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Abstract: Today the process of transition to a new technological order has become evident to
everyone, especially in developed countries. One of the most urgent areas for ensuring the long-term
competitiveness of industrial enterprises is the development of the Arctic zone. This region has many
economic and logistical difficulties, the solution of which may lie in the use of advanced technologies
of the new technological order, for example, 3D-printing technologies. The aim of the article is
to study the transformation of the cost structure of industrial products as a result of integration
of 3D-printing technologies into the production process of industrial enterprise operating in the
Arctic zone. It was found that the structure of the main cost elements varies greatly, due to the
ambiguity of replacing computer numerical control (CNC) (or other classical shaping technologies)
with 3D-printing technologies, as well as the specifics of supply chains, which is quite urgent for
the Arctic region. The results of empirical study necessitate the development of tools for predicting
the economic viability of integrating 3D-printing technologies into the technological processes of
industrial enterprises operating in the Arctic zone. Within the article, the authors substantiated and
developed a fuzzy-multiple model for assessing the level of investment attractiveness of integration
of 3D-printing technologies into the production process of an industrial enterprise operating the
Arctic zone. One of the aims of this model is to answer the question of whether an enterprise should
invest in a technological transition to 3D-printing technologies.

Keywords: 3D-printing technologies; industrial enterprise; production cost; design process; fuzzy
logic; Arctic zone

1. Introduction and Statistics Overview

Industry, primarily manufacturing, plays a key role in the development of the world economy.
According to L. Young (United Nations Industrial Development Organization (UNIDO) Industrial
Development Report, 2016), development is impossible without industrialization, and industrialization
is impossible without technology and innovation. Industry generates jobs with higher wages than
agriculture, which contributes to structural economic changes in low-income countries and their
transfer to the category of countries with medium and sometimes high incomes. According to
UNIDO specialists, it is employment in industry that is crucial in terms of poverty eradication and the
achievement of sustainable development goals of the United Nations [1].

Analyzing the dynamics of the world gross product by main sectors (agriculture, industry, services)
from 1970 to 2000, services sector grew at a faster rate than industry (up 4.5% per year), but since 2000,
the annual growth of all three sectors has been equalized and stabilized at about 2.5% [2].
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As for geographical specifics, all countries are characterized by dynamic fluctuations in the
industrial development index with the absence of an explicitly expressed trend. The BRICS countries
(Brazil, Russia, India, China, South Africa) have maintained their leadership in the world industrial
growth over the past four decades (especially China, but not Russia) [3–6].

The cost of world industrial output is 9/10 in the manufacturing sector. The developed countries
have an even higher specific gravity [7–9]. Since the 1960s (in developing countries—since the
1980s), the world industry has taken a course of de-industrialization. On a global scale, the share
of manufacturing value added in GDP (gross domestic product) in the period from 1962 to 2012 fell
from 20.9% to 12.3% [10]. Figure 1 shows a graph of the change in this indicator for selected regions
(USA and Canada, Eastern Asia, Western Europe, the countries of the former Union of Soviet Socialist
Republics (USSR)). In Western Europe, the US and Canada, the share of manufacturing value added
in GDP is steadily declining according to the global trend (this trend is also characteristic for Japan,
Singapore, Taiwan, Australia, New Zealand, and other economically developed countries). For the
countries of the former USSR and Eastern Asia, the situation is reversed: the share of value added
of manufacturing in GDP either grows, or the periods of recession and growth change. One of these
two trends is also characteristic for the countries of Eastern Europe, South America, the Middle East
and other developing countries [11,12]. The difference in the role of manufacturing in the national
economy for developed and developing countries is quite obvious. Basically, this is due to the fact that
the industry’s opportunities to enhance the economic growth of developing countries are still clearly
not exhausted [13–15].
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The statistics of geographical distribution of the value added of manufacturing industry in the
world over the past three decades show that the share of North American countries fell from 23%
to 20.9%, that of Western Europe fell from 40.7% to 27.5%, and the countries of the Asia-Pacific
region increased from 27.8% to 44.5% [17]. The situation is rather different with the absolute values
of the index. In addition to the obvious trend—China’s explosive 15-fold growth—one can see an
increase in the value added by manufacturing industry not only in developing countries (BRICS
countries, South Africa, Mexico and many others), but also in countries traditionally included in the
group of economically developed countries (USA, Western Europe). This trend of reduction in the
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share of manufacturing in GDP, while maintaining absolute growth is linked with the leading role of
economically developed countries in global value chains [1,18,19].

There is a tendency of increasing efficiency in the manufacturing industry due to the reduction in
employment and energy consumption, mainly in industrialized countries. If comparing China and
USA (as representatives of developing and developed countries) in terms of such indicators as value
added ($bn.), manufacturing energy consumption (% of the world), manufacturing employment (% of
total employment) in 1990 and 2015, it is obvious that growth in manufacturing occurs in parallel with
a decrease in the number of employees due to automation and more rational use of human resources.
In general, employment in world manufacturing increased by 13% during the period (in developed
countries it fell by 31%, and in developing countries it increased by 30%). The energy consumption
situation for the two countries is different: in China, manufacturing and industrial energy consumption
are rising synchronously, while in the US the situation is inversely proportional [20–23].

The world manufacturing sector is characterized by a high level of competition, both at the
country level and at the level of specific enterprises. At the same time, existing technological systems
reach an optimizing peak, which generates the need for a qualitative change. The process of cardinal
modernization involves changing one of the following elements of the production process [24–26]:

• circulating resources, in particular the integration of new materials for obtaining new properties
of the final product, or obtaining a fundamentally new product, or reducing production costs;

• production technologies, which is expressed in the integration of new capital equipment.

The process of transition to a new technological order determines the need to create new production
systems. These systems should be both of a new technological character and have a renewed territorial
and organizational character. Due to the increasing scarcity of territories, but not the diminishing need
for access to labor and the proximity of resources, it is the development of the Arctic zone that can
be one of the vectors of modern industry development. In many respects, this is determined by the
resource base of the Arctic zone, as well as by its general openness to mastering the main participants
of the world industrial market. At the same time, logistic and infrastructure problems of this region
should be considered. Despite the closeness to resources, the cost of organizing a single work unit is
significantly higher than in many alternative regions of the world.

Arctic industry forms a significant part of world GDP. In particular, in the Russian Federation, about
20% of the extractive industries products and about 2% of the manufacturing products are produced in
the Arctic zone. The main products are: non-ferrous metals, aluminum, apatite-nepheline ores, complex
iron ores, phlogopite, vermiculite, ferrite strontium powders, building materials, aegirine, sphenic,
titanium-magnetite, iron ore, apatite and baddeleyite concentrates. Most of the production facilities
are located in the western part of the Arctic zone. This part is an “old-developed” region, as it was
industrialized in the early 20th century. Despite of the high significance of the Arctic industry, its main
development fell on the third technological order. Consequently, the technological development of the
industrial complex of the Arctic zone is critical for the development of industry as a whole.

Thus, effective production facilities in the Arctic zone should primarily meet the following
characteristics [27–30]:

1. Adaptability. Production complexes operating in the Arctic zone should be able to quickly and,
in a non-resource-consuming way, adjust to new conditions of external and internal environment;

2. Scalability. Production complexes of the Arctic zone should be commensurately effective in the
production of goods at both small and large scales;

3. Learning. Since the Arctic zone is unique, errors in the creation of such complexes are unavoidable.
Therefore, without the existence of a system of accumulation and subsequent use of bad
experiences, such complexes cannot exist;

4. Virtual openness. Such complexes should be able to communicate quickly and effectively with
the managing, financial and other subsystems located outside the given territory.
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The approach to the creation of production complexes operating in the Arctic zone is exceptionally
individual. These complexes can be successful only in the case of the integration of both advanced and
classic production technologies. 3D-printing technologies could become one of the most promising
cases, since on their basis, the most adaptive and scalable production complexes can be built. 3D, or
additive, printing is a generic name for technologies that involve production from a digital model (or
CAD (computer-aided design) model) by layer-by-layer addition of material [31,32]. The integration
of advanced production technologies, in particular, 3D-printing or additive technologies for industrial
enterprises operating in the Arctic zone, may become one of the keys of their development.

2. Literature Overview

The consequences of integrating additive technologies into real sectors of the economy is a widely
discussed problem in the scientific community [33–36]. This question is quite broad, and it determines
the different directions of the researchers. For example, Gress and Kalafsky (2015) state that additive
technologies can change the geography of production as a whole by influencing the structure of
demand and consumption, as well as innovation and global supply chains [37,38]. Cozmei and Caloian
(2012) consider economic advantages of additive technologies, such as reduction in fixed costs, absence
of expenses and depreciation costs for additional equipment, reduced risk, and reduced management
costs. They thoroughly consider the issues related to the fiscal burden on enterprises using additive
technologies and conclude that the development of additive technologies will invariably lead to a
global modernization of the taxation system, since at the moment it is not able to levy taxes from these
enterprises in connection with the innovative nature of their activities [39,40].

Weller, Kleer and Piller (2015) argue that additive production is currently being positioned as the
source of a new industrial revolution by producing unique products without the use of specialized
tools and the production of complex structures in one operation, thereby potentially reducing the need
for installation work. The authors believe that in monopoly conditions, the use of additive technologies
will allow the profit of the enterprise to increase through the use of consumer surpluses, thanks to
the construction of a flexible production system that implies individual orders. At the same time,
competition will be stimulated, as additive technologies will reduce barriers and enable enterprises to
function in several markets simultaneously, resulting in price reduction for end-users [41,42].

The most profound study in the field of the economy of additive production was carried out
by Gebler, Schoot Uiterkamp and Visser (2014), stating that the greatest development of additive
technologies will be in the sphere of small-scale production, production of unique products and
expensive equipment. The most promising industries are aerospace and medical production.
The authors were the first to consider a change in the cost structure when using 3D printing. Prices for
raw materials for 3D printing are much higher than for raw materials in classic production methods;
however, their efficiency is much higher. The cost of production can be reduced, since additive
technologies allow the creation of lighter structures with complex geometry, which can result in fuel
economy [43,44].

Mellor, Hao and Zhang (2014) note that additive technologies have been used exclusively in the
prototyping area. However, it has become possible to create full-scale productions based on additive
technologies. As the advantages of this technology, the authors distinguish the almost unlimited
possibilities in the design of the final product, the lack of need for specialized equipment, and the low
costs [45–50].

Thus, we can conclude that existing scientific research in this area focuses either on the global aspect
of the development of additive production, not considering the specifics of the changes in production
processes, or on particular cases of integrating additive technologies into specific technological
processes. To determine the possibilities for integrating these technologies into production complexes
created in the Arctic zone, it is firstly necessary to understand the specifics of changing the structure
of production costs. The object of research is engineering for at the moment the vast majority of
commercial developments in the field of additive technologies are primarily focused in this sector
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where additive technologies can replace classical methods of product forming, such as mechanical
processing by means of CNC (computer numerical control) equipment.

3. Methodology

This study is conducted on data obtained from 10 enterprises working in the Arctic zone.
It was based on a complex of quantitative information (accounting data, primary accounting data,
production information, etc.) and qualitative information (in-depth expert interviews with management
representatives of each company). The obtained results were processed using MS Excel. Let’s
consider the changes in the design process during the transition from CNC to additive technologies
(Figure 2) [51–53].
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Abbreviations in this figure stand for: CNC—machine tool with computer numerical
control; CAD—computer-aided design; CAE—computer-aided engineering; CAO—computer-aided
optimization; CAM—computer-aided manufacturing. According to Figure 2, testing the processability
is completely excluded from the design process, because the principle of formation of additive
technologies implies the possibility of obtaining almost any form layer-by-layer [54,55]. Software
and hardware can obtain a form without human intervention, which makes it possible to completely
abandon staff units such as production engineer and to reduce the cost of the final product.

Following the design phase, the production stage will also undergo significant changes [56,57].
Since the production process is almost impossible to universalize from a structural point of view, it will
be easier to visualize changes through a model of production cost formation. In the enlarged form, the
formation process of the production cost can be represented by the following additive model:

C = Cm + Cw + Ceq (1)

where:

• Cm—total cost of materials;
• Cw—cost of wages;
• Ceq—cost of operation of equipment.

According to Model (1), each of the elements will undergo a change, since additive technologies
assume fundamentally different materials. Moreover, this material has a much greater return on
production waste, which is also due to the principle of formation. In this case, waste recycling is
almost identical to that when using casting technologies [58,59]. The additive devices themselves
also have their own characteristics, which certainly affects the cost of their operation. The structure
of labor costs will also change, since the additive installation management process is much less
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labor-intensive than the CNC control process [60]. Similar issues are also raised in [61–63]. A more
detailed visualization of the structural changes can be seen in the extended additive model of the
formation of the production cost:

C = Cm
n +

Tp+Ta+Tpr+Tr+
Tpf

n
60 ×Ch +

(
Pte ×LF×T×Pkh

E

)
60 +

∑
Pt ×

Tt
Ttu

+ Cdm ×T
Tm

+ Cda ×T
Ta

+ Pc ×T
Tc

+Am ×V
Au

×
T

Tmsup

(2)

where:

• Cm—aggregate price of all purchased materials (including transportation costs, etc.);
• N—number of products produced from one batch of material;
• T—piece-calculating time (time spent for production of one item);
• Ch—cost of one working hour of the machine operator or the machine tool setter (supposing that

is the one person);
• Tp—processing time (time spent by the machine tool for processing the item);
• Ta—auxiliary time, including time for installation and removal of items, time for detaching and

securing the item, time for management, time for measurement;
• Tpr—time for preventive maintenance (part of basic and auxiliary time);
• Tr—time for rest and personal needs (part of basic and auxiliary time);
• Tpf—time for preparation and finish works;
• Pte—the power of the machine tool;
• LF—load factor of the electric engine;
• Pkh—price of kilowatt hour;
• E—efficiency of the electric engine;
• Pt—purchase price of each tool used in the process of manufacturing;
• Tt—operating time of each tool;
• Ttu—permissible operation time of the tool until its complete unworthiness;
• Cdm—cost of annual depreciation of the machine tool;
• Tm—estimated working minutes of the machine tool per year;
• Cda—cost of annual depreciation of auxiliary equipment;
• Ta—estimated working minutes of auxiliary equipment per year;
• Pc—price of the necessary coolant;
• Tc—estimated working minutes of coolant before replacement;
• Am—area occupied by the machine tool;
• V—value of the production unit rent per month;
• Au—the area of the rented production unit;
• Tmsup—supposed working time of the machine tool per month (in minutes).

The presented model formed the basis of the study methodology. Conducted quantitative studies
and in-depth expert interviews made it possible to identify changes in the structure of this model
during the transition to additive technologies, as well as the causes of these changes and key problems
associated with them. The results of this comparison are presented in the next part of the paper.

4. Results

Considering the model, the cost of the material (Cm) consists of the cost of its acquisition (Cm1),
logistics costs (Cm2), the cost of additional processing (Cm3) and the irreversibility of waste and
rejects (Cm4). Industrial additive installations assume the use of specialized materials of powder type;
their cost considerably exceeds the cost of classical materials, due to the insufficient volume of their
production. The situation with industrial costs is ambiguous, since on the one hand, the process of
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storage and transportation is greatly simplified due to the greater variability of the transported volume,
but on the other hand the number of their producers is quite few [64–66]. At the same time, the cost of
additional processing is much lower, since there is no need for preliminary preparation of the material
and the formation of blanks. The irreversibility of waste and rejects is much lower than in classical
methods of metal-forming. In fact, the recyclability of waste and rejects can reach 100%. So,

Cm1−additive ≥ Cm1−CNC

Cm2−additive ≥ Cm2−CNC

Cm3−additive ≥ Cm3−CNC

Cm4−additive ≥ Cm4−CNC

(3)

With the general changes in the ratio between the elements of material costs, the composition of
these costs does not change. Labor costs change insignificantly in terms of composition and structure.
Processing time is an extremely variable indicator, unsuitable for comparison. Auxiliary time in
the case of additive technologies will be significantly lower, since the production process is more
automated [67,68]. Time for preventive maintenance, time for rest time and personal needs, as well as
time for preparation and finish works remain virtually unchanged. So,

Tp−additive ≥ Tp−CNC

Ta−additive ≥ Ta−CNC

Tpr−additive ≥ Tpr−CNC

Tr−additive ≥ Tr−CNC

Tpf−additive ≥ Tpf−CNC

(4)

The method for calculating electricity costs (Cel) retains the main mechanism, but load factor and
efficiency of the electric engine are replaced by alternative indicators for the additive installation [69,70].
The energy consumption of modern additive installations is comparable to the energy consumption of
CNC equipment:

Cel-additive ≈ Cel-CNC (5)

Cost items related to material consumption and planned replacement of the coolant are completely
eliminated and are replaced by alternative indicators for runout of structural elements of the additive
installation (Pad) (for example, an extruder). Since these elements are much more unified and durable,
lower costs should be assumed:

Pt + Pc ≥ Pad (6)

The cost of annual depreciation of the additive installation (Cd-ad) will be much higher, since
its cost significantly exceeds the cost of alternative CNC equipment, even though it is necessary to
purchase ancillary equipment:

Cdm + Cda ≤ Cd-ad (7)

Other elements of the model remain unchanged. We see that the change in the composition
and structure of the production costs is rather ambiguous. The enterprise can achieve a reduction
in material costs only under conditions of a significant percentage of rejects and industrial waste.
The company can achieve a reduction in labor costs only if the processing time is shortened, which is
possible only in the case of geometrically complex products that are impossible to manufacture on
CNC equipment [71]. The company can achieve lower equipment costs only if the additive installation
has a longer useful lifetime. It can be concluded that the decision to integrate additive technologies into
industrial enterprises operating in the Arctic zone is complex and ambiguous. This decision depends
on many factors, and the result is subject to a high level of uncertainty. Therefore, the issue of forming
an instrument for assessing the investment attractiveness of such a transition is extremely urgent.
The authors’ aim is to form a tool to determine the level of investment attractiveness of integration
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of additive technologies in the manufacturing process of an industrial enterprise operating in the
Arctic zone.

5. Discussion

The specificity of the object makes the use of any common evaluation method ineffective.
An accurate and adaptive model for assessing the prospects of investment attractiveness of integration
of additive technologies cannot be based on purely statistical or exclusively expert information.
The impossibility of using statistical methods of assessment is determined by the impossibility of
obtaining a sufficient amount of empirical material for the formation of a reliable research base. On the
other hand, expert methods carry subjective features, which greatly increase the risk of expert error.
Increasing the accuracy of the results of estimating such phenomena lies in the field of applying
the theory of fuzzy sets. Its methods are based on a system of expert assessments; however, unlike
statistical and expert estimation methods, they make it possible to consider the level of uncertainty
by using the membership functions (µ (x) ∈ (0, 1)) of a subset to a given set. Methodologically, the
use of this modeling approach is limited by the need to involve a wide range of experts. In this case,
the experts were representatives of the management system of 10 Arctic zone enterprises who were
previously involved in this study.

The investment attractiveness of the integration of additive technologies is assessed on the basis
of a system of indicators built on a hierarchical basis and defined in different measures. The first level
of the system is presented by aggregated criteria, the aggregate interaction of which synergistically
affects the level of investment attractiveness. It is proposed to use a cost approach, and to measure
investment attractiveness through the potential for cost reduction. The second level of the system is
represented by specific indicators that affect one or another criterion. These indicators describe the
state of both the external and internal environment of an industrial enterprise operating in the Arctic
zone. At the same time, they include both statistical and expert values. The system of these indicators
is presented in Table 1.
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Table 1. Indicators characterizing the investment attractiveness level of integration of additive technologies in the manufacturing process of an industrial enterprise
operating in the Arctic zone.

No. 1st Level 2nd Level Notation Units Direction of Influence

1

Po
te

nt
ia

lr
ed

uc
ti

on
in

m
at

er
ia

lc
os

ts The rate of material cost reduction X1 % ↑=>↑

2 The growth rate of the market capacity X2 % ↑=>↑

3 Comparative remoteness from the main producers of the
material X3 Score ↑=>↓

4 Comparative remoteness from the main consumers of the
material X4 Score ↑=>↓

5 Number of non-returnable defected products X5 % ↑=>↑

6 Number of non-recyclable wastes X6 % ↑=>↑

7 The ratio of the price of the material to the analogues X7 1/$ ↑=>↓

8 The cost of pretreatment of the material X8 $ ↑=>↑

9

Po
te

nt
ia

l
re

du
ct

io
n

in
la

bo
r

co
st

s Comparative level of personnel qualification Y1 Score ↑=>↓

10 Comparative number of staff Y2 People ↑=>↓

11 Potential increase in personnel wages Y3 $ ↑=>↓

12 Potential increase in labor intensity of maintenance staff Y4 $ ↑=>↓

13

Po
te

nt
ia

lr
ed

uc
ti

on
in

eq
ui

pm
en

to
pe

ra
ti

ng
co

st
s Comparative cost of additive installation Z1 $ ↑=>↓

14 Useful lifetime of the additive installation Z2 Year ↑=>↑

15 Comparative cost of additive installation service Z3 $ ↑=>↓

16 Power consumption level of additive installation Z4 KWh/hour ↑=>↓

17 Cost of auxiliary equipment and consumables Z5 $ ↑=>↓

18 Probability of equipment failure Z6 % ↑=>↓

19 Prevalence of additive installation Z7 Score ↑=>↑

20 Footprint Z8 M2 ↑=>↓
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The model has two linguistic variables:
Variable No. 1—level of investment attractiveness of integration of additive technologies in the

manufacturing process of an industrial enterprise operating in the Arctic zone;
Variable No. 2—the level of each private indicator (20 indicators). The term-set of each linguistic

variable consists of 5 subsets:
Linguistic variable No. 1:

1. Absolutely unattractive;
2. Practically unattractive;
3. The attractiveness is uncertain;
4. Attractive enough;
5. Extremely attractive.

Linguistic variable No. 2:

1. Extremely low value of the indicator;
2. Low value of the indicator;
3. The average value of the indicator;
4. Admissible value of the indicator;
5. High value of the indicator.

Each indicator is assigned its own level of significance (ri). In accordance with the hierarchy of
the system, it was established that indicators of the first level are of equal importance, since each of
them characterizes a separate component that affects the integral indicator and cannot be considered in
isolation from the others. The indicators of the second level are equally significant to the indicators of
the first level; therefore, the significance shares are evenly distributed within each group. Figure 3
shows the hierarchical system of influence of indicators, together with the established significance of
each of them.

Resources 2019, 8, x FOR PEER REVIEW  10 of 15 

 

Each indicator is assigned its own level of significance (ri). In accordance with the hierarchy of 
the system, it was established that indicators of the first level are of equal importance, since each of 
them characterizes a separate component that affects the integral indicator and cannot be considered 
in isolation from the others. The indicators of the second level are equally significant to the indicators 
of the first level; therefore, the significance shares are evenly distributed within each group. Figure 3 
shows the hierarchical system of influence of indicators, together with the established significance of 
each of them. 

 
Figure 3. Scorecard and significance levels. 

As a classifier for the level of attractiveness of additive technologies integration, we take the 
most commonly used standard, the five-level 01-classifier by Nedosekin A.O., where the membership 
functions are trapezoidal triangular numbers [72]. This classifier has 5 node points, in which the value 
of the membership function is equal to one (0.1, 0.3, 0.5, 0.7, 0.9). 

For each of the private indicators, a classifier of current values is generated. These classifiers are 
built on the basis of statistical information by industry, and the distribution criterion is the frequency 
of the hit of the indicator value in the interval. If the indicator is expert, the classifier is built on the 
basis of expert review. 

Based on the results of the calculation of each of the private indicators, the recognition of their 
values by the criterion λij ∈ (0, 1) is carried out. Based on the results of recognition of the values of 
private indicators, an integral indicator of the level of investment attractiveness of integration of 
additive technologies in the manufacturing process of an industrial enterprise operating in the Arctic 
zone is calculated. The obtained integral indicator is linguistically interpreted, similarly to private 
indicators. In the end, we get an interpretation of the level of perspectiveness of integration of 
additive technologies and the degree of confidence of the researcher in this interpretation. 

6. Conclusions 

In the article, the issue of changing the composition and structure of production costs at an 
industrial enterprise operating in the Arctic zone while integrating additive technologies is 
considered in detail. It was found that the transition to additive installations will make it possible to 
abandon at least one staff unit—the production engineer—which will significantly affect the cost of 

Figure 3. Scorecard and significance levels.



Resources 2019, 8, 20 11 of 15

As a classifier for the level of attractiveness of additive technologies integration, we take the
most commonly used standard, the five-level 01-classifier by Nedosekin A.O., where the membership
functions are trapezoidal triangular numbers [72]. This classifier has 5 node points, in which the value
of the membership function is equal to one (0.1, 0.3, 0.5, 0.7, 0.9).

For each of the private indicators, a classifier of current values is generated. These classifiers are
built on the basis of statistical information by industry, and the distribution criterion is the frequency
of the hit of the indicator value in the interval. If the indicator is expert, the classifier is built on the
basis of expert review.

Based on the results of the calculation of each of the private indicators, the recognition of their
values by the criterion λij ∈ (0, 1) is carried out. Based on the results of recognition of the values
of private indicators, an integral indicator of the level of investment attractiveness of integration of
additive technologies in the manufacturing process of an industrial enterprise operating in the Arctic
zone is calculated. The obtained integral indicator is linguistically interpreted, similarly to private
indicators. In the end, we get an interpretation of the level of perspectiveness of integration of additive
technologies and the degree of confidence of the researcher in this interpretation.

6. Conclusions

In the article, the issue of changing the composition and structure of production costs at an
industrial enterprise operating in the Arctic zone while integrating additive technologies is considered
in detail. It was found that the transition to additive installations will make it possible to abandon
at least one staff unit—the production engineer—which will significantly affect the cost of product
design. At the same time, production cost can change ambiguously. In this regard, a fuzzy model was
developed to assess the level of investment attractiveness of the integration of additive technologies in
the manufacturing process of an industrial enterprise operating in the Arctic zone. This model consists
of a set of indicators that fully reflect the prospect of reducing the production costs. The linguistic
interpretation of the final result makes it possible to answer the question of whether an enterprise
should invest in a technological transition, and the linguistic interpretation of the intermediate results
will help to understand why to do it. Further development of this model is its approbation. Based on
the results of the approbation, it is supposed to clarify the fuzzy-logical classifiers of private indicators,
as well as the specification of their composition and weights. This model will be useful for developed
industrial enterprises operating in the Arctic zone, considering the integration of additive technologies,
and for researchers in the field of advanced manufacturing technologies.
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