
- Rostamian, R.; Jaleh, A.; Afyuni, M.; Mousavi, S.F.; Heidarpour, M.; Jalalian, A.; Abbaspour, K.C. Application of a SWAT model for estimating runoff and sediment in two mountainous basins in central Iran. Hydrol. Sci. J. 2008, 53, 977–988. [Google Scholar] [CrossRef]
- Benaman, J.; Shoemaker, C.A. An analysis of high-flow sediment event data for evaluating model performance. Hydrol. Process. 2005, 19, 605–620. [Google Scholar] [CrossRef]
- Oliver, M.A.; Webster, R. Kriging: A method of interpolation for geographical information systems. Int. J. Geogr. Inf. Sci. 1990, 4, 313–332. [Google Scholar] [CrossRef]
- YMD. 2019. Available online: https://www.ymd.org/ (accessed on 28 September 2022).
- Moriasi, D.N.; Gitau, M.W.; Pai, N.; Daggupati, P. Hydrologic and water quality models: Performance measures and evaluation criteria. Trans. ASABE 2015, 58, 1763–1785. [Google Scholar] [CrossRef]
- Abbaspour, K.C.; Rouholahnejad, E.; Vaghefi, S.; Srinivasan, R.; Yang, H.; Kløve, B. A continental-scale hydrology and water quality model for Europe: Calibration and uncertainty of a high-resolution large-scale SWAT model. J. Hydrol. 2015, 524, 733–752. [Google Scholar] [CrossRef]
- Arnold, J.; Muttiah, R.; Srinivasan, R.; Allen, P. Regional estimation of base flow and groundwater recharge in the Upper Mississippi river basin. J. Hydrol. 2000, 227, 21–40. [Google Scholar] [CrossRef]
- Parajuli, P.B.; Nelson, N.O.; Frees, L.D.; Mankin, K.R. Comparison of AnnAGNPS and SWAT model simulation results in USDA-CEAP agricultural watersheds in south-central Kansas. Hydrol. Process. 2009, 23, 748–763. [Google Scholar] [CrossRef]
- Choukri, F.; Raclot, D.; Naimi, M.; Chikhaoui, M.; Nunes, J.P.; Huard, F.; Hérivaux, C.; Sabir, M.; Pépin, Y. Distinct and combined impacts of climate and land use scenarios on water availability and sediment loads for a water supply reservoir in northern Morocco. Int. Soil Water Conserv. Res. 2020, 8, 141–153. [Google Scholar] [CrossRef]
- El-Sadek, A.; Irvem, A. Evaluating the impact of land use uncertainty on the simulated streamflow and sediment yield of the Seyhan River basin using the SWAT model. Turk. J. Agric. For. 2014, 38, 515–530. [Google Scholar] [CrossRef]
- White, K.L.; Chaubey, I. Sensitivity analysis, calibration, and validations for a multisite and multivariable SWAT model 1. JAWRA J. Am. Water Resour. Assoc. 2005, 41, 1077–1089. [Google Scholar] [CrossRef]
- Shrestha, M.K.; Recknagel, F.; Frizenschaf, J.; Meyer, W. Assessing SWAT models based on single and multi-site calibration for the simulation of flow and nutrient loads in the semi-arid Onkaparinga catchment in South Australia. Agric. Water Manag. 2016, 175, 61–71. [Google Scholar] [CrossRef]
- Chu, T.W.; Shirmohammadi, A.; Montas, H.; Sadeghi, A. Evaluation of the SWAT model’s sediment and nutrient components in the Piedmont physiographic region of Maryland. Trans. ASAE 2004, 47, 1523–1538. [Google Scholar] [CrossRef]
- Luscz, E.C.; Kendall, A.D.; Hyndman, D.W. High resolution spatially explicit nutrient source models for the Lower Peninsula of Michigan. J. Great Lakes Res. 2015, 41, 618–629. [Google Scholar] [CrossRef]
- Dakhlalla, A.O.; Parajuli, P.B. Assessing model parameters sensitivity and uncertainty of streamflow, sediment, and nutrient transport using SWAT. Inf. Process. Agric. 2019, 6, 61–72. [Google Scholar] [CrossRef]
- Freeze, R.A.; Cherry, J.A. Groundwater; Prentice-Hall Inc.: Englewood Cliffs, NJ, USA, 1979; Volume 7632, p. 604. [Google Scholar]
- Singh, A.; Rudra, R.; Yang, W.H. Adapting SWAT for riparian wetlands in an Ontario watershed. In Proceedings of the 3rd International SWAT Conference, Zürich, Switzerland, 11–15 July 2005; pp. 123–131. Available online: https://swat.tamu.edu/docs/swat/conferences/2005/SWAT%20Book%203rd%20Conference.pdf (accessed on 25 August 2022).
- Elder, J.F.; Goddard, G. Sediment and Nutrient Trapping Efficiency of a Constructed Wetland Near Delavan Lake, Wisconsin, 1993–1995; US Geological Survey: Reston, VA, USA, 1996. [CrossRef]
- Tuppad, P.; Santhi, C.; Srinivasan, R.; Williams, J.R. Best Management Practice (BMP) Verification Using Observed Water Quality Data and Watershed Planning for Implementation of BMPs. TSSWCB Project 04-I8. 2009. Available online: https://www.tsswcb.texas.gov/sites/default/files/files/programs/nonpoint-source-managment/Completed%20Projects/04-18-FR-RICHLNDBMP-09-21-10.pdf (accessed on 25 August 2022).
- Wang, X.; Shang, S.; Qu, Z.; Liu, T.; Melesse, A.M.; Yang, W. Simulated wetland conservation-restoration effects on water quantity and quality at watershed scale. J. Environ. Manag. 2010, 91, 1511–1525. [Google Scholar] [CrossRef]
Variable | Parameter Name | Description | Fitted Value | Min. Value | Max. Value |
---|---|---|---|---|---|
Streamflow | r___CN2.mgt a | SCS curve number | −0.09 | −0.15 | 0.02 |
v__ESCO.hru b | Soil evaporation compensation factor | 0.41 | 0.13 | 0.80 | |
v__CH_N2.rte | Manning’s roughness for the main channel | 0.004 | 0.004 | 0.01 | |
v__OV_N.hru | Manning’s roughness for overland flow | 0.35 | 0.20 | 0.36 | |
v__SURLAG.bsn | Surface runoff lag coefficient | 5.96 | 4.00 | 9.50 | |
r__SOL_K.sol | Saturated hydraulic conductivity of soil layers (mm/h) | −0.24 | −0.24 | 0.27 | |
v__ALPHA_BF.gw | Baseflow alpha factor (1/days) | 0.73 | 0.44 | 0.81 | |
v__GW_DELAY.gw | Groundwater delay (days) | 299.74 | 100.22 | 300.08 | |
v__GW_REVAP.gw | Coefficient of groundwater “revap” | 0.11 | 0.00 | 0.13 | |
v__SFTMP.bsn | Snowfall temperature (°C) | −4.61 | −5.00 | 0.77 | |
r__SLSOIL.hru | Slope length for lateral subsurface flow (m) | 0.45 | 0.18 | 0.50 | |
r__SLSUBBSN.hru | Average slope length (m) | 0.03 | −0.20 | 0.09 | |
v__GWQMN.gw | Threshold water depth in shallow aquifer to trigger return flow (mm) | 867.78 | 795.84 | 3598.66 | |
r__SOL_AWC.sol | Available water capacity of soil layer (mm/mm) | −0.50 | −0.50 | 0.07 | |
TSS | v__USLE_P.mgt | Universal Soil Loss Equation (USLE) support practice factor | 0.76 | 0.59 | 0.77 |
r__USLE_K.sol | USLE soil erodibility factor | −0.51 | −0.51 | −0.44 | |
r__HRU_SLP.hru | Average slope steepness (m/m) | 0.27 | 0.27 | 0.40 | |
v__CH_ERODMO.rte | Monthly channel erodibility factor | 0.03 | 0.00 | 0.08 | |
r__USLE_C.plant.dat | USLE crop cover factor | −0.18 | −0.20 | −0.13 | |
v__PRF_BSN.bsn | Main channel peak rate adjustment factor for sediment routing | 0.14 | 0.08 | 0.16 | |
v__SPEXP.bsn | Exponent parameter to calculate sediment re-entrained in channel sediment routing | 1.08 | 1.01 | 1.14 | |
v__CH_COV1.rte | Channel erodibility factor | 0.00 | −0.01 | 0.06 | |
v__CH_COV2.rte | Channel cover factor | 0.16 | 0.14 | 0.17 | |
v__SPCON.bsn | Linear parameter to calculate sediment re-entrained during channel sediment routing | 0.00 | 0.00 | 0.00 | |
v__ADJ_PKR.bsn | Peak rate adjustment factor for sediment routing in tributary channels | 1.59 | 1.47 | 1.62 | |
v__LAT_SED.hru | Lateral and groundwater flow sediment concentration (mg/L) | 1408.48 | 1355.95 | 1451.99 | |
TP | v__PHOSKD.bsn | Coefficient of phosphorus soil partitioning (m3/Mg) | 120.48 | 94.08 | 125.65 |
v__PPERCO.bsn | Coefficient of phosphorous percolation (10 m3/Mg) | 10.67 | 10.19 | 11.21 | |
v__BC4.swq | Rate constant for mineralization of organic phosphorus to dissolved phosphorus (day−1) | 0.14 | 0.02 | 0.17 | |
v__RS2.swq | Benthic source rate for dissolved phosphorus (P) (mgP/(m2 day)) | 0.03 | 0.02 | 0.06 | |
v__RS5.swq | Settling rate of organic phosphorus (day−1) | 0.02 | 0.01 | 0.04 | |
v__PSP.bsn | Phosphorus availability index | 0.35 | 0.29 | 0.55 | |
v__P_UPDIS.bsn | Phosphorus uptake distribution | 20.52 | 20.37 | 61.12 | |
v__ERORGP.hru | Phosphorus enrichment ratio for loading with sediment | 0.41 | 0.10 | 2.91 | |
TN | v__SHALLST_N.gw | Initial nitrate concentration in shallow aquifer (mgN/L) | 571.12 | 421.99 | 807.34 |
v__RCN.bsn | Nitrogen concentration in rainfall (mgN/L) | 6.60 | 4.92 | 9.80 | |
v__NPERCO.bsn | Nitrate percolation coefficient | 0.06 | 0.00 | 0.15 | |
v__CMN.bsn | Humus mineralization rate factor of active nutrients | 0.0014 | 0.0013 | 0.002 | |
v__SOL_NO3().chm | Initial concentration of NO3 in soil layer (ppm) | 5.86 | 0.00 | 45.65 | |
v__FRT_SURFACE.mgt | Fertilizer fraction applied to top 10 mm of soil | 0.92 | 0.75 | 1.00 |
Wetland Parameters | Parameter Values in Previous Studies | References | Calibrated/Used Values |
---|---|---|---|
Depth of wetland | 0.2 m | [59] | 0.9 m |
0.6 m and 0.67 m | [60] | ||
0.85 m | [61] | ||
1 m | [62] | ||
Maximum surface area | 6643 ha (subbasin 15); 4866 ha (subbasin 33) | ||
Maximum volume | 9566 ha-m (subbasin 15); 7007 ha-m (subbasin 33) | ||
Initial water volume | 0 | [63] | 0 |
Initial sediment concentration | 0 | ||
Equilibrium sediment concentration | 200 mg/L | ||
Hydraulic conductivity | 0.2 mm/h for reservoir simulation | [64] | 0.15 mm/h |
P and N settling rate | 5 to 20 m/year | [39] | 12 m/year and 11 m/year |
Sub-Watersheds | Sub-Watershed Area (km2) | Wetland Areas (km2) | ||
---|---|---|---|---|
Year 2008 | Year 2014 | Year 2020 | ||
15 | 245.24 | 23.08 | 25.75 | 26.57 |
33 | 214.39 | 15.40 | 17.97 | 19.46 |
Station | Calibration | Validation | ||||||
---|---|---|---|---|---|---|---|---|
P-Factor | R-Factor | R2 | NSE | P-Factor | R-Factor | R2 | NSE | |
Merigold | 0.87 | 0.86 | 0.72 | 0.70 | 0.79 | 0.84 | 0.60 | 0.60 |
Sunflower | 0.78 | 0.74 | 0.76 | 0.76 | 0.85 | 0.84 | 0.87 | 0.84 |
Leland | 0.68 | 0.80 | 0.70 | 0.64 | 0.76 | 1.26 | 0.82 | 0.79 |
Station | Calibration | Validation | ||||||
---|---|---|---|---|---|---|---|---|
P-Factor | R-Factor | R2 | NSE | P-Factor | R-Factor | R2 | NSE | |
Merigold | 0.83 | 0.67 | 0.80 | 0.72 | 0.72 | 1.10 | 0.68 | 0.62 |
Sunflower | 0.83 | 0.76 | 0.88 | 0.85 | 0.56 | 0.37 | 0.77 | 0.48 |
Leland | 0.78 | 0.75 | 0.83 | 0.82 | 0.61 | 1.98 | 0.94 | 0.56 |
Station | Calibration | Validation | ||||||
---|---|---|---|---|---|---|---|---|
P-Factor | R-Factor | R2 | NSE | P-Factor | R-Factor | R2 | NSE | |
Merigold | 0.89 | 1.35 | 0.50 | 0.40 | 0.56 | 0.25 | 0.50 | 0.05 |
Sunflower | 0.94 | 2.11 | 0.86 | 0.84 | 0.44 | 0.25 | 0.81 | 0.30 |
Leland | 0.94 | 1.95 | 0.40 | 0.23 | 0.50 | 0.29 | 0.95 | 0.53 |
Station | Calibration | Validation | ||||||
---|---|---|---|---|---|---|---|---|
P-Factor | R-Factor | R2 | NSE | P-Factor | R-Factor | R2 | NSE | |
Merigold | 0.61 | 0.57 | 0.37 | 0.30 | 0.44 | 0.61 | 0.30 | 0.04 |
Sunflower | 0.56 | 0.59 | 0.61 | 0.56 | 0.56 | 0.58 | 0.50 | 0.32 |
Leland | 0.94 | 1.18 | 0.90 | 0.84 | 0.69 | 0.52 | 0.71 | 0.50 |
Variables | Sub-Watershed | Reduction % | Reduction Increase% (2008–2014) | Reduction Increase% (2014–2020) | Reduction Increase% (2008–2020) | ||
---|---|---|---|---|---|---|---|
Year 2008 | Year 2014 | Year 2020 | |||||
Streamflow | 15 | 8.7 | 9.5 | 11 | 0.8 | 1.5 | 2.3 |
33 | 1.5 | 1.7 | 2.1 | 0.2 | 0.4 | 0.6 | |
TSS | 15 | 86.1 | 87.2 | 89.1 | 1.1 | 1.9 | 3 |
33 | 18.8 | 26.3 | 55.6 | 7.5 | 29.3 | 36.8 | |
TN | 15 | 39.5 | 42.0 | 42.7 | 2.5 | 0.7 | 3.2 |
33 | 9.6 | 11.0 | 12.8 | 1.4 | 1.8 | 3.2 | |
TP | 15 | 31.3 | 40.0 | 44.1 | 8.7 | 4.1 | 12.8 |
33 | 7.7 | 10.9 | 13.5 | 3.2 | 2.6 | 5.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nepal, D.; Parajuli, P.; Ouyang, Y.; To, F.; Wijewardane, N.; Venishetty, V. Evaluation of Wetland Area Effects on Hydrology and Water Quality at Watershed Scale. Resources 2024, 13, 114. https://doi.org/10.3390/resources13080114
Nepal D, Parajuli P, Ouyang Y, To F, Wijewardane N, Venishetty V. Evaluation of Wetland Area Effects on Hydrology and Water Quality at Watershed Scale. Resources. 2024; 13(8):114. https://doi.org/10.3390/resources13080114
Chicago/Turabian StyleNepal, Dipesh, Prem Parajuli, Ying Ouyang, Filip To, Nuwan Wijewardane, and Vivek Venishetty. 2024. "Evaluation of Wetland Area Effects on Hydrology and Water Quality at Watershed Scale" Resources 13, no. 8: 114. https://doi.org/10.3390/resources13080114
APA StyleNepal, D., Parajuli, P., Ouyang, Y., To, F., Wijewardane, N., & Venishetty, V. (2024). Evaluation of Wetland Area Effects on Hydrology and Water Quality at Watershed Scale. Resources, 13(8), 114. https://doi.org/10.3390/resources13080114