Municipal Solid Waste as a Source of Electric Power Generation in Colombia: A Techno-Economic Evaluation under Different Scenarios
Abstract
:1. Introduction
2. Materials and Methods
2.1. Selection of Scenarios
- Group 1 (G1): municipalities with less than 30,000 inhabitants.
- Group 2 (G2): between 30,000 and 100,000 inhabitants.
- Group 3 (G3): more than 100,000 inhabitants.
2.2. Energy Recovery Potential from MSW
2.2.1. Incineration
2.2.2. Gasification
2.2.3. Anaerobic Digestion
2.2.4. Landfill Gas (Anaerobic Digestion)
2.3. The Benefits of Law 1715
2.3.1. Income Tax (Article 11)
- The value to be deduced should not exceed 50% of the liquid income of the taxpayer calculated before deducting the value of the investment.
- The environmental benefit of the investment is certified by the Ministry of Environment and Sustainable Development.
2.3.2. VAT Exemption (Article 12)
- The Mining and Energy Planning Unit (UPME, in Spanish) must issue a list of the equipment and services that are used for those purposes.
- The VAT-exempt equipment and services are certified by the Ministry of Environment and Sustainable Development.
2.3.3. Tariff Exemption (Article 13)
2.3.4. Accelerated Depreciation of Assets (Article 14)
2.4. Economic Evaluation for Each Municipality
3. Results
3.1. Analysis of the Selected Municipalities
3.2. Estimation of the Energy Recovery Potential
3.3. Economic Analysis
3.3.1. Guayatá
3.3.2. Andes
3.3.3. Pasto
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ofori-Boateng, C.; Lee, K.T.; Mensah, M. The prospects of electricity generation from municipal solid waste (MSW) in Ghana: A better waste management option. Fuel Process. Technol. 2013, 110, 94–102. [Google Scholar] [CrossRef]
- Autret, E.; Berthier, F.; Luszezanec, A.; Nicolas, F. Incineration of municipal and assimilated wastes in France: Assessment of latest energy and material recovery performances. J. Hazard. Mater. 2007, 139, 569–574. [Google Scholar] [CrossRef] [PubMed]
- Zaman, A.U.; Lehmann, S. The zero waste index: A performance measurement tool for waste management systems in a “zero waste city”. J. Clean. Prod. 2013, 50, 123–132. [Google Scholar] [CrossRef]
- Khan, M.; Tanveer, H. Production of Thermoelectric Power from Solid Waste of Urban Lahore. In Proceedings of the 2011 International Conference & Utility Exhibition on Power and Energy Systems: Issues and Prospects for Asia (ICUE), Pattaya City, Thailand, 28–30 September 2012. [Google Scholar]
- Ryu, C.; Shin, D.; Ryu, C.; Shin, D. Combined Heat and Power from Municipal Solid Waste: Current Status and Issues in South Korea. Energies 2012, 6, 45–57. [Google Scholar] [CrossRef]
- Zhang, D.; Huang, G.; Xu, Y.; Gong, Q. Waste-to-Energy in China: Key Challenges and Opportunities. Energies 2015, 8, 14182–14196. [Google Scholar] [CrossRef] [Green Version]
- Psomopoulos, C.; Venetis, I.; Themelis, N.J.; Piraeus, T.E.I. The impact from the implementation of “Waste to Energy” to the economy. A macroeconomic approach for the trade balance of Greece. Fresenius Environ. Bull. 2014, 23, 2735–2741. [Google Scholar]
- Bajić, B.Ž.; Dodić, S.N.; Vučurović, D.G.; Dodić, J.M.; Grahovac, J.A. Waste-to-energy status in Serbia. Renew. Sustain. Energy Rev. 2015, 50, 1437–1444. [Google Scholar] [CrossRef]
- Melikoglu, M. Vision 2023: Assessing the feasibility of electricity and biogas production from municipal solid waste in Turkey. Renew. Sustain. Energy Rev. 2013, 19, 52–63. [Google Scholar] [CrossRef]
- Gómez, A.; Zubizarreta, J.; Rodrigues, M.; Dopazo, C.; Fueyo, N. Potential and cost of electricity generation from human and animal waste in Spain. Renew. Energy 2010, 35, 498–505. [Google Scholar] [CrossRef]
- Hao, X.; Yang, H.; Zhang, G. Trigeneration: A new way for landfill gas utilization and its feasibility in Hong Kong. Energy Policy 2008, 36, 3662–3673. [Google Scholar] [CrossRef]
- Luz, F.C.; Rocha, M.H.; Lora, E.E.S.; Venturini, O.J.; Andrade, R.V.; Leme, M.M.V.; Del Olmo, O.A. Techno-economic analysis of municipal solid waste gasification for electricity generation in Brazil. Energy Convers. Manag. 2015, 103, 321–337. [Google Scholar] [CrossRef]
- Mustafa, S.S.; Mustafa, S.S.; Mutlag, A.H. Kirkuk municipal waste to electrical energy. Int. J. Electr. Power Energy Syst. 2013, 44, 506–513. [Google Scholar] [CrossRef]
- Aguilar-Virgen, Q.; Taboada-González, P.; Ojeda-Benítez, S. Analysis of the feasibility of the recovery of landfill gas: A case study of Mexico. J. Clean. Prod. 2014, 79, 53–60. [Google Scholar] [CrossRef]
- Mambeli Barros, R.; Tiago Filho, G.L.; Da Silva, T.R. The electric energy potential of landfill biogas in Brazil. Energy Policy 2014, 65, 150–164. [Google Scholar] [CrossRef]
- Mbuligwe, S.E.; Kassenga, G.R. Feasibility and strategies for anaerobic digestion of solid waste for energy production in Dar es Salaam city, Tanzania. Resour. Conserv. Recycl. 2004, 42, 183–203. [Google Scholar] [CrossRef]
- Coimbra-Araújo, C.H.; Mariane, L.; Júnior, C.B.; Frigo, E.P.; Frigo, M.S.; Costa Araújo, I.R.; Alves, H.J.; Alves, H.J. Brazilian case study for biogas energy: Production of electric power, heat and automotive energy in condominiums of agroenergy. Renew. Sustain. Energy Rev. 2014, 40, 826–839. [Google Scholar] [CrossRef]
- Kothari, R.; Pandey, A.K.; Kumar, S.; Tyagi, V.V.; Tyagi, S.K. Different aspects of dry anaerobic digestion for bio-energy: An overview. Renew. Sustain. Energy Rev. 2014, 39, 174–195. [Google Scholar] [CrossRef]
- Jiang, J.; Sui, J.; Wu, S.; Yang, Y.; Wang, L. Prospects of anaerobic digestion technology in China. Tsinghua Sci. Technol. 2007, 12, 435–440. [Google Scholar] [CrossRef]
- Fernández-González, J.M.; Grindlay, A.L.; Serrano-Bernardo, F.; Rodríguez-Rojas, M.I.; Zamorano, M. Economic and environmental review of Waste-to-Energy systems for municipal solid waste management in medium and small municipalities. Waste Manag. 2017, 67, 360–374. [Google Scholar] [CrossRef]
- Murphy, J.D.; McKeogh, E. Technical, economic and environmental analysis of energy production from municipal solid waste. Renew. Energy 2004, 29, 1043–1057. [Google Scholar] [CrossRef]
- Tsai, W.-T.; Kuo, K.-C. An analysis of power generation from municipal solid waste (MSW) incineration plants in Taiwan. Energy 2010, 35, 4824–4830. [Google Scholar] [CrossRef]
- Zheng, L.; Song, J.; Li, C.; Gao, Y.; Geng, P.; Qu, B.; Lin, L. Preferential policies promote municipal solid waste (MSW) to energy in China: Current status and prospects. Renew. Sustain. Energy Rev. 2014, 36, 135–148. [Google Scholar] [CrossRef]
- Beylot, A.; Villeneuve, J. Environmental impacts of residual municipal solid waste incineration: A comparison of 110 French incinerators using a life cycle approach. Waste Manag. 2013, 33, 2781–2788. [Google Scholar] [CrossRef] [PubMed]
- Havukainen, J.; Zhan, M.; Dong, J.; Liikanen, M.; Deviatkin, I.; Li, X.; Horttanainen, M. Environmental impact assessment of municipal solid waste management incorporating mechanical treatment of waste and incineration in Hangzhou, China. J. Clean. Prod. 2017, 141, 453–461. [Google Scholar] [CrossRef]
- Kumar, A.; Samadder, S.R. A review on technological options of waste to energy for effective management of municipal solid waste. Waste Manag. 2017, 69, 407–422. [Google Scholar] [CrossRef] [PubMed]
- Arafat, H.A.; Jijakli, K. Modeling and comparative assessment of municipal solid waste gasification for energy production. Waste Manag. 2013, 33, 1704–1713. [Google Scholar] [CrossRef] [PubMed]
- Beyene, H.D.; Werkneh, A.A.; Ambaye, T.G. Current updates on waste to energy (WtE) technologies: A review. Renew. Energy Focus 2018, 24, 1–11. [Google Scholar] [CrossRef]
- Sabalza, O.; Villamizar, O. Evaluación del Potencial Energético de los Residuos Sólidos Orgánicos Urbanos Provenientes de las Plazas de Mercado y Diseño Conceptual de una Planta de Digestión Anaerobia Para Su Aprovechamiento Industrial en Colombia; Universidad Industrial de Santander: Santander, Colombia, 2009. [Google Scholar]
- Congreso de Colombia. Ley N° 1715 del 13 de Mayo de 2014; UPME: Bogotá, Colombia, 2014. [Google Scholar]
- Superintendencia de Servicios Públicos Domiciliarios República de Colombia. Disposición Final de Residuos Sólidos—Informe Nacional, 7th ed.; Superintendencia de Servicios Públicos Domiciliarios República de Colombia: Bogotá, Colombia, 2015; pp. 15–16, 47–50. [Google Scholar]
- Beegle, J.R.; Borole, A.P. Energy production from waste: Evaluation of anaerobic digestion and bioelectrochemical systems based on energy efficiency and economic factors. Renew. Sustain. Energy Rev. 2018, 96, 343–351. [Google Scholar] [CrossRef]
- Han, W.; Fang, J.; Liu, Z.; Tang, J. Techno-economic evaluation of a combined bioprocess for fermentative hydrogen production from food waste. Bioresour. Technol. 2016, 202, 107–112. [Google Scholar] [CrossRef]
- Panepinto, D.; Zanetti, M.C. Municipal solid waste incineration plant: A multi-step approach to the evaluation of an energy-recovery configuration. Waste Manag. 2018, 73, 332–341. [Google Scholar] [CrossRef]
- Posada Hernandez, G.J. Agrupación de Municipios Colombianos Según Características de Ruralidad; Universidad Nacional de Colombia: Bogotá, Colombia, 2010. [Google Scholar]
- Zhao, X.; Jiang, G.; Li, A.; Wang, L. Economic analysis of waste-to-energy industry in China. Waste Manag. 2016, 48, 604–618. [Google Scholar] [CrossRef]
- Wiechers, A.E. Pre-Feasibility Study of Using the Circulating Fluid Bed (CFB ) Waste-to-Energy Technology in Mexico City; Columbia University: New York, NY, USA, 2015. [Google Scholar]
- Abu-Hijleh, B.A.; Mousa, M.; Al-Dwairi, R.; Al-Kumoos, M.; Al-Tarazi, S. Feasibility study of a municipality solid waste incineration plant in Jordan. Energy Convers. Manag. 1998, 39, 1155–1159. [Google Scholar] [CrossRef]
- Abd Kadir, S.A.S.; Yin, C.-Y.; Rosli Sulaiman, M.; Chen, X.; El-Harbawi, M. Incineration of municipal solid waste in Malaysia: Salient issues, policies and waste-to-energy initiatives. Renew. Sustain. Energy Rev. 2013, 24, 181–186. [Google Scholar] [CrossRef] [Green Version]
- Poletto Filho, J.A. Viabilidade Energética E Econômica Da Incineração De Resíduo Sólido Urbano Considerando A Segregação Para Reciclagem; Universidade Estadual Paulista: São Paulo, Brazil, 2008. [Google Scholar]
- Kalyani, K.A.; Pandey, K.K. Waste to energy status in India: A short review. Renew. Sustain. Energy Rev. 2014, 31, 113–120. [Google Scholar] [CrossRef]
- Leme, M.M.V.; Rocha, M.H.; Lora, E.E.S.; Venturini, O.J.; Lopes, B.M.; Ferreira, C.H. Techno-economic analysis and environmental impact assessment of energy recovery from Municipal Solid Waste (MSW) in Brazil. Resour. Conserv. Recycl. 2014, 87, 8–20. [Google Scholar] [CrossRef]
- Ouda, O.K.M.; Raza, S.A.; Al-Waked, R.; Al-Asad, J.F.; Nizami, A.-S. Waste-to-energy potential in the Western Province of Saudi Arabia. J. King Saud Univ. Eng. Sci. 2017, 29, 212–220. [Google Scholar] [CrossRef] [Green Version]
- Ordoñez Ordoñez, M.D.C. Evaluación de la Generación de Biogas en Rellenos Sanitarios en Colombia en el Marco del Protocolo de Kyoto; Universidad Tecnológica de Pereira: Pereira, Colombia, 2011. [Google Scholar]
- Cadena, J.; Pérez, S.; Mora, J. Análisis de viabilidad financiera de una central de generación de energía eléctrica a partir del biogás de vertedero. Sci. Tech. Año XVI 2012, 51, 1–7. [Google Scholar]
- Bove, R.; Lunghi, P. Electric power generation from landfill gas using traditional and innovative technologies. Energy Convers. Manag. 2006, 47, 1391–1401. [Google Scholar] [CrossRef]
- Hadidi, L.A.; Omer, M.M. A financial feasibility model of gasification and anaerobic digestion waste-to-energy (WTE) plants in Saudi Arabia. Waste Manag. 2017, 59, 90–101. [Google Scholar] [CrossRef]
- Walla, C.; Schneeberger, W. The optimal size for biogas plants. Biomass Bioenergy 2008, 32, 553. [Google Scholar] [CrossRef]
- IDAE. Biomasa: Digestores Anaerobios; IDAE: Madrid, Spain, 2007. [Google Scholar]
- Farming Futures. Climate Change: Be Part of the Solution—Focus on: Farm Anaerobic; Farming Future: Food & Farming Futures, United Kingdom, 2009; Volume 17. [Google Scholar]
- Local United. Energy Farms—Anaerobic Digestion; National Energy Foundation: Milton Keynes, UK, 2016. [Google Scholar]
- Sánchez, J.H. The discount rate in emerging countries-application of the Colombian case. Rev. EAN 2010, 69, 120–134. [Google Scholar] [CrossRef]
- Mpio de Guayatá. Plan de Gestión Integral de Residuos Sólidos PGIRS Municipio de Guayatá; Mpio de Guayatá: Guayatá, Colombia, 2015. [Google Scholar]
- Arroyave Tobón, I.C. Plan De Gestión De Residuos Sólidos Municipio De Andes 2006–2020; Alcaldía de Andes: Antioquia, Colombia, 2005; pp. 43–45. [Google Scholar]
- Delgado Guerrero, R. Plan de Gestión Integral de Residuos Sólidos PGIRS Municipio de Pasto; Alcaldia de Pasto: Pasto, Colombia, 2007; pp. 63–70. [Google Scholar]
- Themelis, N.J.; Elena, M.; Barriga, D.; Estevez, P.; Velasco, M.G. Guidebook for the Application of Waste to Energy Technologies in Latin America and the Caribbean; Inter-American Development Bank: Washington, DC, USA, 2013. [Google Scholar]
- UPME. Plan Indicativo de Expansión de Cobertura de Energía Eléctrica PIEC 2016–2020; UPME: Bogotá, Colombia, 2016. [Google Scholar]
- Emvarias-Grupo EPM. Información Tarifaria. Available online: http://www.emvarias.com.co/SitePages/Forms/AllPages.aspx?RootFolder=%2FSitePages%2FInformaciónTarifaria2016&FolderCTID=0x012000FD1E4E0A8E3F4C4BA17E4FA04F9A9ECD&View=%7B461FC4AA-67A3-4E44-B029-3BA5F40C764D%7D (accessed on 3 July 2017).
- Commodity Exchange Bratislavava. Carbon Place. Available online: http://www.carbonplace.eu/info-commodities-CER (accessed on 10 October 2017).
- Palacio Suárez, F.F. Estudio de la Prefactibilidad de Generar Energía Eléctrica Utilizando Como Fuente Primaria la Cacota del Café Que Se Produce en la Región de Cajamarca para Satisfacer las Necesidades de una Finca Que Consume 1MWh Por Mes; Universidad de la Salle: Bogotá, Colombia, 2007; Volume 3. [Google Scholar]
- EBSA. Tarifa marzo 2016: Empresa de Energía de Boyacá. Available online: https://www.ebsa.com.co/nue/tar/Documentos compartidos/Tarifas 2016/ebsa tarifas MARZO.jpg (accessed on 11 July 2018).
- Ramos, A.; Teixeira, C.A.; Rouboa, A. Environmental Analysis of Waste-to-Energy—A Portuguese Case Study, China. Energies 2018, 11, 548. [Google Scholar] [CrossRef]
- Tan, S.T.; Ho, W.S.; Hashim, H.; Lee, C.T.; Taib, M.R.; Ho, C.S. Energy, economic and environmental (3E) analysis of waste-to-energy (WTE) strategies for municipal solid waste (MSW) management in Malaysia. Energy Convers. Manag. 2015, 102, 116. [Google Scholar] [CrossRef]
- Consonni, S.; Giugliano, M.; Grosso, M. Alternative strategies for energy recovery from municipal solid waste: Part B: Emission and cost estimates. Waste Manag. 2005, 25, 137–148. [Google Scholar] [CrossRef] [PubMed]
- El Colombiano. Basuras, Una Bomba de Tiempo en Colombia; El Colombiano: Medellín, Colombia, 2017. [Google Scholar]
- Zhang, D.; Huang, G.; Yin, X.; Gong, Q.; Zhang, D.; Huang, G.; Yin, X.; Gong, Q. Residents’ Waste Separation Behaviors at the Source: Using SEM with the Theory of Planned Behavior in Guangzhou, China. Int. J. Environ. Res. Public Health 2015, 12, 9475–9491. [Google Scholar] [CrossRef] [Green Version]
- Moreno Figueredo, C. Leyes Para Las Energías Renovables en América Latina y el Caribe. Available online: http://www.cubasolar.cu/Biblioteca/Energia/Energia56/HTML/Articulo05.htm (accessed on 4 July 2017).
- Agencia EFE. Olade Destaca “Sólida” Incorporación de Energías Renovables en Latinoamérica; Agencia EFE: Quito, Ecuador, 2018. [Google Scholar]
Technology | Advantages | Disadvantages | Technical Viability |
---|---|---|---|
Incineration | Treatment of organic and inorganic waste Continuous feeding | Not viable for <100 t/day Low efficiency for wet waste High investment | ✓ Pasto ✓ Andes x Guayatá |
Gasification | It can be located near urban centers avoiding transport costs >3 t/day (biomass) | Waste selection and pretreatment | ✓ Pasto ✓ Andes x Guayatá |
Anaerobic digestion | Greenhouse gas emissions are avoided >2 t/day Organic waste and agricultural biomass | Only organic fraction Biogas treatment required | ✓ Pasto ✓ Andes ✓Guayatá |
Landfill gas | >100,000 inhabitants Reduced use of land Low investment | Uncontrolled conditions Biogas treatment required | ✓ Pasto ✓ Andes x Guayatá |
Technology | Investment (CAPEX) | Operation and Maintenance (OPEX) |
---|---|---|
Incineration | Fluidized bed incinerator: | 4% of the investment [10] |
65,200 USD/T-day [36] | ||
Gasification | Fluidized bed incinerator: | Fixed expenses: 4% of the investment. |
3,925 USD/kW to be installed [47] | Variable expenses: 4 USD/MWh [47] | |
Landfill gas | Internal combustion engine: | 17 USD/MWh [46] |
1,200,000 USD/MW to be installed [46] | ||
Biogas collection system: | 100,000 USD/year [42] | |
3,220,000 USD [45] | ||
Engineering services: | 3% of the investment in collection system [42] | |
300,000 USD [42] | ||
Anaerobic digestion | I(USD) = 101,522 + 3,500∙X [48,49,50,51] | 16% of the investment [10] |
I: Investment in USD X: value in kW to be installed |
Reference LCV [MJ/kg] | Guayatá [53] | Andes [54] | Pasto [55] | |
Paper and cardboard | 15.6 | 12.4 | 7.94 | 8.31 |
Mixed food waste | 4.6 | 51.4 | 60.71 | 70 |
Mixed plastics | 32.4 | 12.7 | 2.16 | 8.57 |
Textiles | 18.4 | 0.7 | - | 1.41 |
Timber | 15.4 | 1.2 | - | 0.73 |
Recoverable mass | 78.4 | 70.81 | 89.02 |
Waste Per Capita [kg] | Guayatá | Andes | Pasto |
---|---|---|---|
Urban | 0.47 | 0.48 | 0.55 |
Rural | 0.3 | 0.28 | 0.28 |
CAPEX (MUSD) | OPEX (MUSD) | |
---|---|---|
Incineration | 19.56 | 0.78 |
Gasification | 17.66 | 0.71 |
Anaerobic Digestion | 0.31 | 0.05 |
Landfill Gas | 0.49 | 0.11 |
CAPEX (MUSD) | OPEX (MUSD) | |
---|---|---|
Incineration | 19.56 | 0.78 |
Gasification | 17.66 | 0.83 |
Anaerobic Digestion | 2.49 | 0.4 |
Landfill Gas | 4 | 0.24 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alzate, S.; Restrepo-Cuestas, B.; Jaramillo-Duque, Á. Municipal Solid Waste as a Source of Electric Power Generation in Colombia: A Techno-Economic Evaluation under Different Scenarios. Resources 2019, 8, 51. https://doi.org/10.3390/resources8010051
Alzate S, Restrepo-Cuestas B, Jaramillo-Duque Á. Municipal Solid Waste as a Source of Electric Power Generation in Colombia: A Techno-Economic Evaluation under Different Scenarios. Resources. 2019; 8(1):51. https://doi.org/10.3390/resources8010051
Chicago/Turabian StyleAlzate, Santiago, Bonie Restrepo-Cuestas, and Álvaro Jaramillo-Duque. 2019. "Municipal Solid Waste as a Source of Electric Power Generation in Colombia: A Techno-Economic Evaluation under Different Scenarios" Resources 8, no. 1: 51. https://doi.org/10.3390/resources8010051
APA StyleAlzate, S., Restrepo-Cuestas, B., & Jaramillo-Duque, Á. (2019). Municipal Solid Waste as a Source of Electric Power Generation in Colombia: A Techno-Economic Evaluation under Different Scenarios. Resources, 8(1), 51. https://doi.org/10.3390/resources8010051