Food Waste Recovery with Takakura Portable Compost Boxes in Offices and Working Places
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. THC Bins
2.3. TCB Operation: Feeding and Quantification
2.4. Temperature Monitoring
2.5. Chemical Composition of the Compost
2.6. Perception of Users
3. Results and Discussion
3.1. TCB Operation: Feeding and Quantification
3.2. Temperature Monitoring
3.3. Chemical Composition of the Compost
3.3.1. Humidity and pH
3.3.2. Macronutrients and C/N Ratio
3.3.3. Micronutrients and Heavy Metals
3.3.4. Perception of Users
3.3.5. Final Remarks and Future Perspectives
- Feeding the TCB was time-consuming given that it required an operator to properly select the waste, chop it by hand, and incorporate it into the TCB. Then all the materials had to be washed in order to avoid odors and vectors. The use of a blender is not convenient since it causes an excess of humidity that would lower the temperature of the decomposition process. Hence, chopping by hand is the most appropriate way to feed the TCB. The above brings an advantage; as already mentioned, due to the manual selection of waste, the incorporation of undesirable materials into the compost is prevented. This was partly demonstrated by the low concentrations of heavy metals found in the compost (Table 2).
- Food waste manipulation prior to the feeding of the TCB should take place in a different setting than the cafeteria or in non-working hours. This is to avoid negative comments from the staff, which occurred in this study.
- The TCB should be cleaned on the outside frequently to avoid the proliferation of undesirable insects and odors.
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- ISWA. Food Waste As a Global Issue. From the Prespective of Municipal Solid Wate Management; ISWA: Wien, Austria, 2013. [Google Scholar]
- Painter, K.; Thondhlana, G.; Kua, H.W. Food waste generation and potential interventions at Rhodes University, South Africa. Waste Manag. 2016, 56, 491–497. [Google Scholar] [CrossRef] [PubMed]
- FAO. Global Food Losses and Food Waste-Extent, Causes and Prevention; FAO: Rome, Italy, 2011. [Google Scholar]
- European Commisssion Directive 2008/98/EC of the European Parliament and of the Council of 19 November 2008 on waste and repealing certain directives. Off. J. Eur. Union 2008, L13, 3–30.
- Ricci, M.; Giavini, M.; Plana, R.; Vila, M.; Nohales, G. Biowaste Separate Collection and Decentralized Composting in Mediterranean Areas: First Results from the SCOW Project; Inernational Solid Waste Association: Antwerp, Belgium, 2015. [Google Scholar]
- Bernstad, A.; la Cour Jansen, J. A life cycle approach to the management of household food waste—A Swedish full-scale case study. Waste Manag. 2011, 31, 1879–1896. [Google Scholar] [CrossRef] [PubMed]
- Psomopoulos, C.S.; Themelis, N.J. A Guidebook for Sustainable Waste Management in Latin America. In Proceedings of the International Resource Recovery Congress Waste-to-Energy, Vienna, Austria, 8–9 September 2014; Thomé-Kozmiensky, K.J., Ed.; 2014; pp. 122–135. [Google Scholar]
- CRMH. Decree No. 8839; Offical Gacette: San José, Costa Rica, 2010. [Google Scholar]
- Soto, S. A dos años de la Ley GIR. In Estado de la Nación; Proyecto Estado de la Nación: San José, Costa Rica, 2013; pp. 3–6. [Google Scholar]
- Smyth, D.P.; Fredeen, A.L.; Booth, A.L. Reducing solid waste in higher education: The first step towards “greening” a university campus. Resour. Conserv. Recycl. 2010, 54, 1007–1016. [Google Scholar] [CrossRef]
- Franchetti, M. Development of a Novel Food Waste Collection Kiosk and Waste-to-Energy Business Model. Resources 2016, 5, 26. [Google Scholar] [CrossRef]
- Armijo de Vega, C.; Ojeda Benítez, S.; Ramírez Barreto, M.E. Solid waste characterization and recycling potential for a university campus. Waste Manag. 2008, 28. [Google Scholar] [CrossRef] [PubMed]
- Wilkie, A.; Graunke, R.; Cornejo, C. Food Waste Auditing at Three Florida Schools. Sustainability 2015, 7, 1370–1387. [Google Scholar] [CrossRef] [Green Version]
- Instituto de Estrategias Ambientales Globales (IGES). Compostaje Para la Reducción de Residuos; Institute for Global Environmental Strategies: Kanagawa, Japan, 2010; pp. 1–27. [Google Scholar]
- Kurniawan, T.A.; Puppim De Oliveira, J.; Premakumara, D.G.J.; Nagaishi, M. City-to-city level cooperation for generating urban co-benefits: The case of technological cooperation in the waste sector between Surabaya (Indonesia) and Kitakyushu (Japan). J. Clean. Prod. 2013, 58, 43–50. [Google Scholar] [CrossRef]
- Abushammala, M.F.M.; Basri, N.E.A.; Zain, S.M.; Saad, N.F.M.; Zainudin, N.A. Green biological transformation of food and yard waste. J. Teknol. 2015, 73, 21–26. [Google Scholar] [CrossRef]
- Saad, N.F.M.; Nadrah Ma’min, N.; Md Zain, S.; Ahmad Basri, N.E.; Md Zaini, N.S. Composting of mixed yard and food wastes with effective microbes. J. Teknol. (Sci. Eng.) 2013, 65, 89–95. [Google Scholar] [CrossRef]
- Campos-Rodríguez, R.; Brenes-Peralta, L.; Jiménez-Morales, M.F. Evaluación técnica de dos métodos de compostaje para el tratamiento de residuos sólidos biodegradables domiciliarios y su uso en huertas caseras. Tecnol. Marcha 2016, 29, 25–32. [Google Scholar] [CrossRef]
- Romero-Esquivel, L.G.; Salas-Jiménez, J. Manejo de desechos en universidades. Estudio de caso: Instituto Tecnológico de Costa Rica. Tecnol. Marcha 2008, 21, 33–41. [Google Scholar]
- Borrero, G. Estudio Comparativo del Uso de Dos Sustratos con Inóculos Microbiales Para el Tratamiento de Residuos Orgánicos Sólidos en Compostaje Doméstico; Costa Rica Institute of Technology: Cartago, Costa Rica, 2014. [Google Scholar]
- Kalra, Y. Handbook of Reference Methods for Plant Analysis; CRC: London, UK, 1998. [Google Scholar]
- AOAC Minerals Analysis Inductively Coupled Plasma-Optical Emission spectroscopy (ICP-OES)-item63 2006, 17th edition.
- Arizmendiarrieta, J.S.; Planab, R.; Irigoyend, I. Decentralised composting as an organic waste management. Case study in Leintz-Gatzaga (Gipuzkoa). In Proceedings of the International Solid Waste Association World Congress, Novi Sad, Serbia, 19–21 September 2016; pp. 36–51. [Google Scholar]
- Saha, J.; Panwar, N.; Singh, M. An assessment of municipal solid waste compost quality produced in different cities of India in the perspective of developing quality control indices. Waste Manag. 2010, 30, 192–201. [Google Scholar] [CrossRef] [PubMed]
- Hogland, W.; Bramryd, T.; Marques, M.; Nimmermark, S. Physical, Chemical and Biological Processes for Optimizing Decentralized Composting. Compost Sci. Util. 2003, 11, 330–336. [Google Scholar] [CrossRef]
- Durán, L.; Henríquez, C. Caracterización quimica, fisica y microbiológica de vermicompostes producidos a partir de cinco sustratos orgánicos. Agron. Costarric. 2007, 31, 41–51. [Google Scholar]
- Aulinas Masó, M.; Bonmatí Blasi, A. Evaluation of composting as a strategy for managing organic wastes from a municipal market in Nicaragua. Bioresour. Technol. 2008, 99, 5120–5124. [Google Scholar] [CrossRef] [PubMed]
- Mbuligwe, S.E.; Kassenga, G.R.; Kaseva, M.E.; Chaggu, E.J. Potential and constraints of composting domestic solid waste in developing countries: Findings from a pilot study in Dar es Salaam, Tanzania. Resour. Conserv. Recycl. 2002, 36, 45–59. [Google Scholar] [CrossRef]
- Gajalakshmi, S.; Abbasi, S.A. Solid Waste Management by Composting: State of the Art. Crit. Rev. Environ. Sci. Technol. 2008, 38, 311–400. [Google Scholar] [CrossRef]
- Brinton, W.F. Compost Quality Standards & Guidelines; Final Report; Woods End Research Laboratory, Inc.: Mt Vernon, ME, USA, 2000. [Google Scholar]
- Moreno, J.; Moral, R. Compostaje; Mundi-Prensa, Ed.; Editorial Mundi-Prensa: Madrid, Spain, 2008. [Google Scholar]
- Altamirano Flores, M.; Cabrera Carranza, C. Estudio comparativo para la elaboración de compost por técnica manual. Rev. del Inst. Investig. FIGMMG 2006, 9, 75–84. [Google Scholar]
- Kristanto, G.A.; Novita, E.; Putri, I. Microbial indoor air quality associated with homemade composting process. Int. J. Appl. Eng. Res. 2011, 6, 1431–1436. [Google Scholar]
Food Waste Source (Population) | Total Food Waste kg a (L) | Monthly Food Waste per Capita (kg month−1 cap−1) b | Daily Food Waste Processed per TCB (kg day−1 TCB−1) | Total Compost Produced kg a (L) | Waste Reduction Mass (Volume) (%) a |
---|---|---|---|---|---|
Chemistry Department (31) | 62.56 (165) | 0.39 | 0.59 | 13.04 (28) | 79 (83) |
Environmental Engineering (14) | 25.73 (68) | 0.37 | 0.24 | 4.33 (9) | 83 (86) |
Total (45) | 88.29 (232) | 0.38 c ± 0.03 d | 0.42 c | 17.37 (37) | 81 c (84) |
Reference | Technique | Setting | Dimensions Requirements | C/N | Final pH | Maximum Temperature Reached (°C) | Composting Period (days) | Percentage Reduction (%) | Food Waste Processed (kg day−1 TCB−1) |
---|---|---|---|---|---|---|---|---|---|
This study | Takakura composting box (TCB) | Office cafeterias | 33 cm × 50 cm × 30 cm | 15 | 6.0 | 54.0 | 42 | 84 (volume) | 0.42 |
[18] | TCB | Composting facility | 30 cm × 50 cm × 25 cm | N.R. | 7.5 | 55 | N.R. | N.R. | 1.5 |
[20] | TCB | Composting facility | 33 cm × 50 cm × 30 cm | 15 | 7.6 | 60 | 17 and 35 | 36 (volume) | 1.35 |
[16] | Composter barrel with Takakura effective microbes (EMs) | Backyard | N.R. | 17 | 7–8 | 60 | 42 | N.R. | N.R. |
[16] | Rotary composter with Takakura EMs | Backyard | 90 cm × 70 cm × 95 cm | 13 | 7–8 | 73 | 28 | 65 (mass) | N.R. |
[17] | Composter barrel with Takakura EMs | Cafeterias | N.R. | 17 | 7–8 | 60 | 42 | N.R. | N.R. |
[16] | Composter barrel with fruit waste EMs | Backyard | N.R. | 13 | 7–8 | 50 | 42 | N.R. | N.R. |
[17] | Composter barrel with fruit EMs | Cafeterias | N.R. | 13 | 7–8 | 50 | 42 | N.R. | N.R. |
[26] | Vermicompost (Eisenia foetida) | Composting facility | N.R. | 5.6 | 8.2 | N.R. | 90 | 80 (volume) | N.R. |
[27] | Bokashi techinique | Market | N.R. | 26–32 | 7–8.5 | 65 | 13 | 54.4 (mass) | N.R. |
[28] | Aerated pile | Composting facility | 1.5 m × 1.4 m × 1.0 m | 16–21 | 7.0 | 46–64 | 26 | N.R. | N.R. |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiménez-Antillón, J.; Calleja-Amador, C.; Romero-Esquivel, L.G. Food Waste Recovery with Takakura Portable Compost Boxes in Offices and Working Places. Resources 2018, 7, 84. https://doi.org/10.3390/resources7040084
Jiménez-Antillón J, Calleja-Amador C, Romero-Esquivel LG. Food Waste Recovery with Takakura Portable Compost Boxes in Offices and Working Places. Resources. 2018; 7(4):84. https://doi.org/10.3390/resources7040084
Chicago/Turabian StyleJiménez-Antillón, Joaquín, Carlos Calleja-Amador, and Luis G. Romero-Esquivel. 2018. "Food Waste Recovery with Takakura Portable Compost Boxes in Offices and Working Places" Resources 7, no. 4: 84. https://doi.org/10.3390/resources7040084
APA StyleJiménez-Antillón, J., Calleja-Amador, C., & Romero-Esquivel, L. G. (2018). Food Waste Recovery with Takakura Portable Compost Boxes in Offices and Working Places. Resources, 7(4), 84. https://doi.org/10.3390/resources7040084