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Abstract: Mining may cause devastating environmental impacts through large-scale land
transformations. However, mining-induced land transformations are poorly understood
relative to a mine’s productivity or life cycle. We integrated satellite imagery, geographic
information systems (GISs), and mine site production data (ore, concentration, and waste)
to conduct a detailed spatiotemporal analysis of 15 open-pit copper mines in Chile, distin-
guishing six types of features. Although the occupied area (9.90 to 149.61 km2 in 2020) and
composition vary across mines, facilities for waste storage occupy the largest proportion
(>50%) of the transformed land area, emphasizing the need for proper waste management.
The analysis of land transformation factors (the transformed land area per unit production)
showed high variation (0.006178 to 0.372798 m2/kg-Cu) between mines over time. This
reveals a significant problem in the historical practice of using averages from life cycle
assessment (LCA) databases. This research reveals the significance of geospatial analy-
ses in assessing mining-induced land transformation, and it provides geospatial data for
land-related LCA. Mining companies are encouraged to disclose GIS information regarding
land transformation to foster transparency and social responsibility, as well as to promote
responsible and sustainable mining.
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1. Introduction
Mining is essential to modern society, serving as an economic pillar and providing

raw materials for key technologies. However, the land available for mining is limited,
and it often conflicts with other land uses (e.g., natural ecosystems, agriculture, and ur-
ban areas). Over 100,000 km2 of land has been directly occupied for mining activities
worldwide [1,2], and nearly three-quarters of active mines are in areas hosting impor-
tant ecosystems [3]. Mining activities and mining-induced land transformation (MLT)
can induce a range of indirect and direct effects, including human-made seismicity [4,5],
alterations in geomorphology and stratigraphy [6,7], changes in local temperature [8],
deforestation [9], biodiversity loss [10], the loss of farmland and protected areas [11,12],
water quality deterioration [13,14], tailings dam failure [15], soil degradation [16,17], and
population displacement [18].

The increasing demand for metals like copper (Cu), cobalt (Co), and lithium (Li) [19] in
clean energy technologies has promoted an increase in MLT in many regions worldwide [20].
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However, research assessing MLT and its links to mineral supply chains has been limited.
At a system level, MLT has received limited attention due to the smaller scale of mining
areas compared to sectors like agriculture and urban land use [21]. For example, in the
land use category defined in the Good Practice Guidance for Land Use, Land-use Change
and Forestry (GPG-LULUCF) [22], “mining” is not defined as a specific land use category
and is commonly merged into other land use classes like “Other”. This indicates that
MLT may have been underestimated despite its highly intensive, long-term or permanent,
potentially far-reaching (i.e., beyond that of the area of direct, intensive mining), and
irreversible impacts.

Life cycle assessment (LCA) and life cycle impact assessment (LCIA) methods are
widely used to assess the environmental impacts of products or services. Per these meth-
ods, MLT is often assessed as an inventory item under “Land Use and Land-use Changes
(LULUC)” [23] or as a unit process/intervention with several impact indicators [24]. Com-
paring it to other impact categories like “eutrophication” and “climate change” reveals that,
currently, there are no best practice methods for land use [25]. Typical methods include the
integrated value-added model (IVAM) method [26], Köllner’s method (partly included in
the Eco-indicator 99 later) [27,28], the LCAGAPS method (a method developed in project
EU-1296 entitled “Development and application of mahor missing elements in the existing
detailed Life Cycle Assessment methodology”) [29], and the LANCA method [30] for land
use indicator calculation in Sphera’s LCA for Experts Software (3.1, by Sphera Solutions
Inc., Chicago, USA, formerly known as GaBi Software, thinkstep-anz) [31,32]. However,
in applying these methods, one major challenge is the lack of site-specific information
including transformed area [28]. The area data used in the calculation of these methods are
normally average values derived from several regions or sample sites like averages in the
ecoinvent database [33,34], or from simulated results like [35]. For example, ref. [36] have
estimated the global land-use change of nickel mining using a global link input–output
model (GLIO) with “land-use change intensity” data ostensibly provided via the nickel
industry and suggested that open-cut mines and underground mines cover, on average,
1.8 m2/t-Ni and 0.76 m2/t-Ni, respectively. However, using a single, representative, region-
wide average value may be misleading because of the large variation among sites [37].
There is, therefore, a clear need to define a more precise footprint of mine areas and to
evaluate the impacts of MLT.

Given the number and geographical spread of mine sites globally, there are major
logistical limitations to obtaining in situ measurements of MLT. Therefore, remote sensing
(RS) and geographic information systems (GISs) can be valuable assessment tools [22], and
they have been used by many researchers in this field (see more in Appendix A). Studies
on MLT can be broadly divided into two spatiotemporal archetypes: (1) the global scale,
but at a specific point in time, normally constrained by the time of availability of images,
and (2) the local scale, but considering changes over time. For type (1), ref. [1] (updated
to [2]) have mapped the land for almost 35,000 mining sites worldwide, while [38,39]
have distinguished 65,585.4 km2 of mine area features across 135 countries and regions.
They provide a global indication of present-day MLT; however, historical and parallel
comparisons cannot be conducted because of the limitations and variations in footprints
over time. For type (2), refs. [37,40] have respectively analyzed six nickel mines in New
Caledonia (1986, 1995, and 2012) and one Cu–Ag–Au mine in Laos, but without a detailed
distinction of the different features (i.e., facilities for mining activities) of the mine site.
This is critical because different features of a mine site (e.g., pits, waste rock dumps, and
tailings dam) can present a range of distinct risks [38]. Understanding their specific growth
patterns over time may refine our understanding of land-related impacts and management
strategies. Studies like [37,41,42] have combined spatial and production data to discuss
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the relationship between production and MLT, which is necessary to assess supply chain
impacts using LCA/LCIA methods. However, such studies are exceedingly few.

To address these gaps, this study aims to (1) produce detailed spatiotemporal maps
with feature classification of a representative sample of metal mines, (2) provide a replicable
geographical method for the comprehensive surveying of MLT, (3) discuss the relationship
between mineral production activities and MLT, and (4) reevaluate the land transformation
factors (LTFs, the relationship between land transformation and production) to validate
traditional LCA/LCIA methods. Our study does not aim to directly use LCA methods;
instead, we aim to provide more robust data that underpin LCA land-related invento-
ries shared through the commonly used LCA softwares like Simapro (SimaPro 9.5.0.0,
PRe sustainability, Amersfoort, the Netherlands) and openLCA (2.4.0, GreenDelta, Berlin,
Germany).

Chile is located at the boundary between the Nazca and South American plates. The
subduction movement of these plates over several hundred million years has formed one
of the most famous landforms in northern Chile—the Andes [43,44]. Along with the rise
of the Andes, the high-pressure and high-temperature environment created through plate
movement and volcanic activity has also led to the formation of various mineral resources,
including copper [45]. Chile has been mining copper for over a century [15,46], and its
abundant copper reserves continue to make it a central player in the global copper supply
chain, currently accounting for 25–30% of the world’s annual copper production [47,48].
The complex morphostructure and long history of copper mining make Chile an interesting
target for the study of MLT. Additionally, despite its rich mineral resources, years of open-
pit copper mining have left Chile’s surface severely scarred, and the environmental issues
caused by land transformation urgently need to be addressed.

In this study, we selected 15 active large-scale open-pit copper mines in northern
Chile (Figure 1a) as targets, and we classified the footprints of six types of mine features
over time: pits, waste rock dumps (WRDs), tailings storage facilities (TSFs), leaching pads
(LPs), facilities, and ”other” (see Figure 1b, Section 2.2 and Appendix B). We first utilized
satellite imagery and GIS to map and classify the land occupied by the mines. Based on
these results, we calculated LTFs by combining geospatial data with site production data,
and we discuss their implications. Thereafter, we discuss the results of the geospatial
analysis, the changing relationships between production and the land footprint, and our
recommendations towards sustainable and responsible mining.



Resources 2025, 14, 25 4 of 49

(a)

(b)

Figure 1. Study area and features. (a) Map of 15 studied copper mine sites in Chile with contour lines.
Contour lines are made from digital elevation model (DEM) SRTM30 [49]. Google Earth satellite
imagery of Collahuasi and Caserones are shown as examples. (b) Examples of classified features
from Escondida, Chile. Base map source: Google Earth (image date: after 2 October 2021; provider:
Airbus Maxar Technologies CNES/Airbus). Photos of features were obtained at specific locations
from the Street View Mode of Google Earth.

2. Materials and Methods
2.1. Terminology Declaration

An issue in the literature has been raised by [24], suggesting that the diversity and
mixed utilization of land-related terminologies (e.g., “land cover” and “land use”) may lead
to confusion in different contexts. It is, therefore, necessary to declare terms used in this
study based on the definitions from previous studies. Here, we provide a brief description
of the terms used in this study. For detailed explanation and discussion, see Appendix A.
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Land coverrefers to the physical material (natural or artificial) on the Earth’s surface [24].
Land use refers to the functional dimension of land and corresponds to the description of
areas in terms of their purpose [24], normally using categories defined by [22], in which
“mining” has not been defined. Land occupation refers to the continuous cover of land of
one type for a certain human-controlled purpose to obtain a specific outcome [28]. Land
transformation is the change from one land-use type/category to another [24,28]. The impact
of land transformation (ITrans) can be considered as an integral value of the land occupation
impact (IOcc) over a long time (t) as a conceptual formula (1).

ITrans =
∫ t

t0

IOcc dt (1)

In the context of mining, land use change refers to the transition from other categories
(e.g., forest and grassland) to “mining”, with land cover changing to bare land, concrete,
sludge, and other land covers. Humans mine and produce minerals (i.e., human-controlled
purpose) through long-term land occupation, resulting in land transformation. Therefore,
in this study, we mapped successive land occupation to describe the land transformation
induced via mining activities.

2.2. Scope and Feature Distinction

Based on the reasons described in Section 1, we focused on copper mines in Chile.
Filtering the data from S&P Capital IQ Pro (hereafter SNP, a comprehensive financial data
and analytics platform for mining professionals, investors, and analysts) [50] according
to mining methods, commodities, and reported copper production quantities in 2021, we
selected 15 open-pit sites with copper as the primary commodity (Figure 1a, see Table A3 in
Appendix C for details). The selected mines are all located in northern Chile, corresponding
to the two northernmost regions in the natural regions classification—Norte Grande (Far
North or Great North) and Norte Chico (Near North). Most of the mines are situated at
altitudes ranging between 2000 and 4000 meters. In 2021, the 15 sites produced 86.3% of
Chile’s total copper production and accounted for 79.8% of the total estimated reserves in
Chile.

We distinguished six features of copper mine sites: pit, WRDs, LPs, facilities, TSFs,
and others (Figure 1b). Features were distinguished based on expert judgment, maps
in technical reports (Table A2), the logic of copper mining and refining (Figure A1), and
potential environmental risks. Details of definitions, identification methods, and specific
examples for each feature are summarized in Appendix B.

2.3. Mapping Using Satellite Imagery and GIS

The method used for satellite image analysis in this study is based on the “Geograph-
ically explicit land-use mapping” approach described in [22] (Chapter 2). Considering
the long timespan of observation and data consistency, we used satellite images from the
Landsat series, which started recording images in 1972 [51].

Satellite images were downloaded from the Global Visualization Viewer (GloVis, USA),
an online search and ordering tool provided by U.S. Geological Survey [52]. Compared
to past studies that have selected several specific periods without the start year of mining
projects (e.g., [37]), we observed successive land occupations since each mining project
started, with 2- to 5-year intervals (see Table A3 in Appendix C), to track land occupation
and transformation through the history of each mine site.

Satellite images underwent band composition using Python (3.11.2) with open-source
libraries gdal [53]. A polygon delineation of features was then conducted through visual
interpretation using open-source GIS software QGIS (3.38.2-Grenoble, QGIS.ORG, Switzer-
land) [54]. Because of the resolution of the satellite images from Landsat (30 m), and to
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increase the accuracy of delineation, we georeferenced very-high-resolution Google Earth
images and site-planning maps in technical reports from mining companies (see Table A2)
in QGIS as a reference. Data from OpenStreetMap (OSM) [55], including point, line, and
polygon layers, and interpretations from experienced mining experts were also involved
for the further validation of the mapping results.

2.4. Data Analysis

We analyzed the mapping data in two main steps: area calculation and analysis
combined with operational data. The area of each polygon was calculated using the
geopandas [56] Python package under the reprojected coordinate reference system WGS
84/UTM, zone 19S (EPSG:32719), which is suitable for area calculations between 72◦ W and
66◦ W in the Southern Hemisphere [57]. The total occupied area (AT) of a mine (m) in a year
(t) is calculated using Equation (2). In addition, because we delineated the polygons of each
feature, the proportion (por) that each feature (i) occupies in the total area in year (t)—for
understanding the spatial composition of each mine—was calculated and compared among
sites using Equation (3).

AT,m,t = APit,m,t + AWRDs,m,t + ATSFs,m,t + AFacilities,m,t + ALPs,m,t + AOthers,m,t (2)

pori,m,t =
Ai,m,t

AT,m,t
× 100% (3)

Next, to analyze the relationship between occupied land and factors in mining activity,
we combined area data with operational data obtained from the SNP database [50], includ-
ing the coordinates of mines, commodities, mining methods, and the annual production of
ore, copper, and waste.

The LTF, a parameter indicating the area of land occupied (m2) for producing a unit
(kg) of target materials (in this study, copper), was calculated using Equation (4). The LTF
shows the relationship between the occupied land area (AT,m,t) and the cumulative material
production (P) within the period ([t0, t]). The LTF was analyzed and compared with other
similar factors in other research, such as weighted disturbance rates (WDRs) in [34]. We
distinguished three different LTFs, LTFOre, LTFCopper, and LTFWaste, which were calculated
using Equations (5), (6), and (7), respectively.

LTFm,t =
AT,m,t

∑t
t0

Pt
(4)

LTFOre,m,t =
AT,m,t

∑t
t0

POre,t
(5)

LTFCopper,m,t =
AT,m,t

∑t
t0

PCopper,t
(6)

LTFWaste,m,t =
AWRDs,m,t + ATSFs,m,t

∑t
t0
(POre,t + PWaste,t − PCopper,t)

(7)

3. Results
3.1. Site-Specific Mapping and Feature Composition Analysis

As shown in Figure 2, 2026 polygons were delineated, based on 62 satellite images
covering the lifespan of 15 mines between 1989 and 2020, with intervals ranging from 2
to 5 years (see Table A3). The land occupation results (Figure 3) of three representative
mines with relatively long operation period since the 1990s—Escondida, Zaldivar, and Los
Pelambres—were compared to assess the different characteristics of the mines.
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(a)

(b)

Figure 2. Examples of satellite imagery and the delineated features. (a) Escondida and Zaldivar
(2020). The base map is a true-color image composed of bands 4-3-2 from Landsat 8-9 OLI/TIRS,
with display adjustments applied in GIS. (b) Los Pelambres (2020). The left figure consists of two
layers—delineated features and contour lines. Elevation contours were converted from DEM data
SRTM 30 m [49], which was downloaded using the OpenTopography DEM Downloader plugin in QGIS.
The right figure shows polygons of Los Pelambres in the 3D view of Google Earth Pro.

Figure 3a,b illustrates temporal changes in land occupation and feature composition
of Escondida and Zaldivar, respectively. Two mines are closely situated (Figure 2a) and
commenced operation at a similar time (1989 and 1995). In 1989, Escondida started its
operation with the gradual expansion of WRDs, and subsequently, the area of pit and
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TSFs became larger. TSFs overtook WRDs and became the largest feature in 2005, due to
the start-up of the Escondida Norte Mine in 2005 with the construction and expansion of
the Escondida Norte open pit and Laguna Seca TSF in the southern part of the mine [58].
Until 2020, waste storage facilities (WSFs)—WRDs (28%) and TSFs (41%)—accounted for
69% of the total area (149.48 km2), whereas pits accounted for only 8%. In comparison,
the change in proportion of each feature was not obvious in Zaldivar since it started in
1995 and continued till 2020, with WSFs (WRDs: 41% > TSFs: 25%) accounting for 66% of
total land occupation (23.75 km2) and pits accounting for 15%. This result reveals that a
significant proportion of space was occupied by WSFs within mining areas, consistent with
the findings of [18]. This reinforces the significant attention paid to the management of
WSFs at mine sites.

(a) Mine Escondida

(b) Mine Zaldivar

(c) Mine Los Pelambres

Figure 3. Mapping and feature composition results of three sample mines. For each mine in the
subfigures, the top figures show the delineation result of land occupation in different years, whereas
the bottom figures show the composition of features. The results for the other mines are summarized
in Appendix D.
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Our results highlight the influence of mine-site processing methods on land trans-
formations. For example, it is notable that the proportions of WRDs and TSFs are starkly
different between Escondida and Zaldivar. This is largely attributable to the use of dump
and heap leaching at Zaldivar [59], with waste material stacked in TSFs in solid form. In
contrast, Escondida employs both leaching and froth flotation in its processing method.
The froth flotation method generates a large amount of tailings, requiring the construction
of a large-scale tailings dam for storage and thereby significantly increasing the proportion
of WSFs in the occupied land of the mine. This heterogeneity highlights the need for a more
site-specific mapping and characterization of mine sites to obtain a deeper understanding
of site-specific characteristics.

A comparison of the chronological land occupation map in Figure 3a–c reveals dif-
ferences in the spatial distribution of features among three mines. From the maps of
Escondida and Zaldivar, it is evident that all features exhibit a concentrated distribution
within the depicted space. This configuration of features can be characterized as a “dense
type”, which is often observed in mines situated on flat terrain that permits site operations
immediately adjacent to orebodies. This distribution concentrates the features and reduces
transportation time and costs, thereby enhancing economic efficiency. Correspondingly, the
“dispersed type” is exemplified in areas such as the Los Pelambres mining district, where
features exhibit irregular distribution and may display noticeable and sizable gaps between
them. This is often attributed to the physical spatial constraints imposed by the terrain,
such as mountain ranges or valleys (see Figure 4c). While the dispersed-type distribution
tends to have smaller total land occupation (e.g., Los Pelambres: 20.63 km2 in 2020), the
influence of topographical factors suggests that unexpected incidents (e.g., earthquakes)
may lead to more severe losses, and indeed, the total area in which mining is the dominant
land use increases. Therefore, the analysis of MLT should not only consider the size of
land occupation but also require a thorough understanding of the topography and spatial
distribution of features.

(a) (b)

(c) Mine Escondida (d) Mine Zaldivar

Figure 4. Cont.
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(e) Mine Radomiro Tomic (f) Mine Ministro Hales

Figure 4. Land occupation/transformation and copper production. (a) Relationship between cumula-
tive copper production and land transformation area of 15 mines in 2020, calculated as Equation (6).
(b) Relationship between cumulative waste production and occupation area for waste storage, cal-
culated as Equation (7). (c–f) show the chronological change in land occupation (left axis) and
cumulative copper production (dashed yellow line, right axis) of each mine.

3.2. Assessing Land Transformation Versus Mining Activity
3.2.1. Temporal Changes in Copper Production and Land Transformation

The relationship between the total occupied area and cumulative production until
2020, and the relationship between the area for WSFs (including WRDs and TSFs) and
total waste production, are plotted in Figure 4a and 4b, respectively. Both figures exhibit
an approximately linear relationship. The slopes of the fitted lines, referring to LTFCopper

and LTFWaste in 2020, were 0.0045 m2/kg and 9.87 × 10−6 m2/kg. Despite high correlation
coefficients (r = 0.94 and r = 0.90, respectively), these linear fitted results are not ideal for
direct application to LCA inventories. This is primarily due to (1) some sites diverging
greatly from the fitted lines and (2) these values being specific to the selected 15 mines for
the year 2020 only. Therefore, we conducted a more comprehensive temporal investigation
of land transformation and production.

Figure 4c–f show the chronological changes in the occupied area and the cumulative
production data of four sample mine sites, which were all in the operation stage in 2020 (see
Table A3 in Appendix C). Except for Radomiro Tomic, which has no available production
data from 2005 to 2007 from either [50] or [60], cumulative production shows nearly linear
growth because each mine tends to maintain the continuous operation of the production
line and a stable supply to the market. In contrast, changes in land varied between sites,
with a tendency to gradually stabilize over time. For Radomiro Tomic and Ministro
Hales, the occupied area expanded gradually and linearly; however, for Escondida and
Zaldivar, several turning points can be seen due to periods of project expansion. Let us take
Escondida (Figure 4c) as an example. The areas of TSFs and WRDs increased rapidly after
2000 due to the start-up of the Phase 4 Escondida expansion (Laguna Seca tailings dam) in
2002, and LPs expanded after 2010 following the announcement of the Oxide Leach Area
Project (OLAP) [58]. This indicates that, while the production volumes of mines do not
exhibit significant annual variations, the relationship between land transformation and
production may change because of factors such as mine development plans. Therefore,
using production volumes to calculate land transformation areas retroactively can lead to
significant inaccuracies.

3.2.2. Comparative Analysis of LTFs

LTFCopper was calculated per Equation (6) and plotted in Figure 5a. It illustrates
that, for the 15 mines selected in this study, each mine exhibited a trend in which the
LTFCopper was relatively high during the initial stages and gradually decreased over the
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life of the project. This trend aligns with that found in Ni mines by [37]. In addition, the
results indicate significant variability in the LTFCopper during the initial stages of each mine,
followed by a gradual decrease as mining progresses. However, the logarithmic graph
further illustrates that, although the LTF values are minimal in 2020, substantial differences
persist between the mines.

(a)

(b) (c)

(d) (e)

Figure 5. Analysis results of LTFCopper. (a) Chronological changes in LTFCopper for all selected mines.
(b) Relationship of LTFCopper and occupied area in 2020. (c) Relationship of LTFCopper and cumulative
copper production in 2020. (d) Relationship between land occupation area and the duration of the
mining projects up to 2020. (e) Relationship between LTFCopper and the duration of the mining
projects up to 2020.
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To further investigate the factors that may influence LTFs, an analysis of snapshots
in 2020 is plotted in Figure 5b–e. In the context of mining activities, gold (Au), a high-
value byproduct, may influence mining operations. However, our data indicate that the
presence of gold in commodities does not significantly affect LTFs. This is consistent with
the findings of [38], who found that commodity types did not statistically influence land
transformation.

Figure 5b and 5c respectively represent the numerator and denominator of the LTF
formula. There is no clear relationship between the area and LTF. In contrast, the cumu-
lative production shows a more pronounced regularity in its influence on LTF, with LTF
significantly decreasing as the cumulative production increases.

Figure 5d illustrates that the size of the transformed land area was not strongly
correlated with the duration of mining activity. This is because (1) the scale of mining
operations can be influenced by various social factors, such as permits from the government,
resource reserves, financial investment, and mining methods, and (2) there is a slowdown
in horizontal expansion. In the early stages of mine development, rapid expansion can be
seen from the satellite images for Pit and WRDs in particular; however, the expansion slows
down because of the vertical pile-up of waste and deep digging into the pit. Therefore, a
longer duration of mining development does not necessarily imply a continued rates of
expansion. Figure 5e illustrates a clear decreasing trend in LTF as the duration of mining
projects increases. As analyzed in Section 3.2.1, with the progression of the mining project
duration, cumulative production volumes show a linear increase, whereas the area of land
occupation tends to stabilize, ultimately resulting in a reduction in LTFCopper over time.

3.2.3. The Variations and Disparities in LTFs

In addition to LTFCopper, LTFOre and LTFWaste were calculated and plotted in Figure 6
(detailed data provided in Table A4 in Appendix E). Similar to LTFCopper, LTFOre and
LTFWaste exhibit a trend of a gradual decrease with an increasing duration of mining
activity, for reasons similar to those mentioned in Section 3.2.2. However, the difference in
the volume of ore/waste and copper results in a difference in the magnitude of LTFOre and
LTFCopper, indicating the necessity to declare a clear definition of each factor, as well as a
formula for calculation, if used.

Comparing the average values of LTFCopper among the mines reveals a two-digit
difference between the maximum value of 0.372798 m2/kg (Sierra Gorda) and the minimum
of 0.006178 m2/kg (Escondida). Such a difference can also be observed in LTFOre and
LTFWaste, indicating that using average values to represent the conditions of all mining
areas can lead to significant uncertainty, potentially conveying inaccurate information to
the public or even guiding policymakers to formulate inappropriate policies (e.g., if permits
are granted on the assumption that a region will be developed to a certain extent).

In addition, LTFOre values in Table A4 in Appendix E were compared with factors
from two sources: (1) the mean value in ecoinvent for “land transformation from nature to
mine” during the “Mining copper ore, GLO; mining” process (6.25 × 10−5 m2/kg-Ore) and
(2) the weighted disturbance rates (WDRs) of copper (4.5 ha/Mt-Ore, 4.5 × 10−5 m2/kg-
Ore) calculated by [34], which was defined as the ratio of the annual quantity of area (ha)
newly disturbed and ore extracted (million metric tons). The LTFOre of Mine Caserones
(5.3 × 10−5 m2/kg-Ore), which was the lowest average value of LTFOre in this study, was
the closest value to these averages of copper. This suggests that, if the results in [33,34] were
applied to describe the 15 mine sites in this study, the results of the area calculation—the
basis of further assessment—would be underestimated.



Resources 2025, 14, 25 13 of 49

Figure 6. The distribution of LTF data in the selected mining areas at the chosen periods: (a) LTFOre,
(b) LTFCopper, and (c) LTFWaste. Note that the blue lines in this figure represent the average value of
the 15 mines across all the selected years since operations started.

4. Discussion
4.1. On the Importance and Benefits of Spatial Data

Compared to other inventories in LCA, such as the energy consumption and global
warming potential (GWP, unit: kg CO2 eq) of a specific material, which are relatively easy
to quantify, land is a much more complex issue. Land cover is the result of the combined
effect of large spatial variations in a number of natural elements, including geomorphology,
geology, and hydrology. At the same time, changes on land can be the root cause of
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numerous environmental impacts and even disasters, such as soil degradation, localized
earthquakes, and landslides.

Current LCA studies evaluate land-related aspects, such as the potential damage
(D, see Equation (8)), using the occupied area (a) affected from the initial stage (t0) to
a specific stage (t) as a key metric for the characterisation factor—ecosystem damage
potential (EDP) [28]. Models for calculating mining areas have been proposed and used
in LCA [35,37,61]. Although clearly important, land area should not be the only aspect
considered. The simplification of “land” into “area” may result in the nuance of spatial
distribution and arrangement being overlooked, which is important for environmental
assessment and risk evaluation.

D =
∫ a

0

∫ t

t0

EDP(a, t) · dadt (8)

Accordingly, our results strongly suggest that any assessment related to land in
LCA should incorporate geographic data where possible to fill the gap raised by [62].
A synthesized GIS database on mining could be constructed to support this, as was also
suggested in [30,63]. In lieu of public reporting, our remote sensing satellite imagery and
GIS approach offer the possibility of obtaining independent data on spatiotemporal changes
in mines at a low cost. The benefits of creating a GIS database for mines include but are not
limited to the following:

1. Enabling a combination of temporally georeferenced attribute data. In this study,
we combined GIS polygons and operational data to calculate the temporal land
transformation factor site-specifically. Attribute data, such as locally measured data
on water contamination, soil properties, population density, and economic data,
if available, can also be supplemented and integrated for a more comprehensive
analysis.

2. The visualization of land occupation/transformation can easily be achieved in the
form of maps. The process of land transformation is illustrated in Figure 3, which can
be used to improve the basis for decision-making in industry and other organizations.

3. Integrated spatial analysis can be conducted by overlaying it with other types of maps
(e.g., geological, water system, and urban planning maps) to improve the accuracy [28]
and reliability of the environmental evaluation and risk assessment of mining projects.

In this study, we provide a basic sample of geographic data and part of its application
methodologies. The obtained data can not only be used in coupling with production
data to calculate the LTF required for LCA but also have direct applications in multiple
disciplines related to mining, such as industrial ecology, environmental, and disaster science.
Biodiversity assessment, water pollution range prediction, and potential disaster prediction
can be implemented based on these geographic data. Additionally, field sampling data (e.g.,
water and soil samples) can be integrated as attribute data to create a more comprehensive
information model for LCA and environmental assessment to enhance sustainable resource
development and cleaner production in a mining context.

4.2. On the Reconsideration of Land-Related Factors in LCA

As mentioned in [35], in LCA, “the environmental impact of mining can be calculated
by multiplying the land transformation area per unit of ore mined by the impact on the
ecosystem per unit of area changed”. However, it should be noted that the LTF does not
represent the causal relationship between production and land transformation/occupation
because of the lack of objective physical principles. As defined by Equation (4), LTF is calcu-
lated based on area and production, indicating the area of land occupied for production per
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unit of target products, which is a quantitative indicator of the efficiency of occupied land
utilization, not of the causal relationship between them, and can be affected by a combina-
tion of both natural and anthropogenic factors. Therefore, the suitability and applicability
of LTF for land-related calculations (e.g., environmental impacts or biodiversity loss) for
mining need to be discussed and verified.

Additionally, among the 15 mine sites in 2020, the average value of LTFCopper

(0.0148 m2/kg-Cu), the median value (0.0106 m2/kg-Cu), and the slope of the fitted line
in Figure 4a (0.0045 m2/kg-Cu) showed significant differences, and no evidence could
be found regarding which of these values can better represent these 15 mines. When
accounting for each individual mine or different time periods, the variability in the results
becomes significantly greater, rendering it impractical to select a single value that accu-
rately represents the overall scenario. The results in Sections 3.2.2 and 3.2.3 demonstrate
that utilizing a single value to represent different mines and over different time periods
is insufficient.

While our study enables accurate LTF calculations for the mines assessed, the sheer
work required to gather production and spatial data for the world’s mines remains enor-
mous. Work is ongoing to compile production data (e.g., [64,65]), and footprint data
(e.g., [2,38,39]) at global scales that will help to enable these efforts; however, integrat-
ing these datasets also remains a major challenge. In the meantime, it is clear that the
uncertainties associated with land transformation data (e.g., ecoinvent [33]) per current
LCA methods are high. Our study emphasizes that such uncertainties ought to be clearly
acknowledged.

Compared to estimating MLT areas based on production data and LTF, or using
nation-/region-wide averages to represent the situation of all mines in a specific region,
maps generated from satellite imagery and GIS data in this study provide a more accurate
and realistic reflection of land transformation. These geospatial techniques offer precise,
site-specific insights into how mining activities directly alter the landscape, capturing the
variability between individual sites and their unique environmental impacts.

4.3. Recommendations for Sustainable and Responsible Mining

Land is an important resource, and any modification of land in the course of industrial
production like mining entails an occupation and destruction of native land resources,
which, in turn, causes direct or indirect damage to the surrounding ecological environment.
In the context of sustainable development and cleaner production, land reclamation and
rehabilitation, soil remediation, and ecosystem restoration in mining areas have become
pressing issues [66]. Ideally, governments and companies that profit from mining activities
are obligated to restore the land to its original state prior to extraction. However, only a
handful of post-mining area have been reclaimed [67,68], and the rest became “mining
legacies” with long-term environmental effects. The 15 mines examined in this study,
regardless of the duration of their operation, all showed continuous land expansion, likely
because they are still in active production. However, in the coming decades, as copper
resources are depleted, it remains uncertain whether these lands will be reclaimed or
become new “mining legacies” and what environmental consequences may follow. To
avoid tragedies like those summarized by [15] in the history of Chile, and to promote
sustainable mining practices, here, we propose recommendations based on the methods
and findings of this study.
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4.3.1. Waste Management

Based on our analysis of feature composition in Section 3.1, WSFs—TSFs and WRDs—
occupy more than half of the land area in each mine, and these facilities pose the greatest
environmental risks. Therefore, every mining company should ensure the following:

1. During the detection and planning phase, in addition to selecting appropriate locations
and construction methods for all facilities, post-closure rehabilitation measures should
also be planned properly.

2. During the operational phase, these facilities must be properly managed to minimize
pollution and prevent potential disasters like tailings dams’ failure.

3. During the post-mining phase, these facilities should be subject to long-term monitor-
ing, and the land should be gradually reclaimed and rehabilitated to minimize the
environmental impacts and associated risks.

Although land reclamation and rehabilitation are known to be costly (250–400
Euro/m2 for land reclamation, according to [66]), in the context of sustainable devel-
opment, the ability to rehabilitate land at a reasonable cost will become both an opportunity
and a challenge for mining companies. Furthermore, governments should strictly assess
the clarity and feasibility of rehabilitation plans, particularly for high-risk land areas like
waste storage facilities, when granting mining permits.

4.3.2. Public Attention and Information Disclosure

In the broader context of climate change and the Sustainable Development Goals
(SDGs), much of the focus has been on carbon emissions and new energy technologies [69].
In contrast, land issues, particularly those related to mining activities in remote regions,
receive far less attention [20,70]. As [71] pointed out, greater attention needs to be paid
to public participation and justice concerns associated with mine sites. However, the lack
of information disclosure serves as a significant barrier to public participation. Through
the investigation in this study, we found it challenging to obtain information on land
transformation related to mining activities. Among the 15 mines studied, we could not
locate any directly usable geographic data disclosed by the companies. Instead, only
reference maps were found in the reports of 12 mines, as listed in Table A2 in Appendix B.
This indicates that, compared to the progress made in disclosing information related to
carbon emissions, minimal advancement can be seen in disclosure of land transformation
information by governments or companies.

Based on the reports summarized in Table A2 and the knowledge of the mining
industry, it is evident that mining companies possess extensive geographic data that
could be used to create maps. However, why have they not made these information
publicly available? Three possible reasons can be raised: (1) they are not required to
disclose such information; (2) they are uncertain about what type of data to release and
in what format; (3) concerns over liability. These reasons highlight significant policy
deficiencies, particularly the lack of mandatory regulations, and clear guidelines and
instructions regarding the disclosure of land-related information. To address these issues,
we propose recommendations from two perspectives.

Policy-wise, governments should introduce regulations that require mining companies
to disclose geographic data related to MLT, including waste storage facilities and mining
areas, with clear guidelines on what specific data needs to be made public (e.g., spatial
data on land use and environmental impacts) and in which formats. These regulations
should enforce the release of standardized, GIS-compatible datasets that allow for easy
tracking and monitoring by the public and researchers. Incentives (e.g., tax benefits)
can be provided for companies that go beyond compliance in information transparency,
encouraging voluntary data sharing as part of corporate social responsibility.
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On the other hand, before policies are improved, the public can use the methods
developed in this study to monitor and track MLT independently. By utilizing open-source
remote sensing and GIS techniques, individuals or communities can build GIS databases
to monitor MLT in mining regions. This would provide a valuable resource for both
advocacy and policy-making, and it would allow for more informed public participation in
environmental governance and sustainable production.

4.4. Uncertainties and Limitations

Uncertainties in this study arise from the quality and incompleteness of the source
data. Open-source satellite imagery from Landsat (30 m) made it difficult to define the exact
boundary of features more precisely; therefore, the measured area may slightly differ from
actual values. In addition, owing to the long-range capture of satellite imagery, shadows
due to altitude and image distortions can have an unavoidable impact on image recognition.
This uncertainty can be resolved by companies disclosing their original site plans and land
transformation situation in the form of maps [24] or geodata.

Furthermore, the production data obtained from SNP S&P Capital IQ Pro [50], espe-
cially the amount of ore and waste production, are not complete, which may result in an
overestimation of the LTFs (because of the lower value of the denominator in Equation (4)).
This may be due to the incompleteness of the data collected by [50]. A primary purpose
of this study was to illustrate the differences between mines and the changes over time
through the trend of LTF and to explore the reasonableness of LTF. We note that there
can be temporal variability between exact dates of production reporting and the dates of
available satellite imagery. This variability was not independently calibrated in our results,
particularly as we did not have access to rates of production within a quarterly period.

5. Conclusions
Mining activities cause large-scale land occupation and transformation resulting in a

wide range of environmental and social impacts. To address the uncertainties arising from
the severe lack of data on mining land use, which necessitates the use of LTFs to estimate
land transformation areas in LCA, this study proposes a novel method that integrates
satellite imagery with GIS techniques for the mapping of mining activities. Furthermore,
the relationship between land transformation and production volumes was analyzed using
operational data, providing deeper insights into the dynamics of land use in mining. Lastly,
this study critically evaluated the applicability and limitations of LTFs within the context
of LCA.

Our study revealed that the topography and geomorphology of mining sites, and
mineral processing methods, are critical factors influencing the spatial distribution of
features and the scale of land transformation, as well as the potential environmental
impacts. Traditional LCA methodologies tend to simplify land-related impact assessments
by reducing land transformation to a single metric of “area”, neglecting the influence of
these factors. This oversimplification undermines the accuracy of evaluations concerning
the environmental impacts induced via land transformation. Future research should focus
on addressing these limitations to enhance the precision and comprehensiveness of land-
related impact assessments within LCA frameworks.

The temporal analysis of LTFs revealed a consistent trend across all mines, charac-
terized by initially high values that gradually decreased over time. However, significant
disparities in LTFs were observed both among different mines and across different peri-
ods within each mine. A deeper analysis indicates that these disparities stem from the
non-linear relationship between production volumes and the extent of land transformation.
While mining production typically exhibits linear growth, the area affected by MLT does
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not follow a linear trajectory due to the interplay of the aforementioned factors. This finding
underscores the inadequacy of relying on a single average value (i.e., LTF) to represent
the collective dynamics of all mining sites. Consequently, the suitability and applicability
of LTFs for land-related assessments in mining contexts require further reconsideration
and validation. As an alternative, directly integrating GIS data into LCA is strongly recom-
mended. This approach can significantly reduce uncertainties associated with land-related
LCA assessments, thereby enhancing their accuracy and reliability. Though we did not
directly use LCA methods, in this study, we instead suggested a method to provide more
robust data that underpin LCA land-related inventories, which is the basic for integrating
GIS data into LCA.

By classifying specific mine features, this study enabled a more detailed assessment
of spatiotemporal transformations, effectively explaining significant differences between
mining sites. Among the 15 mining sites analyzed in this study, regardless of the varying
sizes of the mining areas, waste storage facilities—associated with significant environmental
risks—consistently accounted for over 50% of the total area. This highlights the critical
importance of identifying, monitoring, and evaluating these facilities. On the one hand,
proper waste management during the operational stage, comprehensive post-closure land
reclamation, and the transparent disclosure of land transformation should be prioritized
by mining companies as part of their commitment to responsible and sustainable mining
practices under the supervision of governments and the public. On the other hand, even
when mining companies fail to disclose relevant information, the method proposed in
this study could serve as a reliable tool for statistically assessing and monitoring land
transformation at mining sites.

Compared to the LTFs derived using average values [33] or calculated estimates [35]
in traditional LCA, the method and data proposed in this study—when combined with
operational data—enable the generation of more precise LTFs that are both site-specific
and feature-specific in temporal and spatial dimensions. However, it is important to note
that the validity and applicability of LTFs themselves remain the subjects of ongoing
discussion. The ultimate goal of studying MLT is not merely to identify the extent of land
transformation but also to delve deeper into analyzing and evaluating the environmental
and social issues it induces. While this is beyond the scope of the current study, the
methods and spatial data presented here have the potential to be integrated with other
spatial datasets in order to further investigate problems stemming from MLT, such as forest
loss, biodiversity loss, and other related impacts. Furthermore, although the mapping in
this study was conducted using manual visual interpretation, the collected data—including
remote sensing and GIS data—could be utilized in conjunction with emerging technologies,
such as machine learning and artificial intelligence. These approaches could potentially
enhance the efficiency and scalability of data generation and analysis.
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Abbreviations
The following abbreviations are used in this manuscript (in alphabetical order):

DEM Digital elevation model
EDP Ecosystem damage potential
GIS Geographic information system
GLIO Global link input–output model
GloVis Global Visualization Viewer
GPG-LULUCF Good Practice Guidance for Land Use, Land-Use Change and Forestry
GWP Global warming potential
IVAM Integrated value-added model
LCA Life cycle assessment
LCIA Life-cycle impact assessment
LP(s) Leaching pad(s)
LTF Land transformation factor
LULUC Land use and land-use change(s)
MLT Mining-induced land transformation
OLAP Oxide Leach Area Project (of Mine Escondida)
OSM OpenStreetMap
RS Remote sensing
SDGs Sustainable Development Goals
SNP S&P Capital IQ Pro
TSF(s) Tailings storage facility(ies)
WDR(s) Weighted disturbance rate(s)
WRD(s) Waste rock dump(s)
WSF(s) Waste storage facility(ies)

Appendix A. Discussion of Land-Related Terminology
Since [24] has pointed out the problem of the diverse utilization of land use-related ter-

minology, we tried to explore how diverse it has been in the related fields. We extracted and
listed terms related to land in Table A1 from different research from the title, abstract, and
keywords—where the authors emphasize what they the research most concerns [72,73]—
based on the summary of Table 2 in [63]. If there was no term like “land” in the title,
abstract, or keywords, terms such as “protected area” or “deforestation” were extracted.

From the table, it is obvious that terms were used arbitrarily, without declaration, in
most cases, despite the existence of clear definitions of these terms in the literature such
as [22,24,28]. For example, landscape, land cover (land cover), land use (landuse/land-use),

https://www.openstreetmap.org
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land disturbance, and land use and land cover change (LULUC) were used as synonyms
among similar research despite the fact that these terms refer to different impunities.
Inaccurate terminology may result in misunderstanding and confusion [74,75]; therefore,
we tried to distinguish between these commonly used terms, based on existing definitions
and their logical relation.

• Land cover refers to the physical material on Earth’s surface [24], comprising natural
substances (e.g., rocks, water, vegetation, humus, ice, and soil) and artificial substances
(e.g., asphalt, pitch, concrete, and glass). In the context of the natural environment,
disturbance to land cover has impacts including but not limited to (1) nearsurface
water circulation (evapotranspiration, surface runoff, and infiltration) and (2) surface
radiation balance and local temperature (surface radiation absorption/reflection under
different surface albedo values [8]), (3) biophysical and biogeochemical effects (e.g.,
carbon sink and soil organic matter), which subsequently results in the fact that local
temperature extremes reach more than mean values [8].

• Land use refers to the functional dimension and corresponds to the description of areas
in terms of their purpose [24], normally using categories defined in [22], including
forest land, cropland, grassland, wetland, settlements, and other land. Land use, defined
by [8], refers to the total arrangements, activities, and inputs undertaken in a certain
land cover type. Compared to land cover, land use is a more complex and ambiguous
expression due to the extensiveness of term “use”. In different disciplines and fields,
such as policy, climate change, biodiversity, ecosystem service, and spatial planning,
“land use” has different meanings [24]. For example, categories in [22] relate to the
type and amount of vegetation cover due to the fact that “climate change” is the main
topic of IPCC, which can be part of the reason why “mining” was not included in the
classification despite its negative impacts. Land use change refers to a change from
one type to another within the “land use category”, making it difficult to evaluate in
the context of “mining”.

• Land use is further divided into two separate categories in LCA terminology: land
occupation and land transformation [24].

• Land occupation refers to the continuous cover of land with one type for a certain
human-controlled purpose to achieve a specific outcome [28], measured as area time
(m2a) [24]. Land occupied can be considered the most relevant terms to describe
mining activity, which continuously occupies a wide area of land to extract resources
(specific outcome).

• Land transformation is the change from one land use type/category to another, which
can be caused by both artificial and natural processes [24,28]. Land transformation
is normally measured as area from and to (m2 from x to y). The impact of land
transformation can be considered an integral part of land occupation impacts at
different points of time.

As stated above, though land cover and land use are often used simultaneously in
the form of “land use/land cover change (LULCC)”; it should be noted that they are
heterogeneous in meaning. The change in land use is not necessarily accompanied by a
land cover change (e.g., from a factory to a warehouse or from a school to an exhibition
hall), and vice versa (e.g., from forest A to forest B or from a wheat field to a corn field).

In addition, based on the research we have reviewed, a relation between “land use”
and “forest” (e.g., [9,76]) and “protected area” (e.g., [77]) can be seen. Some research headed
with “land use environmental impact” or “environmental impact assessment” often ended
with deforestation [76] and its related topics, such as ecological footprints [78] and indirect
CO2 emission from vegetation lost [40]. However, these are just tiny parts of the practical
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impact, and the environmental impacts of land transformation is far more complex and
nasty.

These findings are consistent with the trend in the land-related assessment of
LCA/LCIA pointed out by [24], noting that “the impact category land use currently in
some of the most widely used LCIA methods cover only one aspect of land use induced
environmental impacts”. The reasons might be diverse, but to the best of our knowledge,
they can be attributed to the following:

1. The high level of concern about global warming;
2. The main topic in [22] focused on CO2 (or GHG) emission indirectly induced via

carbon pools (aboveground biomass, belowground biomass, dead wood, litter, and
soil C) loss due to land use changes when considering its background history as a
major undertaking by the IPCC National Greenhouse Gas Inventories Programme
(IPCC-NGGIP);

3. GIS/RS-based analyses have paid great attention to forests [63], probably because of
the ability to use the NDVI (normalized difference vegetation index) for vegetation
recognition;

4. Inadequate knowledge of land transformation and its associated impacts due to the
complexity of land.

Therefore, we strongly suggest that the utilization of terminology should follow strict
regulation, and impact assessments of land transformation should “go beyond deforesta-
tion”, as Section 6.2 in [63] has appealed for. In this study, we provided a method for land
transformation analysis, which is the very basis of a further, deeper assessment.
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Table A1. Terminology used in related research.

No. Reference Terminology Used Study Area (s) Commodity Time Scale

1 Abood et al. [79] Land cover Indonesia Coal 2000–2010

2 Akiwumi and Butler [80] Landscape(s)
Land Use and Land Cover Change (LULCC)
Land use change

Southwestern Sierra Leone Ti 1967–1995

3 ALLUM and DREISINGER [81] Vegetation change(s) Sudbury, Ontario, Canada Ni, Cu 1973–1983

4 Almeida-Filho and Shimabukuro
[82]

Degraded areas
Land cover change

Roraima State, Brazilian Amazon Diamond, Au 1987–1999

5 Alvarado et al. [83] - Hunter Valley, Australia Coal 2014–2015

6 Alvarez-Berríos and Aide [9] Forest change
Change in forest
Land use

South America Au 2001–2013

7 Berríos [84] Land change South America Au 2001–2013

8 Asner et al. [85] Forest loss
Forest degradation
Deforestation

Western Amazonia Au 1999–2012

9 Bao et al. [86] Landscape(s)
Land cover

Kidston, Queensland, Australia Au 2005

10 Caballero Espejo et al. [76] Deforestation
Forest degradation
Land use and land cover change

Western Amazon, Peru Au 1984–2017

11 Charou et al. [87] Derelict land
Changes in surface land use
Changes on land

Vegoritis basin, Greece Coal 2000

12 Chevrel et al. [88] - Greenland, Finland, Austria, Germany, UK Portugal Talc, Coal, Sn, Cu, Pb, Zn 2000

13 Chitade and Katyar [89] Land use/land cover (LULC)
Land use

Wardha basin, Chandrapur, India Coal 1990–2010

14 Demirel et al. [90] Land use change
Changes in land cover and land use
Land disturbances
Land-use change
Land cover
Landscape

Goynuk, Bolu, Turkey Coal 2004–2008
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Table A1. Cont.

No. Reference Terminology Used Study Area (s) Commodity Time Scale

15 DeWitt et al. [91] Land cover (change)
Land use(s) (change)
Land use/land cover (LULC)

Tortiya, Cote d’Ivoire Diamond 1984–2014

16 Durán et al. [77] Protected area (PA) Global Al, Cu, Zn, Fe 2009

17 Erener [92] Rehabilitation field Seyitömer, Turkey Coal 1987–2006

18 Fernández-Manso et al. [93] Land cover/land use change (LCLUC) El Bierzo, Castilla y León, Spain; Eastern Kentucky, USA;
Upper Hunter Valley, New South Wales, Australia

Coal 2006–2011

19 Garai and Narayana [94] Land use/land cover change(s)
Land use
Land use/land cover

Godavari, Southern India Coal 1990-2014

20 Gillanders et al. [95] Land cover change
Changes in land cover
Land cover variations
Land cover classification

Athabasca, Alberta, Canada Oil sands 1984–2005

21 Hendrychová and Kabrna [96] Changes in a landscape
Landscape transformations
Land use
Condition of the landscape
Land-use categories
Land-use changes
Landscape diversity

Northwest Bohemia, Czech Republic Coal 1845, 1954, 1975, 1989,
2010, 2050

22 Hill and Phinn [97] Mining rehabilitation North Stradbroke Island, Queensland, Australia Mineral sands 1992

23 Iwatsuki et al. [37] Land use change
Land-use intensity

New Caledonia Ni 1986, 1994/1995,
2012/2013

24 Lau et al. [98] Rehabilitation monitoring
Landscape Function Analysis (LFA)

Darling Ranges, Western Australia Al 2006

25 Lechner et al. [99] Land disturbance
Mined landscapes
Post-mining land use
Mine disturbance
Mining land cover disturbance typology
Land cover
Land use types

Fitzroy Basin (37 sites), Queensland, Australia Coal 2006–2012

26 Martin et al. [100] - Cornwall, England U 2014
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Table A1. Cont.

No. Reference Terminology Used Study Area (s) Commodity Time Scale

27 Maxwell and Warner [101] Mine-related grassland
Land cover
Land use/land cover

Upper Kanawha, Coal River and Upper Guyandotte re-
gions of West Virginia, USA

Coal 2006–2012

28 Mazabanda et al. [102] (Reference cannot be found) Mirador, Ecuadorian Amazon Au 2001–2017

29 Joshi et al. [103] Areas deforested by coal mining Korba, Chattisgrarh, India Coal 1972–2004

30 Karan et al. [104] Reclamation
Degraded lands
Change in vegetation cover

Block II area of Jharia coal field, India Coal 2000–2015

31 Koruyan et al. [105] Mining land
Changes in the natural vegetation
Land cover and narural vegetation

Mugla region, Turkey Marble 2001–2009

32 Liao et al. [106] Mining area
Landscape spatial structure

Fuxing Mining Area, Liaoning province, China Coal 2008–2020

33 Liu et al. [107] Vegetation coverage change and stability
Land reclamation

Antaibao, Northern Shanxi province, China Coal 1990–2015

34 Manu et al. [108] Spatial extent of environmental degradation Tarkwa, Ghana Au 1986–2000

35 Murguía [109] Area disturbed Global Fe, Al, Cu, Au, Ag Various

36 Murguía et al. [41] Overlap between mines and protected areas Global Fe, Al, Cu, Au, Ag 2014–2015

37 Murguía and Bringezu [34] Land requirements
Land use
Land disturbed by mining
Cumulative net area disturbances

Global Fe, Al, Cu, Au, Ag 2013–2015

38 Olden and Neumann (2018) (Reference cannot be found) Canada, India, Indonesia, Australia Coal 2014

39 Padmanaban et al. [110] Reclaimed mine area
Geological changes
Landscape dynamics
Land-use and landcover dynamics
Land cover change

Reclaimed sites, Kircheller Heide, Germany Coal, Fe 2013–2016

40 Paull et al. [111] Landscape transformation
Land cover changes

PT Freeport, Papua, Indonesia Cu 1988-2004

41 Prakash and Gupta [112] Land-use (mapping, classes, patterns) Jharia Coalfield, Bihar, India Coal 1975–1994

42 Redondo-Vega et al. [7] Changes in land use
Land use (change)
Landscape

Sil River basin, Leon Province, Spain Slate, Gravel, Coal 1956–2014
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Table A1. Cont.

No. Reference Terminology Used Study Area (s) Commodity Time Scale

43 Reis et al. [113] - Lousal Mine, Portual Pb 2004

44 Santo and Sánchez [114] Land cover Paraiba de Sul River Floodplain, Brazil Sand 1962, 1986/1988,
1997/1998

45 Sari and Rosalina [115] Mining area South Bangka Recency, Indonesia Sn 1997, 2009, 2014

46 Schmidt and Glaesser [116] Mining area
Vegetation cover

Eastern Germany Coal 1989–1994

47 Schueler et al. [11] Land use system
Land use
Land cover change
Ghana LUCC

Western Ghana Au 1986–2002

48 Singh et al. [117] Landuse pattern
Land resources
Forest cover and agricultural land

Singrauli Coalfield, Uttar Pradesh, India Coal 1975, 1986, 1991

49 Snapir et al. [118] Extent and expansion of mines
Change area

Galamsey mines, Southern Ghana Au 2011–2015

50 Sonter et al. [119] Land use change dynamics
Land use classification

Quadrilátero Ferrífero, Minas Gerais, Brazil Fe 1990–2010

51 Sonter et al. [10] Mining-induced deforestation Brazilian Amazon Various 1985–2015

52 Sonter et al. [120] Mining footprint Global Various 2017

53 Swenson et al. [121] Mining deforestation
Land use and land cover changes

Madre de Dios, Peruvian Amazon Au 2003–2009

54 Townsend et al. [122] Land cover land use change (LULCC)
Surface mine extent
Land cover conversion
Mined and reclaimed cover

Central Appalachians, USA Coal 1976, 1987, 1999, 2006

55 Vasuki et al. [123] Land cover changes
Land cover distribution
Land clearing and rehabilitation

Darling Ranges, Western Australia Al (Bauxite) 1988–2014

56 Weisse and Naughton-Treves [124] Landscape conservation Peruvian Amazon Au 2005–2012

57 Wu et al. [125] Vegetation coverage
Land desertification

Shendong coal mining area, Northwest China Coal 1999–2008

58 Yang et al. [126] Vegetation disturbance and recovery
Vegetation cover dynamics
Land cover change

Curragh, Queensland, Australia Coal 1988–2015



Resources 2025, 14, 25 26 of 49

Table A1. Cont.

No. Reference Terminology Used Study Area (s) Commodity Time Scale

59 Yu et al. [127] Change in/of land cover
Land cover (change)

Global Multiple 1984–2016

60 Zhang et al. [128] Land cover/land use changes
Land cover changes

USA, China P 2008

Append

61 Werner et al. [38] Mine areas
Land use

Global Cu, Au, Ag, PGE, Mo, Pb–
Zn, Ni, U, Diamond

Various

62 Islam et al. [40] Land use change Phu Kham copper-gold deposit, Savannakhet province,
Laos

Cu, Au, Ag 2007, 2010, 2014, 2018

63 Maus et al. [1] Mining areas
Area used for mineral extraction

Global Multiple 2010–2017

64 Tang and Werner [39] Land use
Mining lands

Global Multiple Various
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Appendix B. Definitions of and Distinctions Between Features
The process of mining occupies large areas of land. These lands are often divided

into different features to facilitate ore processing, smelting, waste storage, and other pur-
poses, each associated with distinct environmental risks. Therefore, when analyzing land
transformation in mining areas, it is necessary to differentiate these features to gain a more
comprehensive understanding and clearer description of the land transformation caused
by mining activities.

In this section, we define and differentiate the six types of features identified in this
study, based on the steps and logic of mining and refining (Figure A1). Satellite imagery
(Google Earth Pro and Landsat) of each feature of the Escondida mine are listed as examples
in Figures A2 and A3. The referencing materials (e.g., maps in technical reports) used for
identifying the features of each mine are compiled in Table A2.

Figure A1. Flowchart of the steps and logic of copper mining and refining (modified from Figures 1
and 2 in [58]).

The pit (Figure A2a,b) is the most typical feature of open-pit mining, referring to a
large excavation on the surface with a diameter of several kilometers. The shape of a
pit is often roughly circular or elliptical, with downward spiral paths inside used for the
movement of transport vehicles, commonly referred to as “benches” in the mining industry.
A mine may have one or more pits (e.g., Escondida and Escondida Norte), and their general
orientation is usually determined by the direction of the underground ore veins and the
results of drilling and modeling analyses.

During the excavation of the pit, overburdens and rocks that contain little or less than
the expected target metals are deposited in waste rock dumps (WRDs) (Figure A2c,d). Due
to the large volume of waste rock, a mine often has multiple areas designated as WRDs,
occupying a significant amount of land. WRDs are usually located around or near the pit.

In the metallurgical process, crushed ores are allocated to concentration facilities for
milling and froth flotation or to leaching pads (LPs) for leaching (acid leaching or bioleaching),
based on their different physical and chemical properties (e.g., solubility in sulfuric acid).
For high-grade oxide ores, acid leaching on dynamic (“on-off”) LPs is typically used for
copper extraction. In contrast, for low-grade sulfide ores, most mines employ froth flotation
for metal smelting. In some mines, such as Escondida, sulfide ore is deposited as a run
of mine (ROM) for acid bioleaching on permanent LPs to extract copper [58]. In satellite
imagery, facilities typically feature cylindrical structures used for flotation, as shown in
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Figure A2e,f, along with nearby buildings. Additionally, these facilities are usually located
close to the pit to reduce transportation costs. On the other hand, LPs often appear in
standard geometric shapes, typically rectangles, as shown in Figure A3a,b.

(a) (b)

(c) (d)

(e) (f)

Figure A2. Comparison of Google Earth images and Landsat images for different features. Images of
pit from (a) Google Earth and (b) Landsat. Images of WRDs from (c) Google Earth and (d) Landsat.
Images of facilities from (e) Google Earth and (f) Landsat.



Resources 2025, 14, 25 29 of 49

(a) (b)

(c) (d)

(e) (f)

Figure A3. Comparison of Google Earth images and Landsat images for different features. Images of
LPs from (a) Google Earth and (b) Landsat. Images of TSFs from (c) Google Earth and (d) Landsat.
Images of others from (e) Google Earth and (f) Landsat.

After copper is extracted through the various processes mentioned above, the remain-
ing residue of the ore is known as slag or tailings. Tailings contain chemical reagents
added during the metallurgical processes, such as sulfuric acid, xanthate, and chelating
reagents [129], posing complicated threats to the surrounding environment. Therefore,
mining companies often allocate large areas of land to storing these tailings, which are
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categorized as tailings storage facilities (TSFs) in this study. Figure A3c,d are typical examples
of TSFs—the Laguna Seca tailings dam of Escondida, which has been built since 2002 for
storing tailings from the flotation process. Historically, there have been multiple incidents
of tailings dam collapses, leading to widespread environmental pollution, property damage,
and loss of life [15].

The remaining constructions (e.g., warehouses and residential buildings) and those
that could not be classified into the features above were classified as others (Figure A3e,f),
considering their relatively minor environmental impacts.

Although ports/harbors used for transporting ores or refined products are also part of
the land transformations caused by mining activities, they are not included as a kind of
feature in the scope of this study for the following reasons: (1) the ports are geographically
distant from the mines, and their impact on the surrounding area differs from that of the
mines themselves; (2) there is little information available about the specific ports associated
with each mine, making the relationship between the mines and ports unclear.

Table A2. References used for mapping each of the mines.

Mine Site References

Escondida Basto [130]: Slide 12, 15, 25, 26, and 28; BHP [58]:
Figures 13-16, 15-2, and 15-7.

Collahuasi Map tool from Mapcarta [131]; Description text from
Mining Technology [132].

Radomiro Tomic Calderón D. et al. [133]: Figure 2 on page 6, and other in
the report; Figures on page 4 and 5.

Los Pelambres -

Sierra Gorda Lopez and Ristorcelli [134]: Figures 5-5, 23-9, and 23-15.

Centinela Sulfide Antofagasta plc. [135]: Figures on page 6, 10, 19, and 29.

Ministro Hales
Knight Piésold [136]: Figures 2.2-2, 2.2-3, 2.2-4, and 3.1-1;
Boric et al. [137]: Figures 1 and 2a; Campos P. [138]: pages
2 and 9.

Candelaria Lundin mining [139]: Figures on pages 19, 23, 31, 67, 68,
and 73.

Spence BHP Billiton [140]: Figures of project layout on pages 2 and
3; BHP Billiton [141]: Figures on page 25, 31, and 49.

Caserones Walker [142]: Figures 4.2, 4.5, 5.3, and 5.4.

Gabriela Mistral -

Zaldivar Evans and Lambert [59]: Figures 4-2, 4-3, and 18-1.

Centinela Oxide Antofagasta plc. [135]: Figures on pages 6, 10, 19, and 29.

Antucoya -

El Abra Adkerson et al. [143]: Description text on pages 14 and 25,
as well as other pages.

Appendix C. Detailed Information of Study Areas and Satellite Images
Basic information and detailed information of the satellite images used for all selected

mine sites in this study are listed in Table A3.
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Table A3. Information for each copper mine and satellite images used in this study.

Mine Site Start Year Stage Commodities Method Image Date Satellite Series Sensor

Escondida 1990 Operating Cu, Au, Ag Open Pit 1989.05.20
1995.01.05
2000.02.12
2005.01.16
2010.01.14
2015.04.02
2020.03.30

Landsat 4–5
Landsat 4–5
Landsat 4–5
Landsat 4–5
Landsat 4–5
Landsat 8–9
Landsat 8–9

TM
TM
TM
TM
TM
OLI/TIRS
OLI/TIRS

Collahuasi 1999 Expansion Cu, Mo, Ag, Au Open Pit 1999.04.13
2005.03.12
2010.04.11
2015.02.20
2020.02.02

Landsat 4–5
Landsat 4–5
Landsat 4–5
Landsat 8–9
Landsat 8–9

TM
TM
TM
OLI/TIRS
OLI/TIRS

Radomiro Tomic 1997 Operating Cu, Mo Open Pit 1997.12.19
2000.11.25
2005.11.23
2010.12.07
2015.12.21
2020.12.18

Landsat 4–5
Landsat 4–5
Landsat 4–5
Landsat 4–5
Landsat 8–9
Landsat 8–9

TM
TM
TM
TM
OLI/TIRS
OLI/TIRS

Los Pelambres 1999 Expansion Cu, Mo, Au, Ag Open Pit
Underground

1995.12.07
2001.02.06
2005.03.05
2010.12.16
2015.12.14
2020.12.27

Landsat 4–5
Landsat 4–5
Landsat 4–5
Landsat 4–5
Landsat 8–9
Landsat 8–9

TM
TM
TM
TM
OLI/TIRS
OLI/TIRS

Sierra Gorda 2015 Operating Cu, Mo, Au, Ag Open Pit 2014.12.02
2016.12.23
2018.12.13
2020.12.02

Landsat 8–9
Landsat 8–9
Landsat 8–9
Landsat 8–9

OLI/TIRS
OLI/TIRS
OLI/TIRS
OLI/TIRS
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Table A3. Cont.

Mine Site Start Year Stage Commodities Method Image Date Satellite Series Sensor

Centinela Sulfide 2011 Operating Cu, Au, Ag, Mo Open Pit 2011.10.23
2015.12.21
2020.12.02

Landsat 4–5
Landsat 8–9
Landsat 8–9

TM
OLI/TIRS
OLI/TIRS

Ministro Hales 2010 Operating Cu, Ag, Mo, Au Open Pit
Underground

2010.12.07
2013.12.31
2015.12.21
2017.12.26
2020.12.18

Landsat 8–9
Landsat 8–9
Landsat 8–9
Landsat 8–9
Landsat 8–9

OLI/TIRS
OLI/TIRS
OLI/TIRS
OLI/TIRS
OLI/TIRS

Candelaria 1994 Operating Cu, Au, Ag, Fe Open Pit 1995.07.23
2000.10.24
2005.09.04
2010.11.21
2015.11.19
2020.08.28

Landsat 4–5
Landsat 4–5
Landsat 4–5
Landsat 4–5
Landsat 8–9
Landsat 8–9

TM
TM
TM
TM
OLI/TIRS
OLI/TIRS

Spence 2006 Expansion Cu, Ag, Mo, Au Open Pit 2006.12.28
2010.12.07
2015.12.21
2020.12.02

Landsat 4–5
Landsat 4–5
Landsat 8–9
Landsat 8–9

TM
TM
OLI/TIRS
OLI/TIRS

Caserones 2013 Operating Cu, Mo Open Pit 2013.11.22
2015.12.30
2017.12.03
2020.12.27

Landsat 8–9
Landsat 8–9
Landsat 8–9
Landsat 8–9

OLI/TIRS
OLI/TIRS
OLI/TIRS
OLI/TIRS

Gabriela Mistral 2008 Operating Cu, Mo Open Pit 2008.12.26
2010.12.16
2015.12.30
2020.12.11

Landsat 4–5
Landsat 4–5
Landsat 8–9
Landsat 8–9

TM
TM
OLI/TIRS
OLI/TIRS
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Table A3. Cont.

Mine Site Start Year Stage Commodities Method Image Date Satellite Series Sensor

Zaldivar 1995 Operating Cu Open Pit 1995.01.05
2000.02.12
2005.01.16
2010.01.14
2015.04.02
2020.03.30

Landsat 4–5
Landsat 4–5
Landsat 4–5
Landsat 4–5
Landsat 8–9
Landsat 8–9

TM
TM
TM
TM
OLI/TIRS
OLI/TIRS

Centinela Oxide 2001 Operating Cu, Mo, Au Open Pit 2001.12.30
2005.11.23
2010.12.07
2015.12.21
2020.12.02

Landsat 4–5
Landsat 4–5
Landsat 4–5
Landsat 8–9
Landsat 8–9

TM
TM
TM
OLI/TIRS
OLI/TIRS

Antucoya 2015 Operating Cu Open Pit 2015.12.21
2017.12.26
2020.12.02

Landsat 8–9
Landsat 8–9
Landsat 8–9

OLI/TIRS
OLI/TIRS
OLI/TIRS

El Abra 1996 Operating Cu, Au, Mo, Ag Open Pit 1996.12.16
2000.11.25
2005.11.23
2010.12.07
2015.12.21
2020.12.02

Landsat 4–5
Landsat 4–5
Landsat 4–5
Landsat 4–5
Landsat 8–9
Landsat 8–9

TM
TM
TM
TM
OLI/TIRS
OLI/TIRS
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Appendix D. Results of Mapping and Feature Composition for Each
Mine Site

(a)

(b) (c)

Figure A4. Geospatial analysis results of Mine Escondida. (a) Land occupation map and features
composition of Mine Escondida. (b) Land occupation and cumulative production. (c) Change in
LTFCopper.

(a)

(b) (c)

Figure A5. Geospatial analysis results of Mine Collahuasi. (a) Land occupation map and features
composition of Mine Collahuasi. (b) Land occupation and cumulative production. (c) Change in
LTFCopper.
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(a)

(b) (c)

Figure A6. Geospatial analysis results of Mine Radomiro Tomic. (a) Land occupation map and
features composition of Mine Radomiro Tomic. (b) Land occupation and cumulative production.
(c) Change in LTFCopper.

(a)

(b) (c)

Figure A7. Geospatial analysis results of Mine Los Pelambres. (a) Land occupation map and features
composition of Mine Los Pelambres. (b) Land occupation and cumulative production. (c) Change in
LTFCopper.
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(a)

(b) (c)

Figure A8. Geospatial analysis results of Mine Sierra Gorda. (a) Land occupation map and features
composition of Mine Sierra Gorda. (b) Land occupation and cumulative production. (c) Change in
LTFCopper.

(a)

(b) (c)

Figure A9. Geospatial analysis results of Mine Centinela Sulfide. (a) Land occupation map and
features composition of Mine Centinela Sulfide. (b) Land occupation and cumulative production.
(c) Change in LTFCopper.
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(a)

(b) (c)

Figure A10. Geospatial analysis results of Mine Ministro Hales. (a) Land occupation map and features
composition of Mine Ministro Hales. (b) Land occupation and cumulative production. (c) Change in
LTFCopper.

(a)

(b) (c)

Figure A11. Geospatial analysis results of Mine Candelaria. (a) Land occupation map and features
composition of Mine Candelaria. (b) Land occupation and cumulative production. (c) Change in
LTFCopper.
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(a)

(b) (c)

Figure A12. Geospatial analysis results of Mine Spence. (a) Land occupation map and features
composition of Mine Spence. (b) Land occupation and cumulative production. (c) Change in LTFCopper.

(a)

(b) (c)

Figure A13. Geospatial analysis results of Mine Caserones. (a) Land occupation map and features
composition of Mine Caserones. (b) Land occupation and cumulative production. (c) Change in
LTFCopper.
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(a)

(b) (c)

Figure A14. Geospatial analysis results of Mine Gabriela Mistral. (a) Land occupation map and
features composition of Mine Gabriela Mistral. (b) Land occupation and cumulative production.
(c) Change in LTFCopper.

(a)

(b) (c)

Figure A15. Geospatial analysis results of Mine Zaldivar. (a) Land occupation map and features
composition of Mine Zaldivar. (b) Land occupation and cumulative production. (c) Change in
LTFCopper.
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(a)

(b) (c)

Figure A16. Geospatial analysis results of Mine Centinela Oxide. (a) Land occupation map and
features composition of Mine Centinela Oxide. (b) Land occupation and cumulative production.
(c) Change in LTFCopper.

(a)

(b) (c)

Figure A17. Geospatial analysis results of Mine Antucoya. (a) Land occupation map and features
composition of Mine Antucoya. (b) Land occupation and cumulative production. (c) Change in
LTFCopper.
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(a)

(b) (c)

Figure A18. Geospatial analysis results of Mine El Abra. (a) Land occupation map and features
composition of Mine El Abra. (b) Land occupation and cumulative production. (c) Change in
LTFCopper.

Appendix E. Detailed Land Transformation Analysis Results

Table A4. Chronological land transformation factor for 15 mines.

Sitename Year Area
(km2)

LTFOre
(m2/kg)

LTFCopper
(m2/kg)

LTFWaste
(m2/kg)

Escondida 1989
1995
2000
2005
2010
2015
2020

0.50
16.63
31.13
71.89
115.74
141.66
149.61

inf
0.000208
0.000109
0.000117
0.000112
0.000101
0.000076

inf
0.008404
0.004696
0.006173
0.006492
0.006101
0.005204

inf
0.000024
0.000013
0.000018
0.000017
0.000014
0.000012

Average 0.000121 0.006178 0.000016

Collahuasi 1998
2005
2010
2015
2020

10.85
28.37
44.45
54.81
58.11

0.001072
0.000097
0.000069
0.000055
0.000043

0.226019
0.009265
0.008142
0.007246
0.005615

0.000139
0.000018
0.000014
0.000011
0.000009

Average 0.000267 0.051257 0.000038

Radomiro Tomic 1997
2000
2005
2010
2015
2020

5.13
11.66
18.42
28.43
36.24
42.82

0.005169
0.000115
0.000047
0.000041
0.000036
0.000034

1.266449
0.021305
0.011387
0.010800
0.007961
0.007078

0.001115
0.000031
0.000014
0.000012
0.000011
0.000009

Average 0.000907 0.220830 0.000199
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Table A4. Cont.

Sitename Year Area
(km2)

LTFOre
(m2/kg)

LTFCopper
(m2/kg)

LTFWaste
(m2/kg)

Los Pelambres 1995
2000
2005
2010
2015
2020

1.27
7.45
12.03
16.50
18.27
20.63

inf
0.000183
0.000047
0.000033
0.000022
0.000018

inf
0.024916
0.006022
0.004524
0.003249
0.002788

inf
0.000049
0.000011
0.000007
0.000004
0.000003

Average 0.000061 0.008300 0.000015

Sierra Gorda 2014
2016
2018
2020

12.98
30.20
35.07
38.08

inf
0.000533
0.000262
0.000172

1.180215
0.159857
0.091603
0.059516

-0.687322
0.000070
0.000037
0.000026

Average 0.000322 0.372798 0.000044

Centinela Sulfide 2011
2014
2016
2018
2020

13.50
18.03
28.13
30.67
36.15

0.000536
0.000132
0.000140
0.000115
0.000108

0.149785
0.029999
0.030356
0.024615
0.022665

0.000088
0.000020
0.000022
0.000018
0.000017

Average 0.000206 0.051484 0.000033

Ministro Hales 2013
2015
2017
2020

9.19
11.06
11.99
14.63

0.005103
0.000336
0.000154
0.000106

0.273606
0.026779
0.013856
0.010578

0.000068
0.000031
0.000019
0.000012

Average 0.001425 0.081205 0.000032

Candelaria 1994
2000
2005
2010
2015
2020

1.29
8.39
10.98
13.50
15.80
23.14

0.000530
0.000084
0.000049
0.000038
0.000031
0.000036

0.046087
0.007379
0.005120
0.004418
0.004044
0.004958

0.000047
0.000012
0.000008
0.000005
0.000005
0.000006

Average 0.000128 0.012001 0.000014

Spence 2007
2010
2015
2020

12.49
16.94
26.27
34.21

inf
inf
inf
inf

0.165475
0.030777
0.018823
0.014832

−0.066392
−0.013349
−0.010458
−0.008994

Average nan 0.057477 nan

Caserones 2013
2015
2017
2020

4.01
5.76
7.47
9.90

inf
0.000083
0.000045
0.000031

0.247678
0.041774
0.019867
0.012599

−0.112732
0.000029
0.000019
0.000014

Average 0.000053 0.080479 0.000021

Gabriela Mistral 2008
2010
2015
2020

5.45
9.30
14.75
18.08

0.000354
0.000149
0.000065
0.000043

0.080508
0.027952
0.015395
0.011928

0.000105
0.000050
0.000021
0.000016

Average 0.000153 0.033946 0.000048
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Table A4. Cont.

Sitename Year Area
(km2)

LTFOre
(m2/kg)

LTFCopper
(m2/kg)

LTFWaste
(m2/kg)

Zaldivar 1995
2000
2005
2010
2015
2020

1.95
12.02
15.24
17.49
22.31
23.75

0.000830
0.000139
0.000089
0.000065
0.000055
0.000043

0.097963
0.019182
0.011531
0.008661
0.008536
0.007593

0.000081
0.000018
0.000015
0.000011
0.000011
0.000009

Average 0.000203 0.025578 0.000024

Centinela Oxide 2001
2005
2010
2015
2020

2.96
6.56
13.33
18.16
19.62

0.000667
0.000164
0.000144
0.000133
0.000094

0.068823
0.015794
0.015169
0.013422
0.011336

0.000091
0.000022
0.000017
0.000015
0.000010

Average 0.000241 0.024909 0.000031

Antucoya 2015
2017
2020

4.79
10.19
14.48

inf
0.000217
0.000110

0.392442
0.064117
0.037881

−0.143797
0.000066
0.000035

Average 0.000164 0.164813 0.000050

El Abra 1996
2000
2005
2010
2015
2020

4.62
7.87
11.51
21.05
22.99
24.37

0.001697
0.000049
0.000023
0.000028
0.000024
0.000022

0.247293
0.009208
0.005827
0.007430
0.006421
0.006088

0.000604
0.000021
0.000012
0.000016
0.000012
0.000010

Average 0.000307 0.047045 0.000112
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