An Economic-Based Evaluation of Maize Production under Deficit and Supplemental Irrigation for Smallholder Farmers in Northern Togo, West Africa
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Data Collection
2.2. Stochastic Optimization of Irrigation Management Strategies
2.3. SCWPF Interpolation and Profit Optimization
- ➢
- Operation and maintenance (O&M) cost: These are associated with the daily running of the supply system (e.g., electricity for pumping, labor, repair materials, input costs for managing and operating storage and distribution); they often include administrative and other direct costs (e.g., internalized environmental and resource costs). They stand for the variable costs.
- ➢
- Capital costs: They include capital consumption (depreciation charges) and interest costs associated with infrastructure, reservoirs, and distribution systems. They represent fixed costs.
- ➢
- Opportunity costs: These address the fact that by consuming water, the user is depriving another user of the water; if that other user has a higher value for the water, then there are some opportunity costs experienced by society due to this misallocation of the resource.
- ➢
- Economic externalities: These include the positive or negative impacts of irrigation use upon other activities (e.g., pollution, salinization, upstream diversion, downstream recharge).
3. Results and Discussion
3.1. Evaluation of Irrigation Management Strategies
3.2. Profit Optimization
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- UN DESA. World Population Prospects: The 2017 Revision, Key Findings and Advance Tables; United Nations: New York, NY, USA, 2017. [Google Scholar]
- Liniger, H.; Mekdaschi Studer, R.; Hauert, C.; Gurtner, M. Sustainable Land Management in Practice: Guidelines and Best Practices for Sub-Saharan Africa; TerrAfrica, World Overview of Conservation Approaches and Technologies (WOCAT) and Food and Agriculture Organization of the United Nations (FAO): Rome, Italy, 2011; ISBN 9789250000000. [Google Scholar]
- Elliott, J.; Deryng, D.; Müller, C.; Frieler, K.; Konzmann, M.; Gerten, D.; Glotter, M.; Flörke, M.; Wada, Y.; Best, N.; et al. Constraints and potentials of future irrigation water availability on agricultural production under climate change. Proc. Natl. Acad. Sci. USA 2014, 111, 3239–3244. [Google Scholar] [CrossRef] [PubMed]
- Edgerton, M.D. Increasing Crop Productivity to Meet Global Needs for Feed, Food, and Fuel. Plant. Physiol. 2009, 149, 7–13. [Google Scholar] [CrossRef] [PubMed]
- Kotir, J.H. Climate change and variability in Sub-Saharan Africa: A review of current and future trends and impacts on agriculture and food security. Environ. Dev. Sustain. 2011, 13, 587–605. [Google Scholar] [CrossRef]
- Ministère de l’Environnement et des Ressources Forestières (MERF). Plan D’Action National d’Adaptation aux Changements Climatiques (PANA); MERF: Lome, Togo, 2009. (In French) [Google Scholar]
- Ogounde, L.; Abotchi, T. Quelques contraintes à la croissance Agricole dans la région des Savanes du Nord.-Togo. Bulletin de la Société Neuchâteloise de Geographie; Société Neuchâteloise de Geographie: Neuchâtel, Switzerland, 2003. (In French) [Google Scholar]
- Bolor, J.K. Analyse de l’état actuel de développement de l’irrigation au Togo. In Proceedings of the Irrigation in West Africa: Current Status and a View to the Future, 1–2 December 2010; Namara, R.E., Sally, H., Eds.; International Water Management Institute (IWMI): Colombo, Sri Lanka; Ouagadougou, Burkina Faso, 2010; pp. 305–312. [Google Scholar]
- Jalloh, A.; Nelson, G.C.; Thomas, T.S.; Zougmoré, R.; Roy-Macauley, H. West. African Agriculture and Climate Change: A Comprehensive Analysis; IFPRI Research Monograph; International Food Policy Research: Washington, DC, USA, 2013. [Google Scholar]
- Pereira, L.S. Higher performance through combined improvements in irrigation methods and scheduling: A discussion. Agric. Water Manag. 1999, 40, 153–169. [Google Scholar] [CrossRef]
- Djaman, K.; Irmak, S.; Rathje, W.R.; Martin, D.L.; Eisenhauer, D.E. Maize evapotranspiration, yield production functions, biomass, grain yield, harvest index, and yield response factors under full and limited irrigation. Am. Soc. Agric. Biol. Eng. 2013, 56, 273–293. [Google Scholar]
- English, M. Deficit Irrigation. I: Analytical Framework. J. Irrig. Drain. Eng. 1990, 116, 399–412. [Google Scholar] [CrossRef]
- English, M.; Raja, S.N. Perspectives on deficit irrigation. Agric. Water Manag. 1996, 32, 1–14. [Google Scholar] [CrossRef]
- Schütze, N.; De Paly, M.; Shamir, U. Novel simulation-based algorithms for optimal open-loop and closed-loop scheduling of deficit irrigation systems. J. Hydroinform. 2012, 14, 136–151. [Google Scholar] [CrossRef]
- Kloss, S.; Pushpalatha, R.; Kamoyo, K.J.; Schütze, N. Evaluation of Crop Models for Simulating and Optimizing Deficit Irrigation Systems in Arid and Semi-arid Countries Under Climate Variability. Water Resour. Manag. 2012, 26, 997–1014. [Google Scholar] [CrossRef]
- Semenov, M.A. Development of high-resolution UKCIP02-based climate change scenarios in the UK. Agric. For. Meteorol. 2007, 144, 127–138. [Google Scholar] [CrossRef]
- Brumbelow, K.; Georgakakos, A. Consideration of Climate Variability and Change in Agricultural Water Resources Planning. J. Water Resour. Plan. Manag. 2007, 133, 275–285. [Google Scholar] [CrossRef]
- Schütze, N.; Schmitz, G.H. OCCASION: New Planning Tool for Optimal Climate Change Adaption Strategies in Irrigation. J. Irrig. Drain. Eng. 2010, 136, 836–846. [Google Scholar] [CrossRef]
- Gadédjisso-Tossou, A.; Avellán, T.; Schütze, N. Potential of Deficit and Supplemental Irrigation under Climate Variability in Northern Togo, West Africa. Water 2018, 10, 1803. [Google Scholar] [CrossRef]
- Iqbal, M.A.; Shen, Y.; Stricevic, R.; Pei, H.; Sun, H.; Amiri, E.; Penas, A.; del Rio, S. Evaluation of the FAO AquaCrop model for winter wheat on the North China Plain under deficit irrigation from field experiment to regional yield simulation. Agric. Water Manag. 2014, 135, 61–72. [Google Scholar] [CrossRef]
- Steduto, P.; Hsiao, T.C.; Raes, D. Crop. Yield Response to Water. FAO Irrigation and Drainage Paper No 66; Food and Agriculture Organization of the United Nations: Rome, Italy, 2012; ISBN 9789251072745. [Google Scholar]
- Vanuytrecht, E.; Raes, D.; Steduto, P.; Hsiao, T.C.; Fereres, E.; Heng, L.K.; Garcia Vila, M.; Mejias Moreno, P. AquaCrop: FAO’s crop water productivity and yield response model. Environ. Model. Softw. 2014, 62, 351–360. [Google Scholar] [CrossRef]
- Ali, E. A review of agricultural policies in independent Togo. Int. J. Agric. Policy Res. 2017, 5, 104–116. [Google Scholar]
- Institut Togolais de Recherche Agronomique (ITRA). Bien Cultiver et Conserver le Maïs. Collection Brochures et Fiches Techniques; ITRA: Lomé, Togo, 2008. (In French) [Google Scholar]
- Kottek, M.; Grieser, J.; Beck, C.; Rudolf, B.; Rubel, F. World Map of the Köppen-Geiger climate classification updated. Meteorol. Z. 2006, 15, 259–263. [Google Scholar] [CrossRef]
- Desplat, A.; Rouillon, A. Diagnostic Agraire Dans la Région des Savanes au Togo: Cantons de Nioukpourma, Naki-Ouest et Tami. Master de Recherche, Institut des Sciences et Industries du Vivant et de L’environnement; AgroParisTech: Paris, France, 2011. (In French) [Google Scholar]
- NASA. NASA-Agroclimatology Methodology. These Data were Obtained from the NASA Langley Research Center POWER Project Funded through the NASA Earth Science Directorate Applied Science Program. Available online: https://power.larc.nasa.gov/data-access-viewer/ (accessed on 10 September 2017).
- Semenov, M.A.; Brooks, R.J.; Barrow, E.M.; Richardson, C.W. Comparison of the WGEN and LARS-WG stochastic weather generators for diverse climates. Clim. Res. 1998, 10, 95–107. [Google Scholar] [CrossRef]
- Didjeira, A.; Adourahim, A.A.; Sedzro, K. Situation de Référence Sur Les Principales Céréales Cultivées au Togo: Maïs, Riz, Sorgho, Mil; Institut Togolais de Recherche Agronomique (ITRA): Lomé, Togo, 2007. (In French) [Google Scholar]
- Worou, S.; Saragoni, H. La Culture du Maïs de Contre Saison Est-Elle Possible au Togo Meridional? Premières Conclusions D’une Experimentation Sur la Station de Recherche Agronomique D’ativémé; Institut français de recherche scientifique pour le développement en coopération (ORSTOM): Lomé, Togo, 1988. (In French) [Google Scholar]
- Griessbach, U.; Stange, P.; Schütze, N. An economic-based estimation of irrigation water demand. In WIT Transactions on Ecology and the Environment; WIT Press: Southampton, UK; Billerica, MA, USA, 2014; Volume 185, pp. 45–53. [Google Scholar]
- Kiani, A.R. Optimizing Water Consumption Using Crop Water Production Functions. In Crop Production Technologies; Sharma, P., Abrol, V., Eds.; IntechOpen: Rijeka, Croatia, 2012; Chapter 4. [Google Scholar]
- Rogers, P.; Bhatia, R.; Huber, A. Water as a Social and Economic Good: How to Put the Principle into Practice; Global Water Partnership (GWP): Stockholm, Sweden, 1998. [Google Scholar]
- Perret, S.; Geyser, M. The full financial costs of irrigation services: A discussion on existing guidelines and implications for smallholder irrigation in South Africa. Water SA 2007, 33, 67–78. [Google Scholar] [CrossRef]
- Tardieu, H.; Préfol, B. Full cost or “sustainability cost” pricing in irrigated agriculture. Charging for water can be effective, but is it sufficient? Irrig. Drain. 2002, 51, 97–107. [Google Scholar] [CrossRef]
- Perry, E. Low-Cost Irrigation Technologies for Food Security in Sub-Saharan Africa. Available online: http://www.fao.org/docrep/w7314e/w7314e0o.htm#improved manual irrigation technologies (accessed on 7 October 2018).
- Direction des Statistiques Agricoles de L’informatique et de la Documentation (DSID) Filière Vivrière Niveau Region: Rendement Maïs, Savanes au Togo. Available online: http://togo.opendataforafrica.org/aevgmb/filière-vivrière-niveau-region (accessed on 31 August 2018).
- Assefa, S.; Biazin, B.; Muluneh, A.; Yimer, F.; Haileslassie, A. Rainwater harvesting for supplemental irrigation of onions in the southern dry lands of Ethiopia. Agric. Water Manag. 2016, 178, 325–334. [Google Scholar] [CrossRef]
- Chauhan, C.P.S.; Singh, R.B.; Gupta, S.K. Supplemental irrigation of wheat with saline water. Agric. Water Manag. 2008, 95, 253–258. [Google Scholar] [CrossRef]
- Fox, P.; Rockström, J. Supplemental irrigation for dry-spell mitigation of rainfed agriculture in the Sahel. Agric. Water Manag. 2003, 61, 29–50. [Google Scholar] [CrossRef]
- Wakchaure, G.C.; Minhas, P.S.; Ratnakumar, P.; Choudhary, R.L. Optimising supplemental irrigation for wheat (Triticum aestivum L.) and the impact of plant bio-regulators in a semi-arid region of Deccan Plateau in India. Agric. Water Manag. 2016, 172, 9–17. [Google Scholar] [CrossRef]
- Bell, J.M.; Schwartz, R.; McInnes, K.J.; Howell, T.; Morgan, C.L.S. Deficit irrigation effects on yield and yield components of grain sorghum. Agric. Water Manag. 2018, 203, 289–296. [Google Scholar] [CrossRef]
- Greaves, G.E.; Wang, Y.-M. Effect of regulated deficit irrigation scheduling on water use of corn in southern Taiwan tropical environment. Agric. Water Manag. 2017, 188, 115–125. [Google Scholar] [CrossRef]
- Hergert, G.W.; Margheim, J.F.; Pavlista, A.D.; Martin, D.L.; Isbell, T.A.; Supalla, R.J. Irrigation response and water productivity of deficit to fully irrigated spring camelina. Agric. Water Manag. 2016, 177, 46–53. [Google Scholar] [CrossRef]
- Kifle, M.; Gebretsadikan, T.G. Yield and water use efficiency of furrow irrigated potato under regulated deficit irrigation, Atsibi-Wemberta, North Ethiopia. Agric. Water Manag. 2016, 170, 133–139. [Google Scholar] [CrossRef]
- Li, X.; Kang, S.; Zhang, X.; Li, F.; Lu, H. Deficit irrigation provokes more pronounced responses of maize photosynthesis and water productivity to elevated CO2. Agric. Water Manag. 2018, 195, 71–83. [Google Scholar] [CrossRef]
- Mustafa, S.M.T.; Vanuytrecht, E.; Huysmans, M. Combined deficit irrigation and soil fertility management on different soil textures to improve wheat yield in drought-prone Bangladesh. Agric. Water Manag. 2017, 191, 124–137. [Google Scholar] [CrossRef]
Irrigation Management Strategies | Type of Irrigation System | |||
---|---|---|---|---|
No Irrigation | Supplemental Irrigation | Conventional Irrigation | ||
Limited supply | Uncontrolled | NI | – | – |
Controlled | – | CDI | CDI | |
Full supply | Controlled | – | FI | FI |
Application scenarios | Wet season (WS) | x | x | – |
Dry season (DS) | – | – | x |
Expected Profit (US$/ha) | Water Lifting Options | ||
---|---|---|---|
Rope and Bucket | Treadle Pump | Motorized Pump | |
90% yield reliability | 38.07 * | 95.09 | −101.56 |
50% yield reliability | 54.88 | 111.30 | −84.47 |
10% yield reliability | 78.11 | 133.35 | −60.68 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gadedjisso-Tossou, A.; Avellán, T.; Schütze, N. An Economic-Based Evaluation of Maize Production under Deficit and Supplemental Irrigation for Smallholder Farmers in Northern Togo, West Africa. Resources 2019, 8, 175. https://doi.org/10.3390/resources8040175
Gadedjisso-Tossou A, Avellán T, Schütze N. An Economic-Based Evaluation of Maize Production under Deficit and Supplemental Irrigation for Smallholder Farmers in Northern Togo, West Africa. Resources. 2019; 8(4):175. https://doi.org/10.3390/resources8040175
Chicago/Turabian StyleGadedjisso-Tossou, Agossou, Tamara Avellán, and Niels Schütze. 2019. "An Economic-Based Evaluation of Maize Production under Deficit and Supplemental Irrigation for Smallholder Farmers in Northern Togo, West Africa" Resources 8, no. 4: 175. https://doi.org/10.3390/resources8040175
APA StyleGadedjisso-Tossou, A., Avellán, T., & Schütze, N. (2019). An Economic-Based Evaluation of Maize Production under Deficit and Supplemental Irrigation for Smallholder Farmers in Northern Togo, West Africa. Resources, 8(4), 175. https://doi.org/10.3390/resources8040175