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Abstract: Biomass continues to play a key role as an alternative to fossil fuels. Woody biomass
produces lower greenhouse gas emissions than fossil fuels. However, in order to consider biomass as
‘green energy’, a number of factors should be taken into account, including the characterization of the
quality of the resource. Therefore, monitoring quality parameters, such as moisture, ash, N content, is
essential to assess the sustainability of biomass for energy production. This paper presents the results
of laboratory analyses performed on wood chip samples from four Italian regions over a five-year
period (2019–2023). In particular, all quality parameters defined by ISO 17225-9 for industrial wood
chips were assessed. Data were analyzed using descriptive, parametric, non-parametric statistics,
and multivariate analysis. An interest in quality monitoring has been observed, indicated by an
increase in the number of samples received from suppliers and an enhancement in the average values
of quality parameters. Moreover, an overall decrease in moisture and N content has been observed,
while ash content and heating value have undergone non-linear variations. Statistically significant
quality differences between samples from different regions may be the result of different practices,
such as outdoor or indoor storage, climate differences, different biomass growth conditions.

Keywords: advanced statistics; bioenergy; multivariate analysis; qualitative analysis; solid biofuels;
sustainability; wood chips

1. Introduction

According to the latest report from the European Parliament’s 2023 Committee [1],
solid biomass continues to play a key role as an alternative to fossil fuels. While a variety
of biomasses are used, such as agricultural residues and prunings from vineyards and olive
trees [2], forestry (woody) biomass is the most widely used by Member States [1]. Eurostat
data from 2020 indicates that approximately 32% of Italy’s territory is forested, translating
to an estimated 1,424,400 thousand cubic meters of available wood [3]. Moreover, this
forested area has been steadily increasing, growing by 26% between 1990 and 2020 [4].

Despite the significant availability of woody biomass in Italy, its potential is not fully
exploited in some regions, particularly in northern Italy [5]. Similar underutilization is
observed in other parts of the country, excluding a few areas in central and southern Italy [6].
Contributing factors to the under-exploitation include challenging land morphology, which
makes wood resources difficult to access, and the fragmentation of forest property [7,8].
However, recent European incentives and policies [9] have spurred the development of
biomass-fueled thermal power plants [10,11]. Furthermore, countries outside Europe are
also embracing biomass for sustainable energy production [12,13].

Woody biomasses emit fewer greenhouse gases (GHGs) compared to fossil fuels [14,15].
However, to consider biomass as ‘green energy’, several factors must be considered, in-
cluding supply chain sustainability [16,17] and resources’ quality characterization [16,18],
which directly impact energy capacity and combustion efficiency [19,20]. Indeed, moisture
content significantly affects combustion efficiency, with higher moisture levels increasing
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carbon monoxide (CO) emissions and thermal load [19,21]. Similarly, higher nitrogen
content in biomass leads to increased nitrogen oxide (NOx) emissions [22].

Biomasses’ quality also influences its economic value due to contracts between power
plants and suppliers being based on parameters such as calorific value and consequently
on the moisture content of the supplied biofuel. Therefore, monitoring these quality param-
eters is essential for assessing the sustainability of biomass for energy production [23,24].

In the context of ensuring biomasses’ quality, ISO standards come into play. Specifically,
the ISO 17225-1 [25] standard outlines the specifications and classification of solid biofuels,
while ISO 17225-9 [26] specifically addresses wood chips for industrial use, identifying four
quality Classes ranging from I1 to I4. For example, the moisture content for Class I1 must
be ≤ 45% of the sample weight, whereas Class I4 allows values ≤ 60%.

Since 2013, the Biomass Laboratory at the Polytechnic of Marche has been dedicated to
the qualitative analysis of woody and herbaceous biomasses, such as wood chips, pellets,
sorghum, and corn. Over time, an increasing number of operators in the sector, such as
suppliers and power plants, have come to rely on the Biomass Laboratory for the qualitative
monitoring of their materials. This has led to the acquisition of a significant amount of
data. A critical analysis of the overall quality of biomasses in Italy over a five-year period
is therefore presented, focusing specifically on wood chips, highlighting a temporal and
geographical difference between samples. To the best of the authors’ knowledge, this is
the first study in Italy to assess biomass quality using an extensive database of laboratory
analyses, rather than relying solely on literature data. As a result, the data presented here
provide a robust foundation for future research and discussions on woody biomass for
energy production.

2. Materials and Methods

This study presents the results of qualitative analyses performed on wood chip sam-
ples from four Italian regions over a five-year period (2019–2023). The samples were
received from different suppliers and analyzed according to their specific requirements.
The required analyses, performed according to standard methodology, included the assess-
ment of moisture content (MC, ISO 18134-2 [27]), ash content (ASH, ISO 18122 [28]), heating
value (HV, ISO 18125 [29]), organic chemical composition (C, H, N–ISO 16948 [30]), and
chlorine and sulfur content (Cl, S–ISO 16994 [31]). The total number of samples analyzed
from each region was as follows: 5356 from Emilia-Romagna (central-northern Italy, with
subcontinental and sublittoral climate), 1642 from Calabria (southern Italy, mostly char-
acterized by warm temperate climate), 440 from Sicilia (isle in southern Italy, with warm
temperate-sublittoral climate and some subcontinental areas), and 280 from Sardegna (isle
in western Italy, with predominantly warm temperate and sublittoral climate).

The data obtained from the qualitative analyses were then subjected to various statisti-
cal analyses, ranging from descriptive statistics, parametric, non-parametric statistics, and
multivariate analysis. The data were compared with the limit values defined for quality
Classes in ISO 17225-9 in order to assess whether the annual averages were compatible
with the values defined in the standard, with the exception of net heating value (NHV), for
which no limit values were defined. Lastly, in descriptive, parametric, and non-parametric
statistics, oxygen (O) values (obtained from the measured values of C, H, N) were not taken
into account.

2.1. Descriptive Statistics and Quality Mapping

Firstly, descriptive statistics, such as mean, standard deviation (σ), median, and inter-
quartile range (IQR), were used to process data from the samples obtained from the four
regions over the five-year period. Analyses’ results were used to create thematic maps
to support the visualization of trends in biomass quality over time. Thematic maps were
produced using QGIS (version 3.34.7 LTR) for the most relevant qualitative parameters,
specifically those in which biomass suppliers have the greatest interest and therefore
demand for analysis. Therefore, the mapped parameters included MC, NHV, and N.
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Interpretation of the thematic maps, which provide information on the mean and median
values of the displayed parameters, is facilitated by the use of colors that increase in
saturation as the magnitude of the data displayed increases.

2.2. Parametric and Non-Parametric Statistics

For each considered region, the data obtained over the course of the five-year period
were combined, resulting in four data sets that were subjected to advanced statistical
analysis. The statistical analysis focused mainly on the data related to the main biomass
quality parameters, namely MC, NHV, ASH, and N. Anderson–Darling normality tests
(AD), quantile–quantile plots (Q-Q), and one-way analysis of variance (ANOVA) were
carried out for each main parameter to assess whether the qualitative average differences
between regions were statistically significant. Tukey’s HSD test was carried out to assess
which region differed from the others. For non-normal data, Kruskal–Wallis (KW) was
used to evaluate significant differences among regional medians, followed by Dunn’s Test
(DT) to assess which pair of regions differed from the others.

To assess the strength of the evidence against the null hypothesis (p), both parametric
and non-parametric analyses were performed with a significance level (α) of 0.05. Specifi-
cally, in AD, a p-value < α indicates a rejection of the assumption of normality, while for
ANOVA and KW, a p-value < α, indicates a statistically significant difference among the
datasets. Furthermore, the F statistic (F) in ANOVA and the H statistic (H) in the Kruskal–
Wallis test were reported to highlight the magnitude of differences between datasets; larger
values indicate greater differences. Lastly, where deemed useful for the interpretation of the
data, the asymmetry of data distribution was also monitored by assessing data’s skewness.

The aforementioned analyses have been carried out with Python 3.11 and libraries
such as Pandas [32], Scipy [33], Matplotlib [34], and Statsmodels [35].

2.3. Multivariate Analysis

Principal Component Analysis (PCA) has been carried out to extract and explore
the statistical variance of datasets based on the main physical and chemical parameters.
Thus, the original dataset has been converted into a new and reduced and simplified space
created by the orthogonal components (Principal Components, or PCs) which explain
the maximum variance of the dataset [36,37]. Considering the different scales of each
parameter, PCA was performed after data normalization.

Two different approaches have been used to study the quality parameters, namely
the variables:

(i) Spatial analysis (SA): Annual data from the four regions were combined to produce
five matrices (one per year, containing data from the four regions), which were used to
investigate the possibility of a spatial variation in biomass quality due to climatic influences.

(ii) Temporal analysis (TA): Regional data collected over the five years were combined
into four matrices (one per region, containing data collected over the whole period for each
region), which were used to examine the internal quality of the regions.

Despite the considerable amount of data collected, the dataset lacked comprehensive
results for some samples due to the different requirements of each supplier. Therefore, the
database used to develop the PCA was pre-processed to remove incomplete data. This
allowed all the variables to be used correctly, thus creating a consistent scenario of the
relationship between them. For this reason, Pearson’s analysis was also employed to
assess the degree and type of correlation between the variables considered. Variables with
r < ±0.4 were not considered.
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The main results of interest from the PCA have been graphically presented in their
corresponding biplot, which brings together the sample distribution (provided by the score
plot) and the attributable influence of the variables (provided by the loading plot) to detect
the nature and degree of their correlation [38]. Matlab R2021a (ver.9.10) software was used
to perform the PCA analysis, using built-in scripts.

3. Results and Discussions
3.1. Descriptive, Parametric, and Non-Parametric Statistics

The results of the descriptive analyses, displayed in thematic maps in the final section
of the paper, have been combined with the results of the parametric and non-parametric
statistics, reporting the main outcomes of each investigated parameter.

3.1.1. Moisture Content

During the five-year period, the number of MC analyses performed on samples from
each region were 5111 from Emilia-Romagna, 1642 from Calabria, 280 from Sardegna, and
440 from Sicilia (Table 1). For the avoidance of any misunderstanding, the mean MC values
are given in % followed by σ, while the relative annual variation between the mean MC is
given in % without σ (i.e., a 10% increase in MC 40%, σ = 5.0, corresponds to an MC of 44%,
σ = 5.0).

Table 1. Summary of MC data acquired during the 5-year period. Yearly mean values, as well as
yearly quartiles (Q1, Q2, and Q3), are reported as a percentage of as-received mass.

Moisture Content (% a.r.)

Region Year N. Samples Mean St. Dev. Q1 Q2 Q3

EMILIA
-

ROMAGNA

2019 465 39.3 7.8 34.2 40.7 44.3
2020 800 39.3 8.1 34.3 39.9 44.1
2021 1143 37.8 8.3 34.4 40.3 45.2
2022 1266 37.6 9.4 31.5 37.6 44.4
2023 1437 38.3 8.3 32.7 38.6 44.2

2019 123 45.3 7.6 41.8 45.9 49.4
2020 91 46.5 7.5 41.6 47.5 52.2

CALABRIA 2021 212 38.1 10.6 31.9 40.5 45.6
2022 622 40.7 7.7 36.1 41.2 45.9
2023 594 41.0 8.5 35.5 41.2 47.3

2019 72 36.8 7.3 30.8 38.2 42.4
2020 48 35.7 8.9 30.1 36.6 42.6

SARDEGNA 2021 56 39.2 7.9 34.5 40.1 44.6
2022 58 41.0 9.1 35.7 44.4 48.2
2023 46 42.7 7.4 40.6 44.8 48.0

2019 94 28.7 7.1 23.9 30.4 34.1
2020 89 29.3 6.3 24.9 28.6 33.6

SICILIA 2021 98 29.6 8.0 22.7 30.3 36.2
2022 91 27.3 7.7 23.3 28.0 31.6
2023 68 23.5 7.1 19.0 23.1 28.6

The number of samples received from Emilia-Romagna showed a steady increase
throughout the study period, with the most significant increase occurring between 2019
and 2020 when the number of samples rose from 465 to 800. Overall, the number of samples
analyzed increased by 209% between 2019 and 2023. The average annual MC values ranged
between 37% and approximately 40% with positive and negative fluctuations during the
entire period. Between 2020 and 2021, MC decreased from an average MC of 39.3% (σ = 8.1)
to 37.8% (σ = 8.3) to finally increase to 38.3% (σ = 8.3) in 2023. Finally, greater variability in
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MC values from the region was suggested by the trend of the IQR over time, which tended
to increase. Lastly, Emilia-Romagna’s samples presented eligible MC values to quality
Class I1 (required MC ≤ 45%) for the entire period.

The number of samples analyzed from Calabria varied significantly over the years.
After a decrease of 26% between 2019 and 2020, there was a remarkable increase of 193.4%
between 2021 and 2022. Overall, the number of samples analyzed grew by 382% from
2019 to 2023, rising from 123 samples to 594. Similarly to the previous region, samples
from Calabria have shown varying MC levels over time, consistently remaining higher
than those from Emilia-Romagna. Notably, the average MC was particularly high in 2020,
reaching 46.5% (σ = 7.5). However, there was a significant decrease in MC between 2019
and 2023, thus going from 45.3% (σ = 7.6) to 41% (σ = 8.5), juxtaposed by a 53.82% increase
in IQR. Nevertheless, Calabria samples showed MC values falling into quality Class I1,
with the exception of the first two years, which were characterized by values falling into
Class I2 (≤50%).

Sardegna was the region from which the fewest samples were obtained, with 72 sam-
ples obtained in 2019, decreasing to 46 in 2023. While the first two years resulted in lower
MC values than in Emilia-Romagna and Calabria, the following years were character-
ized by a steady increase, culminating in average MC values in 2023 of 42.7% (σ = 7.4),
a percentage increase of 16% compared to 2019. Of further note, the IQR decreased by
36% between 2019–2023, indicating less variability in MC values over time. Moreover,
Sardegna’s samples presented MC values fitting to quality Class I1 for the entire period.

Over time, the number of samples received from suppliers located in Sicilia has
remained constant, with only one decrease of around 25% between 2022 and 2023, thus
from 91 samples to 68. As well as having the lowest MC values compared to the other
regions, the annual values decreased by 18% over the whole period, starting from an MC of
28.7% (σ = 7.1) and reaching an MC value of 23.5% (σ = 7.1) in 2023. With a lower MC than
other regions, samples from Sicilia fall within quality Class I1. There was also an overall
decrease in the IQR, an indication of greater similarity between samples in the level of MC.

When testing MC data for normality, the AD test failed to reject the null hypothesis,
indicating that MC data of the four regions followed a normal distribution, with p-values
of 0.78 for Calabria, Emilia-Romagna, and Sicilia and 0.77 for Sardegna [39]. Q–Q plots
confirmed the results of AD (Figure 1) [40], revealing, however, a slightly left-skewed
distribution in Sicilia’s (skew = −0.27) and Sardegna’s (skew = −0.61) data, indicating
a tendency for the data to be composed values above the average [41,42]. A statistically
significant difference was found between the regional MC means (F = 279.41, p < 0.00).
Tukey’s test showed that the difference in MC was statistically significant for each pair of
regions, except for the pair Emilia–Sardegna (p = 0.97) [42] (Figure 2), respectively, with
an average MC of 38.4% (σ = 8.4) and 39.1% (σ = 7.2). The difference in the average MC
may have depended on several factors, such as the way the samples were transported and
stored after chipping, and the time interval between chipping and sealing of the sample in
the sealed envelopes received at the laboratory [43]. Another factor could be the sampling
method performed by suppliers. In particular, if samples are consistently gathered from
the inner section of a pile, thus the moister section, rather than sampling according to the
standard methodology [44], this could systematically result in an overestimation of the MC
of the pile.
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Figure 2. Multiple comparison test highlighting the difference among regional annual mean values
except for Sardegna and Emilia-Romagna. Black dots indicate the 5-yearly period mean regional val-
ues, while lines indicate the confidence intervals for the mean differences, whereas non-overlapping
intervals indicate significant differences.
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3.1.2. Net Heating Value

A total of 6664 HV analyses were conducted. There were, specifically, 4941 from
Emilia-Romagna, 1033 samples from Calabria, 250 from Sardegna, and 440 from Sicilia
(Table 2).

Table 2. Summary of NHV data acquired during the 5-year period. Yearly mean values, as well as
yearly quartiles (Q1, Q2, and Q3), are reported as a percentage of as-received mass.

Net Heating Value (J/g a.r.)

Year N. Samples Mean St. Dev. Q1 Q2 Q3

EMILIA
-

ROMAGNA

2019 315 10,421 1590 9330 10,360 11,556
2020 800 10,052 1611 9058 10,038 11,020
2021 1197 10,277 1707 8669 9816 10,966
2022 1266 10,258 2009 8748 10,207 11,612
2023 1427 10,086 1733 8885 10,031 11,253

CALABRIA

2019 10 9280 515 8847 9505 9609
/

2021 11 11,102 2279 9816 11,588 11,773
2022 516 9676 1622 8627 9569 10,598
2023 496 9731 1705 8542 9573 10,840

SARDEGNA

2019 52 10,673 1411 9534 10,423 11,763
2020 48 11,005 1915 9521 10,707 12,393
2021 46 10,045 1640 9067 9838 11,013
2022 58 9669 1946 8311 8832 10,896
2023 46 9406 1619 8244 8930 9740

SICILIA

2019 94 12,028 1537 10,884 11,712 12,990
2020 89 11,979 1349 11,018 11,981 12,893
2021 98 11,746 1767 10,279 11,518 13,381
2022 91 12,024 1737 10,900 12,108 13,148
2023 68 12,934 1628 11,710 12,941 13,992

As with the MC analysis, the number of samples for NHV analysis received from
Emilia-Romagna increased steadily, with the largest increase occurring between 2019 and
2020 when the number of samples increased from 315 up to 800. Between 2019 and 2023, the
number of samples increased by 305%. NHV, like MC, due to its correlation, showed annual
average variations. The highest annual mean was recorded in 2019 (10,420 J/g, σ = 1590).
Despite the reduction of MC values in the following years, NHV did not reach similar
values. This may be due to factors in addition to MC, such as the inherent variability in the
samples, their number, and the influence of other properties, such as ash content. Between
2020 and 2021, NHV increased by 2.24% from 10,052 J/g (σ = 1610) to 10,277 (σ = 1707) due
to the decrease in MC values. In 2022, the average NHV remained unchanged, but in 2023,
the NHV decreased slightly by 1.68%. Overall, the NHV decreased by 3.21% between 2019
and 2023, from 10,420 J/g (σ = 1590) to 10,085 J/g (σ = 1733). Finally, the IQR increased by
6.45% over the whole period, indicating increased variability in the data.

For Calabria, the total number of samples analyzed for NHV in the first three years
was only 21. This suggests that during the first triennium, NHV was not the main interest
of suppliers. However, 516 samples were analyzed in 2022 and 496 in 2023. Between 2022
and 2023, NHV increased slightly by 0.57%, from 9675 J/g (σ = 1621) to 9731 (σ = 1705).

As in the case of MC, Sardegna was the region with the lowest number of samples
analyzed for NHV, and the number of samples remained constant over the whole period. As
expected, the first two years with the lowest MC values led to the highest NHV, 10,673 J/g
(σ = 1411) in 2019 and 11,004 J/g (σ = 1914) in 2020. In the following years, the increase in
MC led to a decrease in NHV. In particular, an overall decrease of 12% was observed over
the whole 5-year period, reaching 9406 J/g (σ = 1618) in 2023. At the same time, the IQR
decreased by 33%, indicating a greater homogeneity of NHVs over time.
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The same number of samples from Sicilia analyzed for MC were also analyzed for
NHV. As the region whose samples had the lowest MC, the samples analyzed resulted
in the highest NHVs. Specifically, NHV increased by 8% over the 5-year period, starting
from 12,028 J/g (σ = 1536) and reaching 12,933 J/g (σ = 1627) in 2023. However, the IQR
showed strong fluctuations; e.g., in the period 2020–2021, the IQR increased by 65.5%,
only to decrease by 27.5% the following year. Overall, the IQR increased by 8% from 2019
to 2023.

The AD test did not reject the null hypothesis of normality, indicating that the NHV
data followed a normal distribution, with p-values of 0.78 for Calabria, Emilia-Romagna,
and Sicilia and 0.77 for Sardegna. The Q–Q plots confirmed the normality of [39] the
data [40,45], although, as expected, given MC’s left-skew [46], they also highlighted a
right-skewed tendency for Sardegna (skew = 0.68) and a lighter right-skew tendency in
Sicilia’s data (skew = 0.17), indicating a higher frequency of a lower NHV (Figure 3) [41].
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Figure 3. Quantile–quantile plots of NHV data. The blue points represent individual data values,
while the red line represents the theoretical normal distribution. Calabria and Emilia-Romagna
(Emilia) points fit the theoretical normal distribution almost perfectly. Sardegna and Sicilia show
a slight right-skewing of the data, highlighted by the ends of the dataset (blue dots) above the
theoretical line.

A statistically significant difference was observed in the mean NHVs among regions
(F = 202.92, p < 0.00). Tukey’s test rejected the null hypothesis for each pair of regions,
confirming significant differences except for the Emilia–Sardegna pair (p = 0.96), Ref. [42]
with an average NHV of 10,218 J/g (σ = 1730) for the former and 10,159 J/g (σ = 1706) the
latter (Figure 4).
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The NHV results reflect what was expected from the MC results. In fact, MC has
a significant negative effect on the NHV, interfering with the combustion kinetics and
reducing the calorific value of the sample [46]. Furthermore, by comparing the Q–Q plots
of MC and NHV, it is possible to observe inverse trends in the data distributions, which
are concave for MC and convex for NHV, highlighting the inverse correlation between
these parameters.

3.1.3. Ash Content

The following ash analyses were carried out on samples from each region during the
five-year period: 5356 for Emilia-Romagna, 1259 for Calabria, 250 for Sardegna, and 440 for
Sicilia (Table 3).

Throughout the period from 2019 to 2023, the number of samples analyzed for ash
in Emilia-Romagna showed a positive trend, increasing from 504 samples in 2019 to
1474 samples in 2023, a significant rise of 192%. The average ASH increased by 11.3% over
these years, except for a slight decrease of about 4.0% from 2022 to 2023, where it dropped
from an average of 5.1% (σ = 4) to 4.9% (σ = 3.8). Throughout the study period, the median
ASH exhibited minimal variation, both positively and negatively, and remained at 3.9% in
2023, the same as in 2019. However, the third quartile values indicated a change from 5.4%
in 2019 to 5.9% in 2023, suggesting increased variability in the upper halves of the sample
distributions. The annual averages for Emilia-Romagna belong to Class I2, except for 2022,
where the increase in the average ash content causes a shift to Class I3.

Regarding the samples from Calabria, from 2019 to 2021, very small quantities were
obtained, i.e., between 40 and 60 per year. However, since 2022, there has been an increase
in interest in ASH, with 562 samples obtained in 2022 and 558 in 2024. Although the
analysis was carried out on a few samples, an increase in its content during the first 3 years
has emerged, from 4.5 (σ = 4.2) in 2019 to 4.8 (σ = 6.0) in 2021. In the following years,
however, average values decreased sharply, reaching 4.0% (σ = 3.7) in 2023. In contrast, the
median value increased in the first three years, rising from 2.7% in 2019 to 2.9% in 2021 and
then reaching 3.2% in 2023. Over the whole period, Calabria samples fell into Class I2.
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Table 3. Summary of ASH data acquired during the 5-year period. Yearly mean values, as well as
yearly quartiles (Q1, Q2, and Q3), are reported as percentage of inital dried mass (dried basis, db).

Ash (% d.b.)

Year N. Samples Mean St. Dev. Q1 Q2 Q3

EMILIA
-

ROMAGNA

2019 504 4.4 2.5 2.8 3.9 5.38
2020 856 4.4 3.3 2.2 3.8 5.57
2021 1197 4.7 3.4 2.7 4.2 6.07
2022 1325 5.1 4.0 2.8 4.1 6.15
2023 1474 4.9 3.8 2.6 3.9 5.87

CALABRIA

2019 40 4.5 4.2 1.6 2.7 6.6
2020 36 4.5 7.6 1.8 2.3 3.3
2021 63 4.8 6.0 2.1 2.9 5.0
2022 562 4.4 4.1 2.1 3.2 5.2
2023 558 4.0 3.7 1.9 3.0 4.7

SARDEGNA

2019 52 2.7 1.0 2.0 2.5 3.3
2020 48 2.7 1.3 1.8 2.8 3.3
2021 46 3.3 1.9 2.2 3.2 3.9
2022 58 4.0 2.1 2.6 3.7 4.9
2023 46 2.9 1.3 1.9 2.8 3.7

SICILIA

2019 94 5.5 2.7 3.6 5.0 6.8
2020 89 4.9 3.2 3.3 4.1 5.2
2021 98 6.2 4.2 3.6 4.9 7.1
2022 91 6.9 3.8 4.5 6.1 7.6
2023 68 4.8 2.1 3.2 4.5 5.6

The same samples from Sardegna, tested for NHV throughout the period, were an-
alyzed for ASH. These samples gave the lowest results compared to other regions. In
fact, during the first two years, the average ASH was 2.7% (σ = 1.0–1.3), increasing in the
following two years to 3.3% (σ = 1.9) and 4% (σ = 2.1). Finally, in 2023, there was a sudden
drop to an average of 2.9% (σ = 1.3). The median values followed the same trend, starting
at 2.5% and ending at 2.8%. Moreover, the samples from Sardegna shifted from Class I1 for
the first two years to Class I2 in 2021 and 2022 and back to Class I1 in 2023.

For Sicilia, the number of samples analyzed for ASH is also the same as for the other
parameters. For all years, samples from this region gave higher average values. An example
is the year 2019 with a mean ASH of 5.5% (σ = 2.7) or the year 2022 with a mean of 6.9%
(σ = 3.8). The same applies to the median values, which are significantly higher than in
other regions. Contrary to the MC, the annual average ASH values for Sicilia have always
been above I1 threshold values, falling in Class I4 in 2021 and 2022, and back to Class I3
in 2023.

Preliminary statistical analysis combined with the evaluation of the Q–Q plots sug-
gested a deviation of data from normality (Figure 5) [40,45].

Moreover, the data distribution was marked by evident asymmetry with a strong skew
to the right. KW highlighted a statistically significant difference between regional median
ASH values (H = 263.55, p < 0.00) [47], suggesting substantial variations in ASH among
regions beyond what might be expected by chance alone. DT confirmed the difference
between each pair of regions (p < 0.00 for each pair), emphasizing the distinctiveness of ash
content levels across the regions [48]. As expected, Sicilia was the region with the highest
5-year average results. In fact, the proximity to the sea is one of the main causes of the
increase in sodium (Na) and Cl in the biomass, inorganic elements that often form ash,
either through aerosols or saltwater intrusion [49]. However, contrary to what might be
expected, the samples from Sardegna did not yield the same findings. Thus, other factors
may have contributed, such as different agroforestry practices, i.e., removal of bark after
felling [50], and the use of different woody species for energy production [51,52].
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3.1.4. Nitrogen Content

The total number of analyses of N during the five-year period was 3283, specifically,
2555 from Emilia, 38 from Calabria, 250 from Sardegna, and 440 from Sicilia.

The number of analyses required by suppliers in the Emilia-Romagna region has
varied drastically over time. In fact, between 2019 and 2021, the number of analyses
increased by approximately 82%, from 450 to 820. This trend is in line with the general
increase in demand for analyses in this region. However, in the following years, although
the number of analyses for other parameters continues to increase, the focus on N decreases
to 281 in 2022 and 335 in 2023. During the first four years, the average nitrogen content
varied little, with a minimum of 0.34% (σ = 0.23) in 2022 and a maximum of 0.41% (σ = 0.22)
in 2019. In 2023, the average value falls sharply to 0.19% (σ = 0.19). The year 2020 seems
to be the year with the highest variation of N values, with an IQR of 0.33, higher than the
other years. Due to the low annual averages, the region meets the requirements for Class I1
for N throughout the period.

The number of samples from Calabria turned out to be too few to provide any relevant
information. In fact, the year with the most samples analyzed was 2022, with 24 analyses
resulting in an average N value of 0.31% (σ = 0.14). Despite the small number of samples
analyzed, Calabria’s N complies with Class I1 limits in 2019 and 2022 and with Class I2
in 2021.

From Sardegna, the samples analyzed for ASH and NHV were also analyzed for N. In
this case, the average values varied greatly during the first four years, ranging from 0.14%
(σ = 0.21) to 0.36% (σ = 0.32). Finally, between 2022 and 2023, there was a clear reduction
of 44% to an average value of 0.12% (σ = 0.19) and a median value of 0.18%. Given the
consistently low annual averages, the region qualifies for Class I1 for N throughout the
entire period.

Again, Sicilia’s samples analyzed for ASH and NHV were also analyzed for N. During
the first four years, N values were constant, with a 4-year average of 0.39% (σ = 0.19).
However, in 2023, there was a significant decrease in N, dropping to 0.21% (σ = 0.21). A
similar trend is observed in the medians, with a 4-year average median of 0.36% and a
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median of 0.19% for 2023. Lastly, as well as Emilia-Romagna and Sardegna, Sicilia’s N
levels comply with Class I1 requirements.

Despite the similar median and mean values indicating a distribution close to nor-
mality in almost every case for each region, the Q–Q plot analysis revealed a tendency
for the data to deviate from normality (Figure 6). Therefore, non-parametric analysis was
preferred over ANOVA.
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Thus, KW indicated a statistically significant difference among regional N data
(H = 103.62, p < 0.00) [47]. DT pairwise comparisons highlighted that N levels for Sardegna’s
samples were distinctively different from those from Calabria, Sicilia, and Emilia-Romagna.
Specifically, Sardegna’s N data significantly deviated from Sicilia and Emilia-Romagna
with extremely low p-values (p < 0.00), indicating very strong evidence against the null
hypothesis. Similarly, the difference between Sardegna and Calabria was statistically sig-
nificant with a p = 0.02. In contrast, N data between Calabria and Sicilia and Calabria and
Emilia-Romagna were not found to be significantly different [48]. Whether or not there
was a significant difference between the average N values could have been influenced by
many factors. For example, the different composition of the sample, that is, the ratio of the
woody fraction to leaf residues, can strongly influence the N value [53] and, as with ASH,
the concentration of N can depend on plant species or the soil in which the plant grew.

3.1.5. Carbon, Hydrogen, Chlorine, and Sulphur Contents

For each region, particularly in the case of Emilia-Romagna being the region with
more analyzed samples, there was no significant change in the C of the samples over time
(Figure 7a). The only exception was Calabria with an average C value of 43.9% (σ = 8.6).
However, this value does not allow any further conclusions to be drawn due to the small
number of samples received, apart from the possible influence of the different types of wood
and the different parts of plants used [54]. The same applies to the H value (Figure 7b).
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Figure 7. Histograms of C (a), H (b), Cl (c), and S (d) contents, showing annual means expressed as
percentages on a dry basis and standard deviations. As for C (a) and H (b), there were no significant
differences between the regions, except for Calabria, but the data do not allow any further conclusions
to be drawn due to the small number of samples received. Sardinia seems to be the region with
a higher Cl (c) content, probably due to the geographical area. S (d) content seems to be constant
among the regions, with the exception of 2021 in Sicily.

The average Cl values in Emilia-Romagna’s sample were between 0.01% and 0.02%
(Figure 7c), while the S values were between 0.0% and 0.04% (Figure 7d). Both parameters
therefore remained within Class I1 limits throughout the five-year period. The other
regions, on the contrary, showed mixed results. For example, in 2021, samples from
Calabria presented Cl values falling into Class I3 (0.07%, σ = 0.1) and I2 for S values (0.08%,
σ = 0.08). However, even in this case, the small number of samples does not allow an
in-depth analysis of the results.

Also, for Sardegna’s samples, Cl fell in Class I3 in 2020 and 2021 (0.10%, σ = 0.06), while
in 2022, it fell in Class I4 (0.11%, σ = 0.06). S values, on the other hand, always remained low,
ranging from 0.01% and 0.03%. Sicilia’s samples, on the other hand, presented fluctuating
Cl values, between 0.02% and 0.03%, while S fluctuated between 0.02% in the first two
years and increased to 0.54%, excluding itself from any Class in 2021. The particularly high
Cl values for the samples from Sardegna and Sicilia may be due to the proximity of the
supply area to the sea. However, the variability in the data in the same regions also seems
to indicate a variation in the inter-regional geographical areas from which the biomass
originates [55]. The same reason, as well as the different management of the areas from
which the biomasses were harvested, could explain the variability in the average S value as
well [56].

3.2. Multivariate Analysis Results

The large amount of data resulted in an in-depth evaluation of each considered region
(Table 4), with the exception of Calabria due to the smaller number of samples available
with complete data as a result of the more restricted analyses required by the suppliers. As
a result, Calabria’s matrix was unable to provide a sufficient amount of data for reliable
exploration, resulting in a weaker performance compared to other regions.

For both the SA and TA, a clear separation between samples was observed regarding
MC variation, which is considered to be one of the most discriminating parameters for
qualitative characterization. Furthermore, the study of the corresponding loading plot
showed a strong negative correlation between MC and NHV, proving the negative influence
of water on energy yield [57]. Moreover, a negative correlation between ASH and higher
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heating value (HHV), confirms its role in reducing combustion efficiency [58]. The lower
heating value (LHV) always followed the HHV, thereby providing a strong correlation.

Table 4. Number of samples with comprehensive results considered for each investigation according
to the (A) Spatial Analysis (SA) and (B) Temporal Analysis (TA).

Macro Division Database N. Samples

SA

2019 338
2020 490
2021 687
2022 363
2023 409

TA

Emilia 1699
Calabria 38
Sardegna 110

Sicilia 440

Little differences were detected in specific investigations of the other parameters. In
the case of the SA, in 2019 and 2020, C and H showed a direct and relevant correlation with
the calorific values, while an inverse relation was observed for N and S. Moreover, ASH
was inversely correlated with O, while Cl showed an important negative correlation with
MC despite the stronger influence of the NHV. In 2020′s data, ASH and N were strongly
correlated, while S lost its correlation with N. In 2021 (Figure 8), O showed a negative
correlation with ASH, as well as H and S, which maintained a negative correlation. No
relevant correlations were detected between Cl, N, and S. Lastly, for 2022, Cl, S, N, and H
parameters showed less influence in sample separation, while O, C, and heating values
maintained a negative correlation with ASH.
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For the TA, Calabria and Sardegna’s data was not considered due to the lack of suffi-
cient information. In the case of Emilia-Romagna’s data (Figure 9), an inverse correlation
was found between ASH and heating values, C and O, while N, S, and Cl showed no
relevance in the distribution.

Resources 2024, 13, x FOR PEER REVIEW 16 of 26 
 

 

 
Figure 8. The corresponding score plot (on the left) and biplot (on the right) of the 2021 dataset. The 
score plot represents the zoomed distribution of the samples reported in the biplot. Moreover, the 
graduated scale of score plot is based on the MC variation, using the values from 0 to 1 to respec-
tively indicate the lowest and the highest MC result. 

For the TA, Calabria and Sardegna’s data was not considered due to the lack of suf-
ficient information. In the case of Emilia-Romagna’s data (Figure 9), an inverse correlation 
was found between ASH and heating values, C and O, while N, S, and Cl showed no 
relevance in the distribution. 

 
Figure 9. The corresponding score plot (on the left) and biplot (on the right) of the Emilia dataset.
The score plot represents the zoomed distribution of the samples reported in the biplot. Moreover, the
graduated scale of score plot is based on the MC variation, using the values from 0 to 1 to respectively
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In Sicilia’s case (Figure 10), O and S revealed an important inverse correlation, as
well as NHV and MC. Moreover, few observations showed a value of S as the greatest
discriminant variable. Cl and N parameters were not relevant for sample distribution,
while H followed HHV and LHV, thus showing an inverse correlation with ASH. Also, in
this case, a small group of samples have distinguished compared to the other observations
with higher values in some variables.

Nevertheless, in each PCA investigation, the PCs explained approximately 50% of the
total variance in the data set. In fact, the inherent variability in industrial woodchips, cou-
pled with the demanding requirements of the sampling procedure, could have influenced
and enhanced the variance between observations, resulting in rare and extreme results that
enhance a scatter distribution.

Along with the biplot, Pearson’s analyses also allowed to confirm the degree of linear
correlation between the variables, thus supporting the identification of more discriminating
variables. Pearson’s analysis was carried out only on the TA data, assuming an internal
variation of the correlations between years for a given region. That is, the SA database,
based on the fusion of each year with data from all the regions, would not have made it
possible to identify which region had the greatest influence on the others, thus limiting
a complete description. Therefore, in accordance with the results of the PCA, Emilia-
Romagna (Table 5) and Sicilia’s (Table 6) data were investigated.
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Figure 10. The corresponding score plot (on the left) and biplot (on the right) of the Sicilia dataset.
The score plot represents the zoomed distribution of the samples reported in the biplot. Moreover,
the graduated scale of the score plot is based on the MC variation, using the values from 0 to 1 to
respectively indicate the lowest and the highest MC result.

Table 5. Pearson’s analysis on the Emilia dataset. The different scale of green indicates the main
interesting degree of correlation in descendant order from dark green (higher correlation) to light
green (lower correlation). The grey boxes explain the perfect linear correlation between the same
parameter along the principal diagonal.

Variable MC NHV ASH HHV LHV C H N OX CL S
MC 1.000

NHV −0.961 1.000
ASH 0.021 −0.223 1.000
HHV 0.091 0.164 −0.802 1.000
LHV 0.094 0.181 −0.743 0.941 1.000

C 0.014 0.144 −0.628 0.624 0.580 1.000
H −0.012 −0.057 −0.142 0.137 −0.205 0.109 1.000
N −0.021 −0.056 0.332 −0.304 −0.272 −0.274 −0.083 1.000

OX −0.031 0.148 −0.536 0.309 0.410 −0.247 −0.315 −0.183 1.000
CL −0.125 0.108 0.099 −0.064 −0.052 −0.035 −0.033 0.106 −0.086 1.000
S −0.069 0.033 0.208 −0.139 −0.132 −0.076 −0.016 0.177 −0.193 0.173 1.000

Table 6. Pearson’s analysis on the Sicilia dataset. The different scale of green indicates the main
interesting degree of correlation in descendant order from dark green (higher correlation) to light
green (lower correlation). The grey boxes explain the perfect linear correlation between the same
parameter along the principal diagonal.

MC NHV ASH HHV LHV C H N OX CL S
MC 1.000

NHV −0.956 1.000
ASH 0.285 −0.478 1.000
HHV −0.127 0.407 −0.789 1.000
LHV −0.115 0.399 −0.754 0.992 1.000

C −0.226 0.397 −0.764 0.697 0.650 1.000
H −0.126 0.192 −0.516 0.390 0.273 0.583 1.000
N 0.138 −0.148 0.176 −0.107 −0.089 −0.184 −0.171 1.000

OX −0.250 0.266 −0.214 0.112 0.120 −0.012 −0.022 −0.062 1.000
CL −0.011 0.013 0.075 −0.012 −0.007 −0.033 −0.040 0.224 −0.099 1.000
S 0.149 −0.127 −0.046 0.044 0.044 −0.007 0.017 0.007 −0.831 0.081 1.000

In both cases, a significant negative correlation between MC and NHV and a positive
correlation between HHV and LHV have been observed. Furthermore, ASH correlated
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with C (slightly lower in Emilia-Romagna’s case than in Sicilia, r = −0.63 and r = −0.76,
respectively) and with O in Emilia-Romagna’s case (r = −0.54). While ASH showed
a negative correlation with H in the case of Sicilia (r = −0.52), a significant negative
correlation between O and S (r = −0.83) was found only in the Sicilia dataset, which
probably corresponded to the sample group separated by high S.

3.3. Closing Discussion

In the form of thematic maps (Figure 11), an overall summary of the results is proposed,
in particular, for the main quality parameters.

This study shows a significant increase in the number of samples analyzed from
Emilia-Romagna, indicating a growing interest or capacity in sample collection or analysis
over time. Despite variations, MC remained within acceptable limits for quality Class I1
throughout the study period. NHVs showed variations in the annual averages, with the
highest average recorded in 2019 at 10,420 J/g. Interestingly, while MC decreased during the
years, the NHV did not follow compatible trends, suggesting that factors beyond MC, such
as inherent sample variability and other properties, may influence NHV measurements.
From 2019 to 2023, Emilia-Romagna experienced a significant increase in the number of
samples analyzed for ASH. The region generally maintained quality Class I2 each year,
except in 2022, when higher average ash content temporarily shifted it to Class I3, indicating
the need for continued vigilance in maintaining product quality standards. While there
has been variability in the demand for N analysis over the years, Emilia-Romagna has
demonstrated overall adherence to quality standards, ensuring products meet regulatory
requirements despite these fluctuations.

The analysis of samples from Calabria shows significant variability in the number
of samples analyzed, with a notable decrease in 2020 followed by a sharp increase in
2022, culminating in a 382% increase from 2019 to 2023. MC, consistently higher than
in Emilia-Romagna, peaked at 46.5% in 2020 but decreased to 41% in 2023. Despite the
variability, the MC values always met the I1 quality standards, except for the first two years
when they were classified as I2. This trend highlights Calabria’s efforts to maintain quality
standards in the face of changing sample volumes and moisture conditions. In Calabria, the
number of samples analyzed for NHV was minimal in the first three years, totaling only
21 samples. This suggests that NHV was not initially a major focus for suppliers. However,
there was a significant increase with 516 samples analyzed in 2022 and 496 in 2023. There
was also a significant increase in interest in ASH levels from 2022 onwards, in contrast to
the minimal number of samples analyzed in previous years. Despite fluctuations, ASH
values were generally within the I2 quality standards throughout the period. The analysis
of N was carried out on limited samples until 2022, with only 24 samples analyzed in that
year. Nevertheless, N consistently met the quality standards and was classified as Class I1
in 2019 and 2022 and as Class I2 in 2021.

Both Sardegna and Sicilia demonstrated trends of stable or decreasing sample sizes
over the years, with distinct patterns in moisture content levels. While Sardegna showed
increasing MC levels with reduced variability, Sicilia maintained consistently lower MC
levels with improved uniformity among samples. Both regions maintained adherence to
quality standards throughout the period, highlighting their commitment to maintaining
product integrity in agricultural samples. While Sardegna experienced consistent NHVs
with a downward trend over time due to increasing MC levels, Sicilia consistently pro-
duced samples with the highest NHVs. However, the variability in NHVs, as indicated
by fluctuations in the IQR, suggests potential influences from other factors such as sample
diversity or analytical methods. While Sardegna’s ASH displayed variability and compli-
ance with quality standards over time, Sicilia consistently exhibited higher ASH values
that occasionally exceeded standard thresholds. These insights underscore the impor-
tance of ongoing analysis and monitoring to understand and maintain quality standards
in agricultural products across different regions. Both Sardegna and Sicilia demonstrate
variability in nitrogen content over the years; however, despite these fluctuations, both
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regions maintained compliance with Class I1 standards for nitrogen content throughout the
study period, indicating consistent adherence to quality standards in agricultural products.
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Figure 11. Thematic maps summarizing the evolution of MC, NHV, and ASH values over the years.

As for the other parameters, Emilia-Romagna consistently maintained C and H values
without significant changes over the study period. Cl and S values remained within Class
I1 limits throughout the five years. In contrast, Calabria and Sardegna showed variable
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Cl and S values, occasionally exceeding Class I1 standards due to regional factors like
proximity to the sea and varied biomass sourcing areas. Sicilia exhibited fluctuating Cl
values and an increase in S values, impacting its classification over the years.

4. Conclusions

An increased focus on quality monitoring in Italy was observed, reflected in an
increase in the number of samples received from suppliers and an overall improvement in
the average quality parameter. Results suggest that companies are increasingly focusing
on quality control, closely linked to quality improvement, consequently having a positive
influence on sustainability.

The five-year data revealed an overall reduction in MC and N, while ASH and NHV
showed non-linear fluctuations. The decline in MC may be linked to climate change, how-
ever, to verify this hypothesis further studies are needed. Different practices may explain
statistically significant differences in quality between samples from different regions [59,60].
For example, outdoor versus indoor storage can affect MC, just as storage in marshy areas
can affect Cl and S content [61,62]. Cl and S could also be affected by differing conditions
under which biomass grows, such as proximity to the sea [63,64]. In addition, the way in
which biomass is extracted from forests, such as by dragging logs, can also result in the
presence of inert components that inevitably increase ASH.

While this work provided an overview of the quality of woody biomass over time
and over four macro-areas in Italy, more data could be sought on the exact source, i.e.,
the harvesting areas, of the biomass. This would allow for a comprehensive mapping
of the different lignocellulosic biomasses across the country. However, this might prove
difficult, as it would involve large-scale work to which the many different biomass suppliers
would have to consent, providing accurate and continuous data, and enabling extensive
tracking of biomasses’ quality. This obstacle could be overcome by an evolution of national
incentives concerning the promotion of biomass quality and sustainability.
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