Future of Coastal Lagoons in Arid Zones under Climate Change and Anthropogenic Pressure. A Case Study from San Jose Lagoon, Mexico
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.1.1. Geology and Hydrogeology of San Jose Aquifer
2.1.2. Hydrogeology of San Jose Lagoon
2.1.3. Ecological Importance of San Jose Lagoon
2.1.4. Climate Change Scenarios Expected for the Study Area
2.2. Spatial Analysis of Vegetation Distribution and Lagoon Surface
2.3. Groundwater Model
Conceptual Mathematical Model Design
3. Results
3.1. Water Budget and Climate Change Effects for the Regional Groundwater Model and San José lagoon
3.2. Expected Surface and Underground Seawater Intrusion in the Lagoon
3.3. Changes in the Spatial Distribution of Vegetation and the Lagoon (2001–2017)
4. Discussion
4.1. Limitations
4.2. Expected Hydrogeological and Geomorphological Impacts on the Lagoon
4.3. Expected Ecological Impacts on the Lagoon
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Cui, Y.; Shao, J. The role of groundwater in Arid/Semiarid Ecosystems, Northwest China. Groundw 2005, 42, 471–477. [Google Scholar] [CrossRef] [PubMed]
- Mencio, A.; Casamitjana, X.; Mas-Pla, J.; Coll, N.; Compte, J.; Martinoy, M.; Pascual, J.; Quintana, X.D. Groundwater dependence of coastal lagoons: The case of La Pletera salt marshes (NE Catalonia). J. Hydrol. 2017, 552, 793–806. [Google Scholar] [CrossRef]
- Stumpp, C.; Ekdal, A.; Gönenc, I.E.; Maloszewski, P. Hydrological dynamics of water sources in a Mediterranean lagoon. Earth Syst. Sci. 2014, 18, 4825–4837. [Google Scholar] [CrossRef] [Green Version]
- Kazuhisa, A.C.; Iwasaka, W.; Al Mamun, A.; Ohmori, K.; Yo-suke, I. The role of groundwater outflow in the water cycle of a coastal lagoon sporadically opening to the ocean. J. Hydrol. 2012, 423–430. [Google Scholar] [CrossRef]
- Wurl, J.; Imaz-Lamadrid, M.A. The hydrogeological conditions in the San José del Cabo basin, Baja California Sur, Mexico. Areas Nat. Prot. Scripta 2016, 2, 91–102. [Google Scholar] [CrossRef]
- Camacho-Ibar, V.F.; Rivera-Monroy, V.H. Coastal Lagoons and Estuaries in Mexico: Processes and Vulnerability. Estuaries Coasts 2014, 37, 1313–1318. [Google Scholar] [CrossRef] [Green Version]
- Felix, P.M.; Correia, M.J.; Chainho, P.; Costa, J.L.; Chaves, M.L.; Cruz, T.; Castro, J.J.; Mirra, C.; Domingos, I.; Silva, C.F.; et al. Impact of freshwater inputs on the spatial structure of benthic macroinvertebrate communities in two landlocked coastal lagoons. Hydrobiologia 2015, 758, 179–209. [Google Scholar] [CrossRef]
- Kløve, B.; Ala-Aho, P.; Bertrand, G.; Gurdak, J.J.; Kupfersberger, H.; Kværner, J.; Muotka, T.; Mykrä, H.; Preda, E.; Rossi, P.; et al. Climate change impacts on groundwater and dependent ecosystems. J. Hydrol. 2014, 518, 250–266. [Google Scholar] [CrossRef] [Green Version]
- Dussaillant, A.; Galdames, P.; Sun, C. Water level fluctuations in a coastal lagoon: El Yali Ramsar wetland, Chile. Desalination 2009, 246, 202–214. [Google Scholar] [CrossRef] [Green Version]
- Olmos-Martínez, E.; Arizpe-Covarrubias, O.; Contreras-Loera, M.R.; González-Ávila, M.E.; Casas-Beltrán, D.A. Public opinion and perception on the conservation of Estero San José del Cabo state ecological reserve. Vivat Academ. 2016, 135, 24–40. [Google Scholar] [CrossRef]
- Bello-Jiménez, B. Evaluación de la Influencia de la Oscilación Decadal del Pacífico (PDO) en la Lluvia de Verano y la Incidencia de Sistemas Tropicales en Baja California Sur, bajo el Efecto del Cambio Climático. Master’s Thesis, Autonomous University of Baja California Sur, La Paz, México, 2018. Available online: http://biblio.uabcs.mx/tesis/te3920.pdf (accessed on 15 September 2018).
- Cavazos, T.; Salinas, J.A.; Martínez, B.; Colorado, G.; De Gra, P.; González, R.; Conde, A.C.; Quintanar, A.; Santana, J.S.; Romero, R.; et al. Actualización de Escenarios de Cambio Climático para México, Como Parte de los Productos de la Quinta Comunicación Nacional; Instituto Nacional de Ecología y Cambio Climático: México city, México, 2013; 151p. Available online: http://atlasclimatico.unam.mx/inecc/Atlas_2_190215_documentacion.pdf (accessed on 29 October 2018).
- Vadillo-Romero, E.; Romero-Vadillo, I.G. Ciclones tropicales: Tendencias y potencial de afectación en Baja California Sur. In Baja California Sur Ante el Cambio Climático: Vulnerabilidad, Adaptación y Mitigación; Ivanova-Boncheva, A., Gamez, A.E., Eds.; PEACC-BCS: La Paz, México, 2013; Available online: http://www.uabcs.mx/secciones/descarga/archivo:CAMBIO_CLIMATICO_LIBRO.pdf (accessed on 2 September 2018).
- Pappa, A.; Dokou, Z.; Karatzas, P.G. Saltwater intrusion management using SWI2 model: Application in coastal aquifer Hersonissos, Crete, Greece. Desal. Water. Trat. 2017, 99, 49–58. [Google Scholar] [CrossRef]
- Wurl, J.; Gámez, A.E.; Ivanova, A.; Imaz-Lamadrid, M.A.; Hernández-Morales, P. Socio-hydrological resilience of an arid aquifer system, subject to changing climate and inadequate agricultural management: A case study from the Valley of Santo Domingo, México. J. Hydrol. 2018, 559, 486–498. [Google Scholar] [CrossRef]
- Yangxiao, Z.; Wenpeng, L. A review of regional groundwater flow modeling. Geosci. Front. 2011, 2, 205–214. [Google Scholar] [CrossRef] [Green Version]
- Huizar-Álvarez, R.; Hernández-García, G.; Carrillo-Rivera, J.J. Simulation of groundwater flow and the hydrological balance of the Tecocomulco Lagoon, Central México. Open Environ. Sci. 2009, 3, 1–13. [Google Scholar] [CrossRef]
- Sidiropoulos, P.; Mylopoulos, N.; Loukas, A. Reservoir-aquifer combined optimization for groundwater restoration: The case of lake Karla watershed, Greece. Water Util. J. 2016, 12, 17–26. [Google Scholar]
- Surinaidu, L.; Gurunadha, R.; Srinivasa, V.; Srinu, S. Hydrogeological and groundwater modeling studies to estimate groundwater inflows into the coal mines at different mine development stages using MODFLOW, Andhra Pradesh, India. Water. Resour. Ind. 2014, 7–8, 49–65. [Google Scholar] [CrossRef]
- Yicheng, G.; Ganming, L.; Schwartz, F.W. Quantifying the response time of a lake-groundwater interacting system to climatic perturbation. Water 2015, 7, 6598–6615. [Google Scholar] [CrossRef]
- Santoyo-Reyes, H. Manejo y Gestión de la Reserva Ecológica Estero San José. UABCS. 2008. Available online: http://intranet.cibnor.mx/investigacion/ramsar/presentaciones/06Jueves/13Academia/1330_Santoyo-SJC_RAMSAR2008.pdf (accessed on 15 September 2018).
- Arreguín-Rodríguez, G.; Schwennicke, T. Estratigrafía de la Margen Occidental de la Cuenca San José del Cabo, Baja California Sur; Boletín de la Sociedad Geológica Mexicana: Sociedad Geológica Mexicana: México City, México, 2013; Volume 65, pp. 481–496. Available online: http://boletinsgm.igeolcu.unam.mx/bsgm/vols/epoca04/6503/%284%29Arreguin.pdf (accessed on 15 September 2018).
- Martínez–Gutiérrez, G.; Sethi, P.S. Miocene–Pliocene sediments within the San Jose del Cabo Basin, Baja California Sur, Mexico. In Pliocene Carbonates and Related Facies Flanking the Gulf of California, Baja California, Mexico; Johnson, M.E., Ledesma–Vazquez, J., Eds.; Geological Society of America: Boulder, CO, USA, 1997; pp. 141–166. [Google Scholar]
- Busch, M.M.; Arrowsmith, R.J.; Umhoefer, P.J.; Coyan, J.A.; Maloney, S.J.; Gutiérrez-Martínez, G. Geometry and evolution of rift-margin, normal-fault-bounded basins from gravity and geology, La Paz-Los Cabos region, Baja California Sur, Mexico. Lithos 2011, 3, 110–127. [Google Scholar] [CrossRef]
- Martínez-Gutierrez, G.; Díaz-Gutierrez, J.J.; Cosio-González, O. Morphometric analysis of the San José del Cabo hydrologic basin, B.C.S: An approximation in the identification of potential capture areas. Rev. Mex. Cienc. Geol. 2010, 27, 581–592. [Google Scholar]
- Comisión Nacional del Agua (CONAGUA). Actualización de la Disponibilidad Media Anual de agua en el Acuífero San José del Cabo (0319), Estado de Baja California Sur; Comisión Nacional del Agua: México City, México, 2015. Available online: https://www.gob.mx/cms/uploads/attachment/file/102821/DR_0319.pdf (accessed on 15 September 2018).
- Comisión Nacional del Agua (CONAGUA). Database of Water Treatment Plants in Mexico [Dataset]; Comisión Nacional del Agua: México City, México, 2013.
- Pronatura Noroeste, A.C. (PRONATURA). Plan de Conservación del Estero San José del Cabo, B.C.S. PRONATURA, México. 2010. Available online: http://mexicobirdingtrail.org/wp-content/uploads/2013/06/Plan-de-Conservacion-ESJC_ver.2.pdf (accessed on 15 September 2018).
- Church, J.A.; Clark, P.U.; Cazenave, A.; Gregory, J.M.; Jevrejeva, S.; Levermann, A.; Merrifield, M.A.; Milne, G.A.; Nerem, R.S.; Nunn, P.D.; et al. Sea Level Change. In Climate Change: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013; Available online: https://www.ipcc.ch/pdf/assessment-report/ar5/wg1/WG1AR5_Chapter13_FINAL.pdf (accessed on 29 October 2018).
- Kirtman, B.; Power, S.B.; Adedoyin, J.A.; Boer, G.J.; Bojariu, R.; Camilloni, I.; Doblas-Reyes, F.J.; Fiore, A.M.; Kimoto, M.; Meehl, G.A.; et al. Near-term Climate Change: Projections and Predictability. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013; pp. 1137–1215. Available online: https://www.ipcc.ch/pdf/assessment-report/ar5/wg1/WG1AR5_Chapter11_FINAL.pdf (accessed on 29 October 2018).
- Vermeer, M.; Rahmstorf, S. Global sea level linked to global temperature. PNAS 2009, 106, 21527–21532. [Google Scholar] [CrossRef] [Green Version]
- Mundo-Molina, M. Climate Change Effects on Evapotranspiration in Mexico. Am. J. Clim. Chang. 2015, 4, 163–172. [Google Scholar] [CrossRef]
- Ojeda Bustamante, W.; Sifuentes-Ibarra, E.; Íñiguez-Covarrubias, M.; Montero-Martínez, M.J. Climate change impact on crop development and water requirements. Agrociencia 2011, 45, 1–11. [Google Scholar]
- Melillo, J.M.; Terese, R.; Gary, W.Y. Climate Change Impacts in the United States: The Third National Climate Assessment; U.S. Global Change Research Program: Washington, DC, USA, 2014. [Google Scholar] [CrossRef]
- Servicio Meteorológico Nacional (SMN). Rainfall Database of San José del Cabo Weather Station [Dataset]. 2015. Available online: http://smn.cna.gob.mx/tools/RESOURCES/estacion/EstacionesClimatologicas.kmz (accessed on 2 September 2018).
- UNISYS. Archival Hurricane Data from 1851 to 2017. 2018. Available online: http://weather.unisys.com/hurricanes (accessed on 1 September 2018).
- Winston, R.B. ModelMuse—A Graphical User Interface for MODFLOW-2005 and PHAST. In USGS Techniques and Methods 6–A29; U.S. Geological Survey: Reston, VA, USA, 2009. Available online: https://pubs.usgs.gov/tm/tm6A29 (accessed on 17 July 2018).
- Harbaugh, A.W.; Banta, E.R.; Hill, M.C.; McDonald, M.G. MODFLOW-2000, the U.S. Geological Survey Modular Ground-Water Model—User Guide to Modularization Concepts and the Ground-Water Flow Process; USGS Open-File Report 00-92; U.S. Geological Survey: Reston, VA, USA, 2000. [CrossRef]
- Shuwei, Q.; Xiujuan, L.; Changlai, X.; He, H.; Zhang, F.; Fengchao, L. Numerical simulation of groundwater flow in a river valley basin in Jillin urban area, China. Water 2015, 7, 5768–5787. [Google Scholar] [CrossRef]
- Comisión Nacional del Agua (CONAGUA). Database of Water Levels, Resistivity Data and Extraction Volumes for San José del Cabo Aquifer; [Dataset]; CONAGUA Dirección Local BCS: La Paz, Mexico, 2018.
- Servicio Geológico Mexicano (SGM). Geologic Map San José del Cabo F12-2-3-5-6. 2000. Available online: https://mapserver.sgm.gob.mx/Cartas_Online/geologia/24_F12-2-3-5-6_GM.pdf (accessed on 2 September 2018).
- Heath, R.C. Basic Groundwater Hydrology; USGS Water Supply Paper 2220; U.S. Geological Survey: Reston, VA, USA, 1983. [CrossRef]
- Domenico, P.A.; Miflin, M.D. Water from low-permeability sediments and land subsidence. Water Resour. Res. 1965, 1, 563–576. [Google Scholar] [CrossRef]
- Morris, D.A.; Johnson, A.I. Summary of Hydrologic and Physical Properties of Rock and Soil Materials, as Analyzed by the Hydrologic Laboratory of the U.S. Geological Survey. Contributions to the Hydrology of the United States. 1967. Available online: https://pubs.usgs.gov/wsp/1839d/report.pdf (accessed on 2 September 2018).
- Prudic, D.E.; Konikow, L.F.; Banta, E.R. A New Stream-Flow Routing (SFR1) Package to Simulate Stream-Aquifer Interaction with MODFLOW-2000: USGS Open-File Report 2004-1042; U.S. Geological Survey: Carson City, NV, USA, 2004. Available online: https://water.usgs.gov/nrp/gwsoftware/modflow2000/ofr2004-1042.pdf (accessed on 2 September 2018).
- Bakker, M.; Shaars, F.; Hughes, D.J.; Langevin, C.D.; Dausman, A.M. Documentation of Seawater Intrusion (SWI2) Package for MODFLOW; USGS Modeling Techniques Book 6; U.S. Geological Survey: Reston, VA, USA, 2013; 60p. Available online: https://pubs.usgs.gov/tm/6a46/tm6-a46.pdf (accessed on 28 February 2019).
- Hill, C.M. Methods and Guidelines for Effective Model Calibration, USGS Water-Resources Investigations Report 98-4005; US Geological Survey: Reston, VA, USA, 1998. [Google Scholar] [CrossRef]
- Wels, C.; Mackie, D.; Scibek, J. Guidelines for Groundwater Modeling to Assess Impacts of Proposed Natural Resource Development Activities; British Columbia Minister of Environment: Victoria, BC, Canada, 2012. Available online: http://www.env.gov.bc.ca/wsd/plan_protect_sustain/groundwater/groundwater_modelling_guidelines_final-2012.pdf (accessed on 1 September 2018).
Author | ∆R (%) | ∆ROFF (%) | ∆ETO (%) | ∆SL (%) |
---|---|---|---|---|
[30] | −10% RCP 4.5 2040 | 0 to 10% RCP 4.5 2040 | n/a | n/a |
[12] | −32% RCP 8.5 2040 −27% RCP4.5 2040 | n/a | n/a | n/a |
[13] | Increment (not quantified) | n/a | n/a | |
[11] | −57% 2040 | Increment (not quantified) | n/a | n/a |
[33] | n/a | n/a | +10% A1B 2100 | n/a |
[32] | n/a | n/a | +2 to +7% A1B 2030 | n/a |
[29] | n/a | n/a | n/a | +0.26–1.4 m RCP 2.5–8.5 2100 |
[31] | n/a | n/a | n/a | +0.75 B1 to 1.9 m A2 2100 |
Layer | Simulated Aquifer | Hydraulic Conductivity (m/d) | Specific Storage (m−1) | Specific Yield | Thickness (m) |
---|---|---|---|---|---|
1 | Alluvial deposits | 5.7 to 47.5 | 0.001 | 0.25 | 8–68 |
2 | Fine grain sandstones | 0.3 to 4.6 | 0.0002 | 0.21 | 8–70 |
3 | Siltstones, shales | 0.1 | 6 × 10−5 | 0.12 | 8–70 |
4 | Weathered granite | 0.001 | 1.6 × 10−6 | 0.06 | 20 |
5 | Fresh granite | 0.0001 | 1.6 × 10−6 | 0.001 | 20 |
Scenario | R (mm/year) | ROFF (1 X 106 m3) | ETO (mm/year) | SLR (m) |
---|---|---|---|---|
CUR40/CUR17 | 421.5 | 82.0 | 1573.0 | 0 |
CON40 | 379.3 | 90.2 | 1604.0 | 0.8 |
EXT40 | 273.9 | 98.4 | 1692.5 | 1.0 |
Scenario | RCH | IR | STR | HGF | WELLS | ∑In | ∑Out | Balance |
---|---|---|---|---|---|---|---|---|
CUR40_DRY | 0.1 | 2.2 | 0 | −4.2 | −9.4 | 2.3 | −13.6 | −11.3 |
CURO40_WET | 12.7 | 4.0 | 13.6 | −4.3 | −18.2 | 30.3 | −22.5 | 7.8 |
CUR40_ANUAL | 12.8 | 6.2 | 13.6 | −8.5 | −27.6 | 32.6 | −36.1 | −3.5 |
CON40_DRY | 0.1 | 2.1 | 0 | −4.1 | −9.4 | 2.2 | −13.5 | −11.3 |
CON40_WET | 11.8 | 4.1 | 13.5 | −4.2 | −18.2 | 29.4 | −22.4 | 7.0 |
CON40_ANUAL | 11.9 | 6.2 | 13.5 | −8.3 | −27.6 | 31.6 | −35.9 | −4.3 |
EXT40_DRY | 0.1 | 2.2 | 0.0 | −3.9 | −9.4 | 2.3 | −13.3 | −11.0 |
EXT40_WET | 8.6 | 4.0 | 13.6 | −4.0 | −18.2 | 26.2 | −22.2 | 4.0 |
EXT40_ANUAL | 8.7 | 6.2 | 13.6 | −7.9 | −27.6 | 28.5 | −35.0 | −6.5 |
Scenario | AWWD | HGI | R | ETO | HGO | SWO | ∑In | ∑Out | Balance |
---|---|---|---|---|---|---|---|---|---|
CUR17c | 478.0 | 94.6 | 500.8 | −745.9 | −249.1 | 0 | 1097.0 | −995.0 | 102.0 |
CUR17o | 478.0 | 94.6 | 500.8 | −745.9 | −249.1 | −199.8 | 1097.0 | −1194.9 | −97.8 |
CUR40c | 478.0 | 82.7 | 500.8 | −745.9 | −249.1 | 0 | 1061.5 | −995.0 | 66.5 |
CUR40o | 478.0 | 82.7 | 500.8 | −745.9 | −249.1 | −199.8 | 1061.5 | −1194.8 | −133.3 |
CON40c | 478.0 | 67.0 | 450.7 | −768.3 | −216.7 | 0 | 995.7 | −985.0 | 10.6 |
CON40o | 478.0 | 67.0 | 450.7 | −768.3 | −216.7 | −199.8 | 995.7 | −1184.8 | −189.1 |
EXT40c | 478.0 | 35.4 | 340.3 | −798.1 | −164.4 | 0 | 853.9 | −962.5 | −108.6 |
EXT40o | 478.0 | 35.4 | 340.3 | −798.1 | −164.4 | −199.8 | 853.8 | −1162.4 | −308.5 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Imaz-Lamadrid, M.A.; Wurl, J.; Ramos-Velázquez, E. Future of Coastal Lagoons in Arid Zones under Climate Change and Anthropogenic Pressure. A Case Study from San Jose Lagoon, Mexico. Resources 2019, 8, 57. https://doi.org/10.3390/resources8010057
Imaz-Lamadrid MA, Wurl J, Ramos-Velázquez E. Future of Coastal Lagoons in Arid Zones under Climate Change and Anthropogenic Pressure. A Case Study from San Jose Lagoon, Mexico. Resources. 2019; 8(1):57. https://doi.org/10.3390/resources8010057
Chicago/Turabian StyleImaz-Lamadrid, Miguel Angel, Jobst Wurl, and Ernesto Ramos-Velázquez. 2019. "Future of Coastal Lagoons in Arid Zones under Climate Change and Anthropogenic Pressure. A Case Study from San Jose Lagoon, Mexico" Resources 8, no. 1: 57. https://doi.org/10.3390/resources8010057
APA StyleImaz-Lamadrid, M. A., Wurl, J., & Ramos-Velázquez, E. (2019). Future of Coastal Lagoons in Arid Zones under Climate Change and Anthropogenic Pressure. A Case Study from San Jose Lagoon, Mexico. Resources, 8(1), 57. https://doi.org/10.3390/resources8010057