Environmental Sustainability of Pasta Production Chains: An Integrated Approach for Comparing Local and Global Chains
Abstract
:1. Introduction
- “Durum wheat semolina” or simply “semolina” is referred to as a rough, granular product obtained by grinding and sifting durum wheat, removing all impurities and extraneous bodies;
- “Durum wheat semolina pasta” is referred to as any product obtained by drawing, rolling, and drying a dough prepared only with durum wheat semolina and water.
2. Materials and Methods
2.1. Description of the Methodology for the Environmental Assessment
2.1.1. EIAN Approach and Indicators
2.1.2. LCA Methodology and Indicators
- Effects on global warming, by quantifying CO2 equivalent emissions (CO2eq), accounting for carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) emissions, and using the Global Warming Potential GWP100 factors [28];
- Primary energy consumption, by using the Cumulated Energy Requirement (CER), which represents the fossil energy required for extracting, manufacturing and disposal of raw and auxiliary materials;
- The Cumulated Material Requirement (CMR), by considering all the non renewable raw materials used throughout the whole life cycle;
- The Eutrophication index, by considering nutrients leaching in superficial and ground water.
2.1.3. System Boundaries and Functional Unit
2.2. Inventory Data Collection
3. Results
3.1. Description of Data Inventory
3.2. Results of the Environmental Assessment
4. Discussion of the Environmental Assessment and Future Improvements
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- EC—European Commission. Guidance Document Describing the Food Categories in Part E of Annex II to Regulation (EC) No 1333/2008 on Food Additives. 2008. Available online: http://ec.europa.eu/food/safety/docs/fs_food-improvement-agents_guidance_1333-2008_annex2.pdf (accessed on 1 October 2018).
- Andrade-Sanchez, P.; Ottman, M.J. Determination of Optimal Planting Configuration of Low Input and Organic Barley and Wheat Production in Arizona; College of Agriculture, University of Arizona: Tucson, AZ, USA, 2014. [Google Scholar]
- Bali, K. Wheat Fertilization Practices in the Imperial Valley, California Wheat Commission Research Report, 2010–2011. Available online: http://www.californiawheat.org/uploads/resources/400/bali-wheat-fertilization-practices-research-report.pdf (accessed on 1 October 2018).
- DAF—Dep. of Agriculture and Fisheries. Durum Wheat in Queensland. 2012. Available online: https://www.daf.qld.gov.au/business-priorities/plants/field-crops-and-pastures/broadacre-field-crops/wheat/durum-wheat (accessed on 17 July 2018).
- Ferrari, E. Interview to Emilio Ferrari Responsible for Durum Wheat Purchase at Barilla SpA, IL Piacenza. 2018. Available online: http://www.ilpiacenza.it/economia/barilla-tutta-l-importanza-dei-controlli-di-filiera-a-tutela-della-pasta-di-grano-duro-made-in-italy.html (accessed on 17 July 2018).
- Kneipp, J. Durum Wheat Production, NSW Department of Primary Industries; Tamworth Agricultural Institute: Calala, Australia, 2008. Available online: https://www.dpi.nsw.gov.au/__data/assets/pdf_file/0010/280855/Durum-wheat-production-report.pdf (accessed on 31 December 2018).
- SADGA—The Southern Australia Durum Growers Association Inc. Growing a Successful Durum Crop. 2018. Available online: https://durumgrowerssa.org.au/industry-news/growing-a-successful-durum-crop (accessed on 17 July 2018).
- Samson, M.F.; André, C.; Audigeos, D.; Besombes, C.; Braun, P.; Cassan, D.; Chiron, A.; Cochard, M.; Dusautoir, J.C.; Kessler, J.P.; et al. Durum wheat pasta with a good quality and a reduced nitrogen fertilization: Is it possible? In Proceedings of the 15th International Cereal and Bread Congress (ICBC 2016), Istanbul, Turkey, 18–21 April 2016. [Google Scholar]
- ISO 14025:2006. Environmental Labels and Declarations—Type III Environmental Declarations—Principles and Procedures; International Organization for Standardization (ISO): Geneva, Switzerland, 2006. [Google Scholar]
- ISO 14040:2006. Environmental Management—Life Cycle Assessment—Principles and Framework; International Organization for Standardization (ISO): Geneva, Switzerland, 2006. [Google Scholar]
- ISO 14044:2006. Environmental Management—Life Cycle Assessment—Requirements and Guidelines; International Organization for Standardization (ISO): Geneva, Switzerland, 2006. [Google Scholar]
- Fusi, A.; Guidetti, R.; Azapagic, A. Evaluation of environmental impacts in the catering sector: The case of pasta. J. Clean. Prod. 2016, 132, 146–160. [Google Scholar] [CrossRef]
- Ruini, L.; Marino, M.; Pignatelli, S.; Laio, F.; Ridolfi, L. Water footprint of a large-sized food company: The case of Barilla pasta production. Water Res. Ind. 2013, 1, 7–24. [Google Scholar] [CrossRef] [Green Version]
- Sobczyk, A.; Pycia, K.; Stankowski, S.; Jaworska, G.; Kuźniar, P. Evaluation of the rheological properties of dough and quality of bread made with the flour obtained from old cultivars and modern breeding lines of spelt (Triticum aestivum ssp. spelta). J. Cereal Sci. 2017, 77, 35–41. [Google Scholar] [CrossRef]
- Teuber, R.; Dolgopolova, I.; Nordström, J. Some like it organic, some like it purple and some like it ancient: Consumer preferences and WTP for value-added attributes in whole grain bread. Food Qual. Prefer. 2016, 52, 244–254. [Google Scholar] [CrossRef]
- Liu, J.; Orr, S. Water footprint overview in the governmental, public policy, and corporate contexts. In On the Water Front: Selections from the 2009 World Water Week in Stockholm; Lundqvist, J., Ed.; Stockholm International Water Institute: Stockholm, Sweden, 2010; pp. 73–79. [Google Scholar]
- Foster, C.; Green, K.; Bleda, M.; Dewick, P.; Evans, B.; Flynn, A.; Mylan, A. Environmental Impacts of Food Production and Consumption: A Report to the Department of Environment, Food and Rural Affairs, Manchester Business School; Defra: London, UK, 2006.
- Bevilacqua, M.; Braglia, M.; Carmignani, G.; Zammori, F.A. Life Cycle Assessment of Pasta Production in Italy. J. Food Qual. 2007, 30, 932–952. [Google Scholar] [CrossRef]
- Gärtner, S.; Köppen, S.; Detzel, A.; Häfele, S.; Münch, J.; Reinhardt, G.; Rettenmaier, N.; Recchia, L.; Chiaramonti, D. Report on the Results of the Environmental Implications, Life Project “Vegetable Oil Initiative for a Cleaner Environment”; GA LIFE06 ENV/IT00257; CREAR-University of Florence: Firenze, Italy, 2009. [Google Scholar]
- Kretschmer, W.; Capaccioli, S.; Chiaramonti, D.; De Bari, I.; Frattini, A.; Giovannini, A.; Janssen, R.; Keller, H.; Langer, M.; Liden, G.; et al. Integrated Sustainability Assessment of Biolyfe Second Generation Bioethanol, FP7 Project “Second Generation Bioethanol Process: Demonstration Scale for the Step of Lignocellulosici Hydrolysis and Fermentation”; GA 239204; IFEU GmbH: Heidelberg, Germany, 2013. [Google Scholar]
- EEA—European Environmental Agency. Estimating the Environmentally Compatible Bioenergy Potential from Agriculture; Technical Report n.12/2007; EEA: Copenhagen, Denmark, 2008; ISBN 978-92-9167-969-0. ISSN 1725-2237. [Google Scholar] [CrossRef]
- Rettenmaier, N.; Harter, R.; Himmler, H.; Keller, H.; Kretschmer, W.; Müller-Lindenlauf, M.; Reinhardt, G.; Scheurlen, K.; Schröter, C. Integrated Sustainability Assessment of the BIOCORE Biorefinery Concept (D 7.6), FP7 Project “BIOCOmmodity Refinery Project”; GA 241566; IFEU GmbH: Heidelberg, Germany, 2014. [Google Scholar]
- Siddique, K.H.M.; Tennant, D.; Perry, M.W.; Belford, R.K. Water use and water use efficiency of old and modern wheat cultivars in a Mediterranean type environment. Aust. J. Agric. Res. 1990, 41, 431–447. [Google Scholar] [CrossRef]
- ARPAT (Regional Agency for Environment Protection of Tuscany, Italy). Fitofarmaci—Proposta di un Indicatore di Pressione Elaborando Proprietà Ambientali e dati di Utilizzo dei Prodotti Fitosanitari; ARPAT-Regione Toscana: Firenze, Italy, 2015.
- Recchia, L.; Sarri, D.; Rimediotti, M.; Boncinelli, P.; Cini, E.; Vieri, M. Towards the environmental sustainability assessment for the viticulture. J. Agric. Eng. 2018, 49, 19–28. [Google Scholar] [CrossRef]
- Gemis®. Available online: http://iinas.org/gemis.html (accessed on 1 October 2018).
- Biograce. Available online: http://www.biograce.net/ (accessed on 16 August 2018).
- IPCC. Third Assessment Report—Climate Change; IPCC: Geneva, Switzerland, 2001. [Google Scholar]
- Woodhouse, A.; Davis, J.; Pénicaud, C.; Östergren, K. Sustainability checklist in support of the design of food processing. Sustain. Prod. Consum. 2013, 16, 110–120. [Google Scholar] [CrossRef]
- Chiaramonti, D.; Recchia, L. Is life cycle assessment (LCA) a suitable method for quantitative CO2 saving estimations? the impact of field input on the LCA results for a pure vegetable oil chain. Biomass Bioenergy 2010, 34, 787–797. [Google Scholar] [CrossRef] [Green Version]
- Agristat. Available online: http://agri.istat.it (accessed on 31 December 2018).
- BREF. Food, Drink and Milk Industries; IPCC: Geneva, Switzerland, 2006. [Google Scholar]
- Babula, R.A.; Rich, K.M. A Time-Series Analysis of the US Durum Wheat and Pasta Markets. J. Food Distrib. Res. 2001, 32, 1–19. [Google Scholar]
- Quaranta, F.; Belocchi, A.; Fornaia, M.; Ripa, C.; D’Egidio, M.G. Le Varietà di Frumento duro in Italia: Risultati della rete Nazionale di Sperimentazione 1999–2012; CRA-Mipaaf: Roma, Italy, 2013. [Google Scholar]
- Heidari, M.D.; Huijbregts, M.A.J.; Mobli, H.; Omid, M.; Rafiee, S.; van Zelm, R. Regionalised life cycle assessment of pasta production in Iran: Damage to terrestrial ecosystems. J. Clean. Prod. 2017, 159, 141–146. [Google Scholar] [CrossRef]
- ENAMA. Prontuario dei Consumi di Carburante per L’impiego Agevolato in Agricoltura; ENAMA: Roma, Italy, 2005. [Google Scholar]
- Barilla. Environmental Product Declaration of Dry Semolina Pasta from Durum Wheat. 2011. Available online: www.environdec.com/en/Detail/?Epd=7699 (accessed on 1 October 2018).
- Notarnicola, B.; Mongelli, I.; Tassielli, G.; Nicoletti, G.M. Environmental input-output analysis and hybrid approaces to improve the set up of the pasta life cycle inventory. J. Commod. Sci. 2004, 43, 59–86. [Google Scholar]
- Notarnicola, B.; Tangari, C.; Tassielli, G.; Giungato, P.; Nardone, E. Comparison analysis of several LCA studies on pasta. In Proceedings of the International Conference “LCA & Eco-Innovation in Italy: Good Practices and Success Stories”, Ecomondo 2008, Rimini, Italy, 7 November 2008. [Google Scholar]
- Ruini, L.; Ferrari, E.; Meriggi, P.; Marino, M.; Sessa, F. Increasing the sustainability of pasta production through a life cycle assessment approach. In Proceedings of the International Workshop Advances in Cleaner Production “Integrating Cleaner Production into Sustainability Strategies”, São Paulo, Brazil, 22–24 May 2013. [Google Scholar]
- West, R.; Seetharaman, K.; Duizer, L.M. Effect of drying profile and whole grain content on flavour and texture of pasta. J. Cereal Sci. 2013, 58, 82–88. [Google Scholar] [CrossRef]
- De Pilli, T.; Giuliani, R.; Derossi, A.; Severini, C. Study of cooking quality of spaghetti dried through microwaves and comparison with hot air dried pasta. J. Food Eng. 2009, 95, 453–459. [Google Scholar] [CrossRef]
- Hager, T.J.; Morawicki, R. Energy consumption during cooking in the residential sector of developed nations: A review. Food Policy 2013, 40, 54–63. [Google Scholar] [CrossRef]
- Cimini, A.; Moresi, M. Energy efficiency and carbon footprint of home pasta cooking appliances. J. Food Eng. 2010, 204, 8–17. [Google Scholar] [CrossRef]
Investigated Aspect | Environmental Pressure | Local Indicator (EIAN Approach) | Global Indicator (LCA Methodology) |
---|---|---|---|
1. Agricultural phase | |||
Crop choice | A1 | - average yield | - |
A2, B4 | - agrochemicals typology and quantity | - | |
B5 | - WUE of cultivar | - CMR | |
D8 | - adoption of autochthon cultivars | - | |
Soil management | A3 | - mechanization level | - |
D9 | - fuel volume | - CER, CMR | |
E10 | - | - CO2eq emissions | |
Fertilisers use | B4 | - fertilizers typology and quantity | - Eutrophication |
D9 | - fossil fertilizers quantity | - CER, CMR | |
E10 | - | - CO2eq emissions | |
Pesticides use | A2, B4, D8 | - pesticides risk index | - Eutrophication |
B5 | - dilution water volume | - CMR | |
D9 | - pesticides typology and quantity | - CER, CMR | |
E10 | - | - CO2eq emissions | |
2. Pasta production phase | |||
Industrial plant management | B5 | - water volume | - CMR |
C7 | - technology level of the equipment | - | |
D9 | - electricity consumption | - CER, CMR | |
E10 | - | - CO2eq emissions | |
3. Transport phase | |||
Transports of grains, semolina and pasta | C6 | - logistic optimization level | - |
C7 | - transport means typology | - | |
D9 | - fuel volume | - CER, CMR | |
E10 | - | - CO2eq emissions | |
4. Cooking phase | |||
Domestic use | D9 | - energy consumption | - CER, CMR |
B5 | - cooking water volume | - CMR | |
E10 | - | - CO2eq emissions |
Typology of the Pasta | High-Quality/Traditional | Commercial/Conventional |
---|---|---|
Typology of the chain | local/regional | global |
Data source | Montepaldi pasta system | literature |
Reference years | 2012; 2013; 2014; 2015 | - |
Geographical location | Central Italy | - |
Agricultural phase: | ||
1) Crop cultivar | Senatore Cappelli; Timilia; Triticum turgidum | - |
2) Average yield [kg/ha] | 2450 | 4000 (1) |
3) Seeds sowing [kg/FU] | 0.151 | 0.074 (2) |
4) Agricultural operations | ||
- Operations typology | Plowing; harrowing; sowing; fertilizing; weeding and phytosanitary treatments; irrigation (optional); harvesting; straw shredding; transports | Sowing; fertilizing; weeding and phytosanitary treatments; irrigation (optional); harvesting; straw shredding; transports |
- Diesel fuel consumption [MJ/FU] | 2.718 | 2.023 (3) |
5) Fertilization | ||
- Fertilizers typology | Biammonic phosphate 18/46; Nitrogen 46%; P2O5 18%; Ammonium nitrate N 27%; Urea N 46% | Nitrogen 46%; P2O5 18%; Urea N 46% |
- Total nitrogen volume [kg/FU] | 0.065 | 0.074 (2) |
- P2O5 quantity [kg/FU] | 0.021 | 0.010 (2) |
6) Plant treatments: | ||
- Herbicides typology | Axial; Granstar Ultra 50 | Tribenuron-methyl; pinoxaden |
- Insecticides/fungicides typology | Novel Duo; Binal Pro; Amistar extra | Propiconazole; azoxystrobin; |
- Total pesticides quantity [kg/FU] | 0.0011 | 0.0007 (2) |
- Water consumption [kg/FU] | 0.757 | 0.297 (2) |
7) Residues production: | ||
- Residues management | - shredded in field | - shredded in field |
- Residues quantity [kg/FU] | 2.533 | 1.760 (1) |
8) Grain packaging | ||
- Polypropylene big-bag [kg/FU] | 0.008 | 0.004 (4) |
Pasta production phase: | ||
11) Water consumption [kg/FU] | 7.735 | 0.400 (5) |
12) Electricity consumption [MJ/FU] | 1.027 | 0.830 (5) |
13) Pasta packaging | ||
- Polypropylene [kg/FU] | 0.019 | 0.023 (4) |
- Cardboard [kg/FU] | 0.232 | 0.278 (4) |
Transports distances: | ||
9) from field to gate [km] | 560 | 700 (4) |
10) from plant to consumers [km] | 75 | 2000 (4) |
Cooking phase: | ||
14) Water requirement [kg/FU] | 10 | 10 (4) |
15) Energy consumption [MJ/FU] | 9.010 | 15.034 (4) |
Production Chain | High-Quality/Traditional Pasta | Commercial Pasta | |||
---|---|---|---|---|---|
1. Agricultural phase | |||||
- average yield [kg/ha] | 2450 | 4000 | |||
- WUE of cultivar | Low | high | |||
- adoption of autochthon cultivars | Yes | no | |||
- mechanization level | medium | high | |||
- fuel volume per ha | 4 GJ/ha | 6 GJ/ha | |||
- agrochemicals [kg/ha] | 149 | 252 | |||
- fertilisers [kg/ha] | 147 | 250 | |||
- dilution water [kg/ha] | 1113 | 880 | |||
- pesticides quantity per ha | 1.9 | 2.2 | |||
- pesticides risk index | 2.83 – 3.05 – 2.52 | 4.40 – 4.22 – 3.17 | |||
- CO2eq emissions [g/FU] | 1236 | 1217 | |||
- CER [MJ/FU] | 7.2 | 6.6 | |||
- CMR [kg/FU] | 0.176 | 0.117 | |||
- Eutrophication [mg/FU] | 7.264 | 5.242 | |||
2. Pasta production phase | |||||
- technology level of the equipment | low | high | |||
- water volume [kg/FU] | 7.735 | 0.400 | |||
- electricity amount [kg/FU] | 1.027 | 0.830 | |||
- CO2eq emissions [g/FU] | 253 | 245 | |||
- CER [MJ/FU] | 3.6 | 3.7 | |||
- CMR [kg/FU] | 0.028 | 0.033 | |||
3. Transport phase | |||||
- logistic optimization level | low | high | |||
- transport means typology | agricultural truck + road transport | agricultural truck + road transport + ship transport | |||
- fuel [MJ/FU] | 2.615 | 10.706 | |||
- CO2eq emissions [g/FU] | 217 | 302 | |||
- CER [MJ/FU] | 2.9 | 4.0 | |||
- CMR [kg/FU] | 0.001 | 0.003 | |||
4. Cooking phase | |||||
- energy [MJ/FU] | 9 | 15 | |||
- cooking water [kg/FU] | 10 | 10 | |||
- CO2eq emissions [g/FU] | 1242 | 1114 | |||
- CER [MJ/FU] | 19.1 | 18.2 | |||
- CMR [kg/FU] | 0.004 | 0.137 | |||
worst performance (value 2) | equivalent performance (value 1) | better performance (value 0) |
Overall Impact | Water Impact | Ecosystem Impact | Dose [kg/ha] | |
---|---|---|---|---|
Pesticides for high-quality/traditional pasta | ||||
Azoxystrobin | 2 | 2 | 2 | 0.22 |
Cioquintocet-mexyl | 2 | 2 | 2 | 0.02 |
Cyproconazole | 3 | 3 | 2 | 0.09 |
Pinoxaden | 2 | 1 | 2 | 0.09 |
Procloraz | 2 2 | 2 2 | 2 2 | 0.35 0.36 |
Propiconazole | 2 | 2 | 2 | 0.09 |
Tetraconazole | 2 | 2 | 2 | 0.06 |
Thifensulfuron-methyl | 1 | 2 | 1 | 0.31 |
Tribenuron-methyl | 2 | 2 | 1 | 0.31 |
2.83 | 3.05 | 2.52 | 1.90 | |
Pesticides for the conventional pasta | ||||
Tribenuron-methyl | 2 | 2 | 1 | 1.23 |
Pinoxaden | 2 | 1 | 2 | 0.18 |
Propiconazole | 2 | 2 | 2 | 0.30 |
Azoxystrobin | 2 | 2 | 2 | 0.50 |
4.40 | 4.22 | 3.17 | 2.20 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Recchia, L.; Cappelli, A.; Cini, E.; Garbati Pegna, F.; Boncinelli, P. Environmental Sustainability of Pasta Production Chains: An Integrated Approach for Comparing Local and Global Chains. Resources 2019, 8, 56. https://doi.org/10.3390/resources8010056
Recchia L, Cappelli A, Cini E, Garbati Pegna F, Boncinelli P. Environmental Sustainability of Pasta Production Chains: An Integrated Approach for Comparing Local and Global Chains. Resources. 2019; 8(1):56. https://doi.org/10.3390/resources8010056
Chicago/Turabian StyleRecchia, Lucia, Alessio Cappelli, Enrico Cini, Francesco Garbati Pegna, and Paolo Boncinelli. 2019. "Environmental Sustainability of Pasta Production Chains: An Integrated Approach for Comparing Local and Global Chains" Resources 8, no. 1: 56. https://doi.org/10.3390/resources8010056
APA StyleRecchia, L., Cappelli, A., Cini, E., Garbati Pegna, F., & Boncinelli, P. (2019). Environmental Sustainability of Pasta Production Chains: An Integrated Approach for Comparing Local and Global Chains. Resources, 8(1), 56. https://doi.org/10.3390/resources8010056