An Integrated Approach to the Biological Reactor–Sedimentation Tank System
Abstract
:1. Introduction
2. The “Biological Reactor–Clarifier” System as a Whole
- To modify the settling characteristics of the sludge by varying the coefficients in the settling velocity equation;
- To set input parameters (fitting of QR and QW) depending on the value of sludge concentration extracted from the clarified bottom (XR).
- The velocity field in the sedimentation tank;
- The distribution of suspended solids (SS) concentration in the sedimentation tank;
- The SS concentration trend at the bottom of the clarifier;
- The SS concentration trend in the outlet section;
- The SS concentration trend in the biological reactor.
3. Simulation of Sedimentation Process
3.1. Governing Equations
3.2. Computational Domain
3.3. Boundary Conditions
3.4. Solution Procedure
4. Model Results
4.1. Comparison of Predicted and Experimental Velocities
4.2. Settling Velocity of Suspended Solids
- case (a)
- (m/s) to simulate good settling characteristics of the sludge (experimental data 2007);
- case (b)
- (m/s) to simulate worse settling characteristics of the sludge (experimental data 2005).
4.3. Biological Reactor–Clarifier System
- No solids in the clarifier;
- Initial COD concentration in the reactor equal to 50 mg/l;
- Initial mixed liquor volatile suspended solids (MLVSS) concentration in the reactor equal to 2890 mg/l;
- Y = 0.45 mgVSS/mgCOD;
- Kd = 0.08 d−1;
- ks = 80 mgCOD/l;
- K = 2.0 d−1;
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Nomenclature
b = QR/Q | Recirculation ratio [-] |
C | Concentration [M·L−3] |
COD | Chemical oxygen demand [M·L−3] |
Dr | Coefficient of diffusivity (r direction) [L2·T−1] |
Dy | Coefficient of diffusivity (y direction) [L2·T−1] |
e | Nepero number [-] |
k | Empirical coefficient [-] |
l0 | Water head in the basin [L] |
MLVSS | Mixed liquor volatile suspended solids [M·L−3] |
MLSS | Mixed liquor suspended solids [M·L−3] |
p | Pressure [M ·T−2·L−1] |
Q | Inlet flowrate [L3·T−1] |
Qe=Q-Qw | Outlet flowrate (from biological reactor) [L3·T−1] |
QR | Return sludge flowrate [L3·T−1] |
Qw | Waste sludge flowrate [L3·T−1] |
r | Horizontal coordinate [L] |
r’g | Net growth of cells [T−1] |
rsu | Substrate utilization rate [T−1] |
S | Substrate concentration [M·L−3] |
S0 | Substrate concentration in inlet wastewater [M·L−3] |
SS | Suspended solids [M·L−3] |
TSS | Total suspend solids [M·L−3] |
T0=l0/u0 | Time interval [T] |
u | Mean velocity component (r direction) [L·T−1] |
u0 | Water inlet velocity [L·T−1] |
Mean velocity component (y direction) [L·T−1] | |
ve | Sludge extraction velocity [L·T−1] |
v0 | Stokes velocity [L·T−1] |
vs | Settling velocity [L·T−1] |
V | Aeration tank volume [L3] |
y | Vertical coordinate [L] |
X | Concentration of suspended solids in the aeration tank [M· L−3] |
Xe | Concentration of suspended solids in the effluent [M ·L−3] |
X0 | Inlet concentration of suspended solids [M· L−3] |
XR | Return sludge concentration [M· L−3] |
Δr, Δy | Mesh dimensions [L] |
ϕ=vC | Flow (y direction) [M·T−1· L−2] |
υt | Eddy viscosity coefficient [L2·T−1] |
ρ | Fluid density [M·L−3] |
σsr | Schmidt numbers (r direction) [-] |
σsy | Schmidt numbers (y direction) [-] |
References
- Takamatsu, T.; Naito, M.; Shiba, S.; Ueda, Y. Effects of deposit resuspension on settling basin. J. Environ. Eng. Div. 1974, 100, 883–903. [Google Scholar]
- Larsen, P. On the Hydraulic of Rectangular Settling Basins: Experimental and Theoretical Studies; Report n. 1001; Department of Water Resources Engineering, Lund Institute of Technology: Lund, Sweden, 1977. [Google Scholar]
- Abdel-Gawad, S.; McCorquodale, J. Numerical simulation of rectangular settling tanks. J. Hydraul. Res. 1985, 23, 85–100. [Google Scholar] [CrossRef]
- Wang, X.; Yang, L.; Sun, Y.; Song, L.; Zhang, M.; Cao, Y. Three-dimensional simulation on the water flow field and suspended solids concentration in the rectangular sedimentation tank. J. Environ. Eng. 2008, 134, 902–911. [Google Scholar] [CrossRef]
- Al-Sammarraee, M.; Chan, A.; Salim, S.M.; Mahabaleswar, U.S. Large-eddy simulations of particle sedimentation in a longitudinal sedimentation basin of a water treatment plant. Part I: Particle settling performance. J. Chem. Eng. 2009, 152, 315–321. [Google Scholar] [CrossRef]
- Gong, M.; Xanthos, S.; Ramalingam, K.; Fillos, J.; Beckmann, K.; Deur, A.; McCorquodale, J.A. Development of a flocculation sub-model for a 3-D CFD model based on rectangular settling tanks. Water Sci. Technol. 2011, 63, 213–219. [Google Scholar] [CrossRef]
- Schamber, D.R.; Larock, B.E. Numerical analysis of flow in sedimentation basins. Hydr. Div. ASCE 1981, 107, 575–591. [Google Scholar]
- Rodi, W. Turbulence models and their application in Hydraulics. A state–of–the–art review. NASA STI/Recon Tech. Rep. A 1980, 81, 1–115. [Google Scholar]
- Stamou, A.I.; Adams, E.W.; Rodi, W. Numerical modelling of flow and settling in primary rectangular clarifiers. J. Hydraul. Res. 1989, 27, 665–682. [Google Scholar] [CrossRef]
- Armbruster, M.; Krebs, P.; Rodi, W. Numerical modelling of dynamic sludge blanket behaviour in secondary clarifiers. Water Sci. Technol. 2001, 43, 173–180. [Google Scholar] [CrossRef] [PubMed]
- Kleine, D.; Reddy, B.D. Finite element analysis of flows in secondary settling tanks. Int. J. Numer. Method. Biomed. Eng. 2005, 64, 849–876. [Google Scholar] [CrossRef] [Green Version]
- Weiss, M.; Plósz, B.G.; Essemiani, K.; Meinhold, J. Suction-lift sludge removal and non-Newtonian flow behaviour in circular secondary clarifiers: Numerical modelling and measurements. J. Chem. Eng. 2007, 132, 241–255. [Google Scholar] [CrossRef]
- Tamayol, A.; Firoozabadi, B.; Ashjari, M. Hydrodynamics of secondary settling tanks and increasing their performance using baffles. J. Environ. Eng. 2009, 136, 32–39. [Google Scholar] [CrossRef]
- Patziger, M.; Kainz, H.; Hunze, M.; Jozsa, J. Influence of secondary settling tank performance on suspended solids mass balance in activated sludge systems. Water Res. 2012, 46, 2415–2424. [Google Scholar] [CrossRef]
- Xanthos, S.; Ramalingam, K.; Lipke, S.; McKenna, B.; Fillos, J. Implementation of CFD modeling in the performance assessment and optimization of secondary clarifiers: The PVSC case study. Water Sci. Technol. 2013, 68, 1901–1913. [Google Scholar] [CrossRef]
- Ramin, E.; Wagner, D.S.; Yde, L.; Binning, P.J.; Rasmussen, M.R.; Mikkelsen, P.S.; Plosz, B.G. A new settling velocity model to describe secondary sedimentation. Water Res. 2014, 66, 447–458. [Google Scholar] [CrossRef]
- Gao, H.; Stenstrom, M.K. Evaluation of three turbulence models in predicting the steady state hydrodynamics of a secondary sedimentation tank. Water Res. 2018, 143, 445–456. [Google Scholar] [CrossRef]
- Imam, E.; McCorquodale, J.A.; Bewtra, J.K. Numerical modelling of sedimentation tanks. J. Hydraul. Eng. 1983, 109, 1740–1754. [Google Scholar] [CrossRef]
- Adams, E.; Rodi, W. Modeling flow and mixing in sedimentation tanks. J. Hydraul. Eng. 1990, 116, 895–913. [Google Scholar] [CrossRef]
- Mazzolani, G.; Pirozzi, F. Modello numerico di sedimentazione per sospensioni con densità uniforme. Ingegneria Sanitaria 1995, 43, 15–33. [Google Scholar]
- Goula, A.M.; Kostoglou, M.; Karapantsios, T.D.; Zouboulis, A.I. A CFD methodology for the design of sedimentation tanks in potable water treatment case study: The influence of a feed flow control baffle. J. Chem. Eng. 2008, 140, 110–121. [Google Scholar] [CrossRef]
- DeVantier, B.A.; Larock, B.E. Modelling sediment-induced density currents in sedimentation basins. J. Hydraul. Eng. 1987, 113, 80–94. [Google Scholar] [CrossRef]
- Zhou, S.; McCorquodale, J.A.; Vitasovic, Z. Influence of skirt radius on performance of circular clarifier with density stratification. Int. J. Numer. Methods Fluids 1992, 14, 919–934. [Google Scholar] [CrossRef]
- Zhou, S.; McCorquodale, J.A.; Vitasovic, Z. Influences of density on circular clarifiers with baffles. J. Environ. Eng. 1992, 118, 829–847. [Google Scholar] [CrossRef]
- Al-Sammarraee, M.; Chan, A. Large-eddy simulations of particle sedimentation in a longitudinal sedimentation basin of a water treatment plant. Part 2: The effects of baffles. J. Chem. Eng. 2009, 152, 315–321. [Google Scholar] [CrossRef]
- Byonghi, L. Evaluation of Double Perforated Baffles Installed in Rectangular Secondary Clarifiers. Water 2017, 9, 407. [Google Scholar] [CrossRef]
- Mazzolani, G.; Pirozzi, F.; D’Antonio, G. A generalized settling approach in the numerical modelling of sedimentation tanks. Water Sci. Technol. 1998, 38, 95–102. [Google Scholar] [CrossRef]
- Zhou, S.; McCorquodale, J.A. Modelling of rectangular settling tanks. J. Hydraul. Eng. 1992, 118, 1391–1405. [Google Scholar] [CrossRef]
- Lyn, D.A.; Stamou, A.I.; Rodi, W. Density currents and shear-induced flocculation in sedimentation tanks. J. Hydraul. Eng. 1992, 118, 849–867. [Google Scholar] [CrossRef]
- Luciano, A.; Viotti, P.; Mancini, G.; Torretta, V. An integrated wastewater treatment system using a BAS reactor with biomass attached to tubolar supports. J. Environ. Manag. 2012, 113, 51–60. [Google Scholar] [CrossRef]
- Szalai, L.; Krebs, P.; Rodi, W. Simulation of flow in circular clarifiers with and without swirl. J. Hydraul. Eng. 1994, 120, 4–21. [Google Scholar] [CrossRef]
- Bertola, P. Campo di velocità e distribuzione della concentrazione del fango nella vasca di sedimentazione finale di un impianto di depurazione. Ingegneria Sanitaria 1980, 6, 318–332. [Google Scholar]
- Bretscher, U.; Krebs, P.; Hager, W.H. Improvement of flow in final settling tanks. J. Environ. Eng. 1992, 118, 307–321. [Google Scholar] [CrossRef]
- Torretta, V.; Ragazzi, M.; Trulli, E.; De Feo, G.; Urbini, G.; Raboni, M.; Rada, E.C. Assessment of biological kinetics in a conventional municipal WWTP by means of the oxygen uptake rate method. Sustainability 2014, 6, 1833–1847. [Google Scholar] [CrossRef]
Mass (kg) | Mass (kg) | |
---|---|---|
inlet | 36,000 | 36,000 |
inside tank | 22,694 | 33,427 |
outlet | 0.0662 | 39.97 |
extract | 16,104.49 | 2711.26 |
TOTAL | 38798 | 36178 |
Concentration (mg/l) | Concentration (mg/l) | |
---|---|---|
inside tank | 2922.26 | 4304.39 |
bottom | 7097.58 | 74,089.05 |
surface | 23.51 | 1103.43 |
Unit | Campaign 1 | Campaign 2 | Campaign 3 | |
---|---|---|---|---|
Q | m3/h | 2631 | 2662 | 2956 |
QR | m3/h | 3178 | 3180 | 2692 |
Qw | m3/d | 1680 | 1680 | 1680 |
θh | h | 3.20 | 3.82 | 3.39 |
b | 1.21 | 1.19 | from 1.20 to 0.9 |
Campaign 1 | Campaign 2 | Campaign 3 | |
---|---|---|---|
COD in P4 | 6.42% | 19.80% | 32.76% |
TSS in P2 | 6.06% | 2.51% | 2.60% |
TSS in P3 | 4.81% | 8.93% | 3.18% |
TSS in P4 | 9.17% | 3.50% | 21.97% |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Conserva, S.; Tatti, F.; Torretta, V.; Ferronato, N.; Viotti, P. An Integrated Approach to the Biological Reactor–Sedimentation Tank System. Resources 2019, 8, 94. https://doi.org/10.3390/resources8020094
Conserva S, Tatti F, Torretta V, Ferronato N, Viotti P. An Integrated Approach to the Biological Reactor–Sedimentation Tank System. Resources. 2019; 8(2):94. https://doi.org/10.3390/resources8020094
Chicago/Turabian StyleConserva, Serena, Fabio Tatti, Vincenzo Torretta, Navarro Ferronato, and Paolo Viotti. 2019. "An Integrated Approach to the Biological Reactor–Sedimentation Tank System" Resources 8, no. 2: 94. https://doi.org/10.3390/resources8020094
APA StyleConserva, S., Tatti, F., Torretta, V., Ferronato, N., & Viotti, P. (2019). An Integrated Approach to the Biological Reactor–Sedimentation Tank System. Resources, 8(2), 94. https://doi.org/10.3390/resources8020094