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Abstract: In the Wadi Nugrus area, south Eastern Desert of Egypt, A-type granite is highly
deformed in a prominent NW-SE trending shear zone, likely related to the Najd shear
system. Deformation of this post-collisional leucogranite allows the propagation of hy-
drothermal alterations due to fluid circulation inside the so-called “Nugrus Shear Zone
(NSZ)”. This results in the remarkable destabilization of the magmatic dissemination of
rare-metal and U-Th minerals in the granite. Relict magmatic minerals that survived destabi-
lization are represented by (1) ferrocolumbite with 14–63–16.39 wt% FeOt, (2) fresh igneous
zircon, and (3) thorite. The destabilized ore minerals (hydrothermal) dominate over the
fresh magmatic relict minerals. The former comprises the following: (1) altered columbite
in the form of three distinct phases of niobates (fergusonite–petscheckite–uranopyrochlore),
(2) altered thorite (Ce-bearing and P-F-rich), (3) betafite, (4) altered uranothorite, and
(5) sulfides (mainly pyrite). It is evident that the destabilization of magmatic thorite can
be distinguished into three stages of hydrothermal alteration, namely low-Zr Ce-bearing
thorite (stage I), moderate-Zr Ce-bearing thorite (stage II), and high-Zr U-Nb-Y-bearing
thorite (stage III). The two varieties of Ce-bearing thorite are sodic with 1.33–2.28 wt%
and 1.51–1.80 wt% Na2O, respectively, whereas the U-Nb-Y-bearing thorite is Na2O-poor
(0.06–0.07 wt%). Similarly, thorite in stages I and II are Ca-, P-, F-, and S-rich. Considerable
P2O5 content (up to ~17 wt%) is reported in stage II Ce-bearing thorite, whereas stage III
thorite is Si-rich (14.56–18.79 wt% SiO2). Upon hydrothermal destabilization, the three
niobate minerals replacing the dissemination of magmatic ferrocolumbite become enriched
in UO2 (up to 15.24 wt%, 7.86 wt%, and 10.88 wt%, respectively), and similarly, ThO2 (up
to 7.13 wt%, 5.71 wt%, and 9.52 wt%, respectively). Hydrothermal destabilization results in
the complete dissolution of magmatic fluorite and phosphate minerals at pH = 2–7. This fur-
nishes a source of Ca, P, Ce, Y, F, and Cl in the hydrothermal solution to destabilize/collapse
the structure of magmatic ore minerals, particularly ferrocolumbite and thorite. Free ele-
ments in the hydrothermal solution are responsible for the crystallization of P- and F-rich
Ce-bearing thorite minerals in three stages, as well as abnormal Y2O3 enrichment in three
resulting niobates that contain up to 6.03 wt%, 2.93 wt%, and 2.65 wt%, respectively. The
fresh undeformed Nugrus leucogranite is sulfide-poor. In contrast, sulfides are enriched
in the deformed leucogranite inside the NSZ. Also, the intimate relationship of sulfides
with destabilized rare-element minerals indicates the destabilization of these minerals
during the hydrothermal stage under reduced conditions. Finally, the proposed parage-
netic sequence suggests that most ore minerals are magmatic or hydrothermal primarily.
In contrast, supergene minerals such as goethite, Fe-oxyhydroxide, altered betafite, and
altered uranothorite are the least abundant.
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1. Introduction
In the context of the present research, rare-element ore minerals in the investigated

granites comprise the following: (1) radionuclides, (2) rare metals, and (3) rare-earth
elements (REEs). Fresh and altered rare-element minerals from the Nubian Shield in
Egypt are an issue of expanding interest for regional and international researchers who
focus on metallogenic provinces during the Neoproterozoic era. Such mineralizations are
concentrated in the Eastern Desert of Egypt as a part of the Arabian–Nubian Shield (ANS)
formed by Precambrian tectonics in the amalgamation of East and West Gondwana [1–6].
In several cases, rare-element mineralizations in the Egyptian Eastern Desert are confined
to shear zones characterized by wall-rock alteration zones, quartz veins, and stockworks
with remarkable enrichment in primary and secondary ore minerals, e.g., [7–10].

U and Th mineralizations in Egypt are hosted by granitic rocks mostly and their
associated pegmatites, but sometimes they are hosted by relatively younger alkaline vol-
canics such as bostonite dykes and trachyte plugs, e.g., [11–20]. The mineralizations are
represented by noticeable enrichment in high-field-strength elements (HFSEs) such as U,
Th, Zr, and Y, in addition to rare-earth elements (REEs) and rare metals such as Nb and Ta
associated with alkaline A-type granites, mainly formed during the late Neoproterozoic
post-collisional stage some 630–580 Ma ago, either as disseminations in host granite or
hydrothermally altered granite inside the shear zones [21]. In a recent review, [22] as-
sorted the U-Th-REEs resources in Egypt hosted in Phanerozoic rocks, i.e., younger than
543 Ma, as follows: (1) Mesozoic alkaline ring complexes, (2) Post-Cretaceous peralkaline
ring complexes, (3) Carboniferous siliclastics, and (4) Neogene black sands either on the
Mediterranean Sea or the Red Sea beaches.

In similar worldwide occurrences, radioactive and rare-metal minerals suffer from
variable degrees of alteration due to the deformation and circulation of hydrothermal fluids,
which can lead to a diversity of secondary minerals hosting U-Th-Nb-Ta-REEs [23–25].
This results in new mineral assemblages that witness alteration events characterized by
fluctuation and variation in physicochemical conditions [26]. The main aim of our study is
to present details of the petrography and mineralogy of highly deformed rocks in the Wadi
Nugrus area, with the possible impacts of the so-called “Najd Shear System (NSS)”. The
present work represents a combination of in situ spot analyses, such as electron microprobe
(EMPA) and energy-dispersive spectral (EDS) analyses, to obtain the chemical details of
secondary minerals and their relationship with the alteration processes. The aim is to
propose a paragenetic sequence for the different stages of crystallization of ore minerals.
Also, details of the scenario for the genesis of secondary ore minerals in terms of structure
destabilization and the conversion of mineral phases through deformation and alteration
are proposed. This destabilization includes the alterations of some accessory minerals
such as zircon and apatite. These two minerals help trace hydrothermal alterations and
sometimes act as mineralization indicators because of chemical variations when the mineral
breaks down, e.g., [20,22,26–29]. Hydrothermal alterations of magmatic apatite, together
with interstitial fluorite, result in the re-distribution of REEs; Y, Ca, P, and F as recorders of
hydrothermal fluid chemistry; and physicochemical conditions and proportions of light
components, e.g., F: Cl: OH [30,31].
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2. Geological Setting
The boundary between the Central Eastern Desert (CED) and the Southern Eastern

Desert (SED) was defined in [32]. It is based on the differences in rock associations and
major structures developed during the East African orogeny (EAO) as part of the Pan-
African orogeny during the Neoproterozoic. Later, several workers, e.g., [1,2,5,6,33–36],
agreed with this distinction but proposed different hypotheses to explain tectonic evolution.
Thus, there were disputes about whether there were infrastructural or pre-Pan African
rocks. For such a reason, [37] stressed separating the CED from the SED using a thick
zone of shear foliated rocks in the Migif-Hafafit and Wadi Nugrus areas extending to the
Red Sea coast in a major NW-SE shear zone, as shown in Figure 1. This figure shows
more than one major NW-trending thrust separating the gneisses from the ophiolites and
arc-related assemblages in (1) Wadi Nugrus, (2) Wadi Ghadir, (3) Gabal Sikait, and (4) Gabal
Zabara. In the present research, authors deal with deformed rocks, in a shear sense, at
the Wadi Nugrus area where A-type granite is emplaced and sheared along the NW-SE
Sha’it-Nugrus Shear Zone (SNSZ) (Figures 1 and 2). In the Wadi Nugrus area (Figure 2),
rock types are represented by dismembered ophiolite, its mélange, gneissose granitoids,
and granites. The A-type granites in the area are distinguished into biotite granite (mostly
monzogranite) and leucogranite (syenogranite and alkali feldspar granite). These A-type
granites show distinct marks of deformation owing to the SNSZ, which started some 600
Ma ago during the extensional phase in the Nubian Shield, i.e., syn-kinematic intrusions
that followed the ∼680 Ma arc collision and NW-trending thrust nappes [6,36–38].
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Figure 1. (a) Location map of the study area. (b) Geological map of the El Gemal-Hafafit district
showing the major lithologies and structures. The NW-trending Sha’it-Nugrus shear zone (SNSZ) is
shown as well as major thrusts (after [39]), and (c) a detailed geological map of the Wadi Nugrus area
modified after [34].
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Figure 2. (a,b) Detailed maps for two localities showing the alignment of the investigated leucogranite
(mineralized A-type granite) with respect to other rock units in the shear zone and along the Nugrus
thrust [40]. The exact locations of the detailed maps are shown in Figure 1c.

Wadi Nugrus is a major tributary of Wadi El-Gemal, where a pile of Neoproterozoic
rocks belonging to the ANS crop out. In the western part of the Wadi El-Gemal area,
mineralized rocks are present, and they are hosted by different rock lithologies such as
gneisses, granites, pegmatites, and dykes, e.g., lamprophyre dykes. From a geotectonic
point of view, the west Wadi El-Gemal area, which includes Wadi Nugrus, represents the
eastern extension of the highly deformed Migif-Hafafit gneissic belt. Generally, the Neo-
proterozoic rocks comprise metamorphic rocks (gneisses and migmatites), ophiolitic rocks,
metasediments, arc metagbbro, older granitoids, younger granites, pegmatites, and aplites.
Some workers believed the gneisses and migmatites were infrastructural rocks [35,41,42].
This infrastructure (mostly gneisses) is older than the ophiolitic mélange and intrusive
rocks. It may represent an old continental crust before sea-floor spreading, metamorphism,
and the development of the ophiolitic rocks. The area is highly tectonized and subjected
to multi-episode folding during the compressional phase of the Pan-African orogeny [34].
In the Wadi Nugrus area, there are several thrusts and shear zones, which mostly follow
an NW-SE trend. The Nugrus leucogranite occurs as scattered stocks, which are typically
A-type, post-collisional, and show evidence of NW-trending deformation caused by the
so-called “Najd Shear System (NSS)” in the western Arabian–Nubian Shield [43,44].

3. Field Observations
Field observations document the occurrence of gneisses that might be older than the

ophiolitic mélange, e.g., the mineralized psammitic gneiss at Wadi Abu Rusheid and its
counterparts in the Migif and Nugrus areas. Two types of metasediments are distinguished.
The melange matrix for the ophiolitic fragments (serpentinite, talc-carbonate, metagabbro,
and metadiabase) represents the first type. The second type is arc-related metasediments,
represented by metamorphosed volcano sediments overriding the ophiolitic rocks along
thrust faults. According to [45], the area was influenced by medium- to high-pressure
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metamorphism (5–7 kb) as indicated by the mineral chemistry of garnet amphibolite, which
is conformable to the metasediments. The Wadi Nugrus area has very characteristic A-type
granite exposures aligned along the NW-trending Nugrus thrust and shear zone, as shown
in the geological map (Figure 1).

Within the Nugrus shear zone (Figure 2), a conspicuous mass of leucogranite (mon-
zogranite) trending NNW-SSE intrudes into the arc-related rocks. This granite mass
is intensively sheared and belongs to the GII or A-type younger granites of Egypt
(610–590 Ma) [43] and occurs as elongated monzogranite that extends for a length up
to 4.5 km and is 150–500 m wide. The mass is highly jointed (Figure 2a) and is dissected
by NNW-SSE strike-slip faults, which causes the occasional dislocation of the leucogranite
and the associated aplite and pegmatite dykes [43]. There are three sets of joints trending:
N-S, NNE-SSW, and NW-SE. In some instances, there are xenoliths of older rocks, particu-
larly the arc-related biotite schist, in the leucogranite. This leucogranite is highly jointed
andsheared (Figure 3), and the width of the shear zone is variable (0.5 m to >20 m) with the
darkening of sheared granite owing to the circulation of metal-rich hydrothermal fluids.
At several exposures, the most distinct alteration is argillic and, to a much lesser extent,
ferruginous and carbonaceous. Occasionally, the granite is traversed by NW-SE fresh mafic
dykes (Figure 3c) and non-mineralized/barren quartz veins that trend N 35–50◦ E.
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4. Methods
Sampling was performed during two successive field trips to the Wadi Nugrus area.

Systematically, the samples range from massive to deformed leucogranite outside and
inside the NSZ. For the petrographic study, thin and polished sections were prepared
and examined in both transmitted and reflected light. To obtain spectral analysis before
the electron microprobe measurements, a scanning electron microscope model Prisma
E SEM equipped with an energy dispersive X-ray spectrometer (EDS) for spot analysis
of minerals was used. It is housed in the Nuclear Materials Authority of Egypt (NMA)
laboratories in Qattamiya, Cairo. The analytical conditions were 25–30 kV accelerating
voltages, 1–3 nm beam resolution, and 60–120 s counting time. Some back-scattered electron
(BSE) images were taken by the SEM facility and electron microprobe. Mineral chemical
analyses were obtained from four polished thin sections, which were analyzed using a
JEOL jxa8900 electron microprobe manufactured in Japan, and housed at the University of
Nevada, Las Vegas, USA. The polished thin sections were coated with ~15 nm of amorphous
carbon to make them conductive during the vacuum coater-assisted preparation process
for microprobe studies. The operating parameters included a 15 kV accelerating voltage,
10 nA beam current, 5–10 µm beam diameter, and 30-s count time on peak. Synthetic
and natural mineral standards and the CITZAF matrix correction process were used for
calibration.Excel sheets (self-made spreadsheets in Microsoft Excel) were used to calculate
structural formulae of the analysed minerals.

5. Petrography and Ore Mineralogy
The leucogranite consists of K-feldspars, plagioclase, quartz, and mica. To a lesser

extent, the K-feldspars are represented by homogeneous microcline, orthoclase, or mi-
crocline perthite. The latter is mostly vein, braided, and string perthite types, which are
corroded by quartz (Figure 4a). This figure also shows the occurrence of mica flakes, either
biotite or muscovite. The investigated granites, either fresh or hydrothermally altered, are
characterized by a high modality content of accessory minerals in the 1.5 to 6% range. Fresh,
i.e., unaltered granites contain disseminated zircon and columbite. Zircon is coarse and
may reach up to 350 µm in its cross-sectional cut perpendicular to the C-axis (Figure 4b).
Other accessory minerals include rare metals, mostly columbite and its alteration phases
(Figure 4c), and thorite. It is common to observe radioactive haloes around fergusonite in
coarse biotite flakes as one of the columbite alterations (Figure 4d).

First, opaque minerals were identified by a reflected light microscope as far as the
authors found possible. Then, the ore microscopic investigation was confirmed and en-
hanced using back-scattered electron images (BSE) taken during the electron microprobe
and the SEM-EDS microanalysis. Figure 5 shows the collective assembly of ore minerals in
the BSE images of the electron microprobe. Primary ore minerals are mostly represented
by zircon, columbite, and much lesser thorite, which show variable degrees of freshness
and homogeneity. The size of zircon exceeds that of columbite and takes it as inclusions
occasionally, in addition to fresh columbite adjacent to zircon (Figure 5a). Figure 5b shows
two domains in the same columbite crystals where thorite inclusions are still preserved in
the fresh domain.

In contrast, the altered domain lacks thorite and is represented by an intergrowth
of hydrothermal minerals (fergusonite and hydropetscheckite). In some instances, the
alteration of columbite is represented by fergusonite only (Figure 5c). Fergusonite appears
as cracked crystals with the crust of an unidentified mineral halo due to metamictization
(Figure 5d). The intergrowth of fergusonite and petscheckite is seen without any columbite
relics when the latter is completely altered (Figure 5e). The intergrowth of hydrother-
mal minerals (Nb-bearing minerals “niobates”) replacing columbite can be formed from
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fergusonite–petscheckite–uranopyrochlore (Figure 5f). Thorite does not occur as minute
inclusions in columbite only but in the form of about 100 µm wide independent crystals,
which are severely altered (Figure 5g). In fresh magmatic columbite, silicate inclusions
are encountered alongside thorite (Figure 5h). Accessory minerals with no or negligible
alteration are present in the fresh and deformed granite with the lowest alteration imprints.
In contrast, fluorite and apatite are completely altered in the highly altered and deformed
granite samples. In this case, the anions and cations of these two accessory minerals are
re-distributed among the newly formed hydrothermal phases in the investigated granite,
presented in the Mineral Chemistry Section and Discussion.
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Figure 4. Photomicrographs of the sheared Nugrus leucogranite. (a) Shearing, defined by paral-
lel red lines, in the leucogranite consisting of microcline (Mcc) perthite, quartz (Qz), plagioclase
(Pl), muscovite (Ms), and zircon (Zrn), CN; (b) close-up view of coarse euhedral zircon (Zrn) in
groundmass made up of quartz (Qz) and plagioclase (Pl), CN; (c) columbite (Clb) partly altered to
fergusonite (Fgs), PPL; and (d) details of pleochroic haloes of fergusonite (Fgs) in biotite (Bt), PPL.
CN = crossed-nicols and PPL = plane polarized light. The mineral abbreviations are recommended
by the IMA [46].
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Figure 5. BSE images captured by the electron microprobe. The bar scale for all equals 50 µm.
(a) Magmatic columbite (Clb) is juxtaposed and enclosed by coarser euhedral zircon (Zrn). The latter
shows idiomorphism same as in Figure 4b. (b) Columbite, with thorite inclusions (Thr), extensively
altered to fergusonite (Fgs) and petscheckite (Psk) along a replacement contact. (c) Irregular partial
replacement of columbite (Clb) to fergusonite (Fgs). (d) Homogeneous fergusonite (Fgs) with a metam-
ict halo. (e) Fergusonite petscheckite (Psk) alteration, pseudomorphing ferrocolumbite, enclosing
sub-rounded silicate inclusions (Sil). (f) Fergusonite with patchy alteration to a mixture of petscheck-
ite (Psk) and uranopyrochlore (UPcl). (g) Extensively altered subhedral thorite (Thr), and (h) coarse
subhedral, i.e., sub-idiomorphic, with inclusions of silicate and bright rare metal-bearing mineral.
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6. Mineral Chemistry
6.1. SEM-EDX Semi-Quantitative/Qualitative Microanalytical Data

Figures 6–8 provide the spectra of the investigated magmatic dissemination, and
hydrothermal and supergene ore minerals. The preliminary investigation of the fresh
columbite crystals by the EDX attachment revealed its characteristic iron peak; therefore, it
is typical ferrocolumbite (Figure 6a). The spectrum of fresh ferrocolumbite indicates it is
uraniferous and has some contents of yttrium (Figure 6b), which the EMPA confirms, as will
be given in the following subsection. Upon the alteration of ferrocolumbite, fergusonite-
Y forms with noticeable contents of rare-earth elements (REEs), namely Dy, Er, and Yb
(Figure 6c). Some supergene minerals, which were not identified microscopically, are
confirmed by the SEM-EDX spectra, such as altered uranothorite (Figure 7a). Two varieties
of uranothorite are distinguished; both bear light and heavy REEs (La, Nd, Ce, Pr, Sm, Eu,
and Gd), and one is P-F-rich (Figure 7b). Altered betafite occurs as a complete pseudomorph
after columbite (Figure 7c). This betafite is uraniferous and bears appreciable content in
REEs and Y. About 95% of the sulfide minerals are represented by pyrite, commonly altered
to Fe-oxyhydroxides (Figure 8a). The sulfide percentage comprises galena and sphalerite
(Figures 8b and 8c, respectively). Owing to the sulfides’ tiny size, some Si and Cl peaks
from the silicate background appear.
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6.2. EMPA Quantitative Microanalysis

The electron microprobe analysis (EMPA) results are obtained for all the ore minerals,
either primary (magmatic and hydrothermal) or secondary supergene (Supplementary
Table S1a–g). Tables 1–3 are extracted from the bulk microprobe data to characterize these
ore minerals’ chemical composition numerically.

Table 1. Summary of the rare-element minerals in the deformed Nugrus A-type granite.

Mineral Mineral Variety 1 Mineral Variety 2 Mineral Variety 3

(1) Columbite (ferroan) Fresh
(18 analyses)

Slightly altered
(1 analysis)

95.56 wt% Sum
3.23 wt% P2O5

3.75 wt% Ce2O3

-

(2) U- and Th-bearing
Nb-Ta minerals

Fergusonite-(Y)
(25 analyses)

Petscheckite
(3 analyses)

Uranopyrochlore
(3 analyses)

(3) F- and
P-bearing thorite

Stage I
Ce-bearing

thorite/thorianite

Stage II
Ce-bearing thorite

Stage III
U-Nb-Y-bearing thorite

(4) Zircon Fresh
(7 analyses) - -

(5) Altered uranothorite - - -

(6) Altered betafite - - -
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Table 2. Compositional ranges of destabilized columbite (U- and Th-bearing niobates).

Oxide Range wt%
Mineral

Fergusonite-(Y) Petscheckite Uranopyrochlore

Nb2O5 38.03–47.94 43.63–46.85 38.99–40.6

Ta2O5 5.78–8.15 7.13–10 7.16–10.57

UO2 9.08–15.24 1.26–7.86 6.59–10.88

ThO2 3.33–7.13 3.48–5.71 5.4–9.52

ZrO2 0–0.15 0.18–1.18 0.41–1.05

Y2O3 3.79–6.03 0.31–2.93 1.37–2.65

SiO2 0.86–1.96 4.57–11.22 4.41–9.86

Total (anhydrous) 77.02–86.22 82.18–87.2 75.34–86.22

Table 3. Chemical characteristics and compositional ranges of major components in the F-P-bearing
thorite phases.

Mineral Ce-Bearing
Thorite/Thorianite Ce-Bearing Thorite U-Nb-Y-Bearing Thorite

Stage I II III

Degree of destabilization Lowest Moderate High

Th Highest ThO2 content
(50.16–60.12 wt%)

Moderate ThO2 content
(41.38–45.13 wt%)

Lowest ThO2 content
(22.58–23.63 wt%)

P P2O5-rich
(13.7–15.6 wt%)

P2O5-rich
(15.95–17 wt%)

P2O5-poor
(6.34–9.14 wt%)

F F-rich
(2.73–5.61 wt%)

F-rich
(3.3–4.11 wt%)

F-poor
(1.55–2.07 wt%)

Y Y2O3-poor
(0.38–0.95 wt%)

Y2O3-poor
(0.7–0.83 wt%)

Y2O3-rich
(0.38–0.95 wt%)

Nb Nb2O5-poor
(0.18–1.41 wt%)

Nb2O5-poor
(0.3–1.22 wt%)

Nb2O5-rich
(3.28–7.92 wt%)

U Lowest UO2 content
(0.47–0.95 wt%)

Lowest UO2 content
(0.64–0.65 wt%)

Slightly uraniferous
(1.66–1.69 wt% UO2)

S SO3-rich
(1.31–2.34 wt%)

SO3-rich
(1.42–2.20 wt%)

SO3-poor
(0.24–0.26 wt%)

Zr Low
(1–2.52 wt%)

Intermediate
(2.29–3.45 wt%)

High
(7.75–13.75 wt%)

Ca CaO-rich
(3.73–5 wt%)

Intermediate CaO content
(3.12–3.49 wt%)

CaO-poor
(1.3–1.37 wt%)

SiO2
SiO2-poor

(2.4–5.22 wt%)
SiO2-poor

(3.78–4.03 wt%)
SiO2-rich

(14.56–18.79 wt%)

Na2O Sodic
(1.33–2.28 wt% Na2O)

Sodic
(1.51–1.8 wt% Na2O)

Na2O-poor
(0.06–0.07 wt%)

The analyses of columbite (Supplementary Table S1a) confirm its ferrous variety in
which FeO ranges from 14.63 to 16.39 wt%, whereas the content of MnO is almost a third
(4.3–5.44 wt%). Nb2O5 in this fresh ferrocolumbite ranges from 62.43 to 70.95 wt%. Ferro-
columbite with the lowest Nb content bears the maximum Ta2O5 content (15.91 wt%), and
this is a normal cationic substitution of Nb and Ta in the columbite–tantalite series. All
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the spot analyses of ferrocolumbite show content of Y2O3 in the range of 0.33–0.45 wt%.
Some ferrocolumbite crystals have ThO2 and UO2 contents up to 0.87 wt% and 0.38 wt%.
The contents of F, SO3

−, and the oxides of Hf and Ce are very minor. On the other
hand, the concentrations of these elements in the hydrothermal alteration products of
ferrocolumbite (Supplementary Table S1b,c) are different. Table 1 provides the composi-
tional ranges in these secondary niobates. They show very distinct leaching of Nb2O5,
which lies in the ranges 38.03–47.94 (fergusonite-Y), 43.63–46.85 wt% (petscheckite), and
38.99–40.60 wt% (uranopyrochlore). Ta2O5 follows the same trend of leaching, which
amounts to 5.78–8.15 wt%, 7.13–10 wt%, and 7.16–10.57 wt% in the three hydrothermal
niobates, respectively. The lowest leaching of FeO is noticed in petscheckite (7.88–9.24 wt%)
but noteworthy to report a wide range of FeO content (2.48–11.92 wt%) in the fergusonite-
Y. The contents of UO2, ThO2, and Y2O3 are noticeably high. In these niobates, UO2

reaches up to 15.24 wt%, 7.86 wt%, and 10.88 wt% in ferugsonite-Y, petscheckite, and
uranopyrochlore, respectively. Similarly, ThO2 (up to 7.13 wt%, 5.71 wt%, and 9.52 wt%,
respectively). In comparison with their nearly Y-free magmatic precursor (ferrocolumbite),
these three niobates contain appreciable Y2O3 in the ranges 3.79–6.03 wt%, 0.31–2.93 wt%,
and 1.37–2.65 wt%, respectively. The oxides percentage of the three niobates never exceeds
~87 wt%. On the other hand, the sum of oxides in the columbite precursor is ideally 100%,
which indicates that the sum of oxides in the columbite precursor is ideally 100%, which
indicates the ultimate degree of freshness. The chemistry of the analyzed fergusonite-Y, for
example, is not similar to that of the primary fergusonite in nature. Therefore, our Nugrus
fergusonite is somehow destabilized and compositionally similar to another hydrothermal
niobate, namely liandratite [U6+(Nb, Ta)2O8]. A minor amount of a fourth hydrothermal
niobate (altered betafite) is developed at the expense of the magmatic dissemination of
ferrocolumbite in the Nugrus deformed leucogranite (Supplementary Table S1a). It shows
leached Nb2O5 and Ta2O5 contents (20.23 wt% and 5.66 wt%, respectively). TiO2 content
(20.55 wt%) is typical of betafite with appreciable amounts of UO2 and Ce2O3 (3.46 wt% and
8.53 wt%, respectively). Sometimes, destabilized fergusonite-Y is found as a homogeneous
phase without any other niobate phase. In this case, the fergusonite is typically uraniferous
and with UO2 content in the range of 8.44–15 wt% whereas the range is 2.59–7.13 wt% for
ThO2 and 3.79–6.17 wt% for Y2O3.

Another group of destabilized or hydrothermal minerals is thorite, with peculiar
contents of fluorine and phosphorous (Table 3 and Supplementary Table S1d). As can be
seen in the summary of composition and ranges of oxides (Table 3), these destabilized
Th-bearing minerals do not pertain to the typical chemistry of magmatic thorite. Based
on color in the BSE images, three F- and P-bearing destabilized thorite can be distin-
guished, representing three successive stages of hydrothermal alteration, namely stages I
(Ce-bearing thorite), II (another phase of Ce-bearing thorite), and III (U-Nb-Y-bearing thor-
ite). Ce-bearing thorite of stage I is sodic (1.33–2.28 wt% Na2O) and relatively poor in SiO2

(2.4–5.22 wt%). Stage I Ce-bearing thorite is rich in CaO (3.73–5 wt%), P2O5 (13.7–15.6 wt%),
SO3

− (1.31–2.34 wt%), and F (2.73–5.61 wt%). The chemical composition of stage II Ce-
bearing thorite indicates a similar sodic nature (1.51–1.8 wt%) and relative enrichment
in P2O5 (15.95–17 wt%). On the other hand, stage III U-Nb-Y-bearing thorite is not sodic
(0.06–0.07 wt% Na2O) and contains the highest silica content among the whole destabi-
lized phases (14.56–18.79 wt%) and the highest ZrO2 (13.75 wt%) as well. Compared to
the Ce-bearing thorite, the U-Nb-Y-bearing thorite is poorer in P2O5 (6.34–9.14 wt%),
F (1.55–2.07 wt%), and CaO (1.3–1.37 wt%). A single analysis of destabilized thorite
(39.08 wt% ThO2 and Σ oxides = 83.52 wt%) is presented in Supplementary Table S1e.
It contains ~10 wt% UO2, which can be considered uranothorite. Also, it is Zr-bearing
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(6.14 wt% ZrO2) and with 1.1 wt% F. Zircon is the lowest destabilized mineral, and its
chemical composition (Supplementary Table S1f) is typical of magmatic nature.

EMPA of fresh pyrite is presented in Supplementary Table S1g). The contents of F and
S are typical with the ratio 1:2, and the Σ Fe + S is almost 99.5 wt%. The ten analyses show
that this pyrite is almost free of Ni and As (up to 0.02 wt% and 0.01 wt%, respectively).
Considerable traces of Co and Cu are present (0.04–11 wt% and 0.04–0.15 wt%, respectively).
The highest content of trace elements is represented by Pb (0.74–2.01 wt%).

7. Discussion
7.1. Metallogenic Significance and Stages of Ore Minerals Crystallization

The ANS is a well-known metallogenic province of rare metal and radioelement min-
eralization. In recent years, voluminous masses of felsic rocks in Egypt and Saudi Arabia
have been investigated for mineral resources of Nb, Ta, U, Th, Y, and REEs hosted by
post-collisional A-type granites (e.g., [21,47,48]). Among these granites, the leucogranites in
the Nugrus area, as well as other localities in the Eastern Desert of Egypt, are believed to be
formed by the partial melting of thickened crust followed by emplacement contemporane-
ous with the reactivation of old thrust zones in the form of strike-slip or shear zones [49–52].
In a review of Nb-Ta-U-Th-REEs resources in the Eastern Desert of Egypt, [21] reported
that highly fractionated A-type granites are specialized for rare metals and radioelements,
which accompany beryl, cassiterite, and fluorite mineralizations in some instances. It
was also concluded that such deposits are occasionally enriched in Zr, Y, and F, typical of
A-type granites and related niobium–yttrium–fluorine (NYF) pegmatites in post-collisional
regime [53–56]. Based on the mineral chemistry of ore minerals in the studied leucogranite
from Wadi Nugrus area (Table 1 and the Supplementary Table S1), it is evident that they
are enriched in Nb, P, Y and F. Accordingly, they are similar to international examples of
mineralized A-type granite and NYF pegmatite [57] as well as some Egyptian examples
from the Eastern Desert, e.g., [16,21,58–63].

Based on ore mineral identification, textural relationships, and microanalytical data
given in the results section, it is possible to define different stages of ore mineral crystalliza-
tion and the paragenetic sequence. Figure 9 provides the suggested paragenetic sequence.
Also, it distinguishes between minerals in the two primary stages, namely magmatic and
hydrothermal. The microanalytical data in the Supplementary Table S1a–g and BSE images
(Figures 5–8) indicate that the magmatic stage witnessed the crystallization of zircon, thor-
ite, ferrocolumbite (Figure 10a), and possibly some of the fergusonite. It is supposed here
that the magmatic paragenesis of the magmatic stage might include primary phosphate
minerals (apatite, monazite, and xenotime) that are completely destabilized during the
hydrothermal alteration, furnishing a considerable amount of P that converts magmatic
thorite into hydrothermal P-F-rich thorite (Figure 10b, Table 3). Zircon has a typical mag-
matic nature, as indicated by the ThO2/UO2 >0.1 (Figure 11a). A single odd analysis of
zircon (Figure 11a) would suggest limited hydrothermal destabilization. Another support
for the freshness of this magmatic zircon is confirmed by its Si/Zr ratio equal to 1.08–1.16
(Figure 11b). In the fresh and undeformed Nugrus leucogranite, sulfide minerals are rare or
almost absent. Still, they are common in the deformed samples (Figure 8), indicating their
hydrothermal origin and, accordingly, hydrothermal destabilization or rare-element min-
erals formed in a reducing condition. In brief, ore minerals in the hydrothermal stage are
represented by sulfides (dominated by pyrite), P-F-rich thorite, fergusonite-Y, petscheckite,
and uranopyrochlore. Altered uranothorite and betafite (Figure 7) are counted among the
supergene mineral assemblage.
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7.2. Mechanism of Ore Minerals Destabilization

During the hydrothermal stage(s) of mineralization, some essential elements play an
important role in the crystallization of the A-type granite host. Fluxing elements and their
enrichment are critical for crystallizing silicate and ore minerals in felsic magmas evolved in
post-collisional settings, e.g., [69–71]. Therefore, the investigated rare-metal and radioactive
minerals in the magmatic stage are believed to be concentrated in the highly fractionated
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felsic melt once the rare elements are associated with considerable amounts of fluxing ele-
ments and compounds, e.g., F, P, and H2O [69]. This is confirmed by the experimental work
of [71], who agreed with [70,72,73] that these fluxing materials influence the concentration
of rare elements and the viscosity and diffusivity of the residual hydrothermal fluid. In
the case of the studied Nugrus leucogranite, this fluid becomes enriched in rare elements,
including the radioelements, contemporaneous to elevated concentrations of P, Zr, and Th,
which crystallize magmatic apatite, zircon, and thorite, respectively.

The textural criteria obtained from the BSE images in Figures 5 and 6 confirm such
sequence and indicate that columbite crystallization is the latest among the primary dis-
semination of magmatic accessory minerals. Most likely, it crystallizes as the budget of iron
reaches its ultimate level, as indicated by the ferroan nature of columbite (Supplementary
Table S1a). The mineral is interstitial and post-dates rare-metal and radioactive minerals
in fluorite samples. The crystallization of fluorite witnesses the transition from magmatic
to hydrothermal once the solubility of H2O increases. During the hydrothermal stage, F
interacts with Ca-bearing country rocks. In this case, F is transported as fluoride complexes,
and fluorite might form veinlets and veins after consuming rare elements in the magmatic
stage [73–75].

In the Nugrus shear zone, the phosphate minerals, mainly apatite, broke down at
the hydrothermal stage. Apatite-group minerals comprise hydroxyl-apatite (HAP), fluor-
apatite (FAP), and chlorfluor-apatite (CFA) [76,77]. The mechanism of phosphate break-
down is a dissolution process in hydrothermal conditions at pH = 2–7 and at low tempera-
tures as low as 25 ◦C based on experimental mineralogy tests [78,79]. The crystallization
of hydrothermal sulfides in the investigated Nugrus deformed granite enhanced apatite
dissolution in the presence of Pb or Cd, as indicated by the presence of galena shown
in Figure 8 [79]. Also, apatite dissolution in the Nugrus samples was enhanced by fluo-
ride ions [80–82]. The liberated F and P are captured in the structure of newly formed
F-P-bearing thorite and other rare-metal and radioactive minerals (Supplementary Table
S1d). It is worth mentioning the destabilization includes magmatic ferrocolumbite and
other magmatic accessories, e.g., U-Th minerals in the deformed Nugrus leucogranite
(Figures 6 and 10a; Table 2 and Supplementary Table S1a), by hydrothermal solutions in
the A-type granites. This corresponds to similar hydrothermal alteration in other localities
in the Eastern Desert of Egypt, e.g., Gabal Gattar, El Erediya, and Um Ara localities [83–85].
Therefore, the present work agrees with these authors that rare element-bearing secondary
minerals are the hydrothermal products of sheared A-type granite that manifest and accel-
erate by the argillic alteration and formation of clay minerals and Fe-oxyhydroxide. In the
Nugrus case, magmatic U-Th minerals are replaced by supergene uranothorite and betafite
(Figure 7, Supplementary Table S1e). On the other hand, ferrocolumbite is replaced by
destabilized ferugosonite-Y, petscheckite, and uranopyrochlore (Figure 6; Supplementary
Table S1b,c). In low-temperature hydrothermal conditions, OH-, H2O, and heat avail-
ability can replace the primary magmatic minerals with hydrothermal uranium niobate
such as uranopyrochlore and petscheckite [86]. Experimental work by [87] indicates that
petscheckite is a metamict mineral species. The latter authors give natural petscheckite
with considerable REEs and U contents, similarly to the present study. In contrast to [88],
magmatic columbite from the present Nugrus locality is a ferroan variety. Mn-columbite
from some Egyptian pegmatites contains 13.5 wt% MnO on average [88]. Regardless of the
end-members, either ferroan or mangoan, they crystallize by Fe-Mn fractionation followed
by Nb-Ta fractionation. Magmatic zircon and thorite (i.e., primary) in the lowest deformed
granite in the Nugrus shear zone are comparable to their counterparts from other world
examples, e.g., Chinese [86]. In the present study, we confirm the conclusion by [89] that
the fresh domains of zircon are low-(U + Th), whereas the composition of altered zircon
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domains is high-(U + Th). Also, altered zircon shows a drastic drop in the contents of ZrO2

and SiO2 (up to 42 wt% and 23 wt%, respectively) [88]. We also agree that incorporating
Ca, Fe, and Mg compensates for the loss in Zr and Si.

Based on the foregoing discussion, the proposed scheme of paragenetic sequence
is presented in Figure 9, which distinguishes the primary stages into primary magmatic
and hydrothermal sub-stages, and finally, a supergene stage that might be connected to
weathering and oxidation zone near the surface. Plots of magmatic ferrocolumbite are
shown in Figure 10a. A magmatic zircon–thorite solid solution and destabilized thorite, i.e.,
hydrothermal, can be seen in Figure 10b. Zircon is typically magmatic (Figure 11a), almost
fresh with ΣSi + Zr cations equal to two, and finally, Si/Zr ratio < 1.2 (Figure 11b).

8. Conclusions
1. Inside the NW-trending Shear Zone, post-collisional A-type leucogranite is deformed,

preserves some magmatic accessories (e.g., columbite, zircon, and thorite), and in-
cludes destabilized rare metal-bearing minerals due to hydrothermal alteration.

2. Zircon, with a Si/Zr ratio < 1.2, is the most preserved magmatic accessory. On
the other hand, interstitial fluorite and apatite are completely destabilized due to
decomposition by hydrothermal fluids at pH = 2–7. Newly formed hydrothermal
pyrite indicates destabilization at reducing conditions.

3. Destabilization of fluorite and apatite results in the liberation of Ca2+, Y3+, P5+, F−,
and Cl−, which enables the crystallization of new niobates and P-F-rich thorite.

4. The resulting destabilized P-F-rich thorite phases develop in three successive stages.
Stages I and II witness the crystallization of Ce-bearing thorite, which is sodic
and Si-depleted. In stage III, U-Nb-Y-bearing thorite is Zr-rich, non-sodic, and
relatively Si-enriched.

5. Three newly crystallized hydrothermal niobates are formed at the expense of mag-
matic columbite: fergusonite-Y, petscheckite, and uranopyrochlore. They are U-, Th-,
and Y-rich and contain up to 15.24 wt% UO2, 9.52 wt% ThO2, and 6.03 wt% Y2O3.

6. Based on a proposed paragenetic sequence, ore minerals can be distinguished into
magmatic (stabilized), hydrothermal (non-stabilized), and supergene minerals. The
latter are the lowest in abundance and comprise goethite, Fe-oxyhydroxide, altered
betafite, and altered uranothorite.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/resources14010004/s1. Table S1: Electron microprobe analyses
(EMPA) of the investigated rare-metal minerals.
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