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Abstract: Lipids are emerging as important potential targets for the early diagnosis and prognosis of
several inflammatory diseases. Studying the lipid profiles is important for understanding cellular
events such as low-grade inflammation, a condition common to many human diseases, including
cancer, neurodegenerative diseases, diabetes, and obesity. This work aimed to explore lipid signatures
in an inflammation cellular model using an advanced bioanalytical approach complemented by
Machine Learning techniques. Analyses based on the high-resolution mass spectrometry of extracted
lipids in TNF-α inflamed cells (R3/1 NF-κB reporter cells) versus lipids in control cells resulted in
469 quantified lipids, of which 20% were phosphatidylcholines (PCs) and phosphatidylethanolamines
(PEs), 10% were sphingomyelins (SMs), 6% were phosphatidylinositols (PIs), 7% were ceramides
(Cer), 6% were phosphatidylglycerols (PGs), and 5% were phosphatidylserines (PSs). TNF-α induced
a significant alteration compared to the control, with a fold change higher than 1.5; of the 88 lipids,
71 were upregulated and 17 were downregulated, impacting various pathways as revealed by network
analyses. To validate the inflammation model, the TNF-α induced cells were treated with polyphenols
from thinned young apples (TAPs), which are known to have anti-inflammatory properties. The
dysregulation of ceramides (Cer(d18:1/23:0), Cer(d18:1/23:0), and Cer(d18:1/22:0)) observed in
TNF-α inflamed cells was completely reverted after TAP treatment. Network analyses showed
the alteration of arachidonic acid and TNF signaling, which were modulated by polyphenols from
thinned young apples. The results highlighted the potentiality of the inflammatory model and the
bioanalytical approach to describe lipid profiles in complex biological matrices and different states.
In addition, the quantified lipids were interpreted by an Artificial Intelligence approach to identify
relevant signatures and clusters of lipids that can impact cellular states. Lastly, this study underlines
both the potential applications of lipidomics combined with Machine Learning and how to build and
validate Machine Learning models to predict inflammation based on lipid-related pattern signatures.

Keywords: untargeted lipidomics; machine learning; artificial intelligence; lipid signatures; inflam-
mation; polyphenols from apple by-products; ceramides

1. Introduction

Inflammation is a complex biological response involved in multiple signal path-
ways, including nuclear transcription factor kappa-B (NF-κB) and mitogen-activated pro-
tein kinases (MAPKs). The activation of transcription factors like NF-κB and activator
protein-1 (AP-1) leads to the transcription of specific genes, resulting in the production of
pro-inflammatory cytokines such as interleukin (IL)-6 and tumor necrosis factor (TNF)-α,
as well as inflammatory mediators like inducible NO synthase (iNOS) and cyclooxygenase
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(COX)-2. Moreover, inflammation is a rather intricate network of cellular and molecular
events, at the core of which is a plethora of pre-formed or newly synthesized mediators.
Endogenous lipids are arguably the most important mediators implicated in all phases of
inflammation and the regulation and fine-tuning of its course and cessation. Indeed, lipids
are the major constituents of cell membranes, very efficient energy sources, and key patho-
physiological mediators of several intercellular and intracellular processes. The changes
in lipids and lipoproteins that occur during inflammation are part of the innate immune
response. They, therefore, are likely important for protection from the detrimental effects of
inflammatory stimuli [1,2]. A better understanding of inflammatory response pathways
and molecular mechanisms will undoubtedly contribute to improving the prevention and
treatment of inflammatory diseases. While, to date, different markers have been used to di-
agnose acute inflammation, i.e., protein C, only a few lipids are employed as signatures for
mild inflammation (inflammaging). In addition, to address the limitations associated with
the bias in quantifying single biomarkers, identifying a set of lipid-related pathways linked
to inflammaging could provide a robust strategy for phenotyping cellular inflammation
models, potentially applicable for studying large patient cohorts and evaluating natural
molecules in vivo [3]

To advance this field, our study employs an integrated approach combining lipidomics
with Machine Learning (ML) and Artificial Intelligence (AI) techniques. This innovative
method aims to identify lipid signatures and clusters potentially useful for the prognosis,
diagnosis, and prediction of inflammatory conditions. Untargeted lipidomics based on
high-resolution mass spectrometry was employed to determine significant changes in
lipid composition in an engineered cellular model featuring a gene reporter for NF-κB,
stimulated by TNF-αas an inflammatory inducer. Then, AI-based bioinformatics, as an
emerging tool suitable for extracting meaningful information from complex and multidi-
mensional datasets, supports (1) the identification of lipid signatures and clusters obtained
by lipidomics and AI-clustering (i.e., unsupervised AI approaches to organizing data in
sub-groups based on similar features automatically) and (2) the validation of the identified
clusters of lipids by simulating a large dataset of cells to compute the accuracy of a subset
of important lipids in predicting the cellular condition [4,5].

Furthermore, our methodological approach evaluates the anti-inflammatory activity
of natural extracts containing polyphenols. Considering the well-known health benefits of
food-derived polyphenols as a source of bioactive compounds effective against inflam-
mation and oxidative stress [6], there is growing scientific interest in reusing by-products
from processing waste from agri-food supply chains. Specifically, thinned apples
(i.e., a waste product particularly rich in polyphenols) represent a valuable source of
natural compounds that may be applied as a food supplement and/or functional ingredi-
ent for treating chronic inflammatory diseases [7]. Some studies report the beneficial effect
of dietary polyphenols by modulating lipid metabolism, i.e., the sphingolipid-mediated
mechanisms [8,9]. Moreover, polyphenol-rich beverage consumption affects the param-
eters of lipid metabolism in healthy subjects [10]. Since fewer studies on polyphenol’s
health benefits on lipid metabolism are available, a deep investigation is carried out in
this paper. Overall, integrating AI and ML in lipidomics, corroborated by network analy-
ses, offers opportunities to accelerate research, enhance data analysis, and uncover new
insights into lipid biology and its implications for health and disease. This approach sig-
nificantly advances our understanding of lipid-related processes and their implications
across various research areas and applications. Although it is still evolving, such integrated
research paves the way for innovative strategies in diagnosing and managing inflammatory
conditions, particularly within the realm of personalized medicine. This underscores the dy-
namic landscape of biomedical research and the potential for technology-driven solutions
in healthcare.
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2. Materials and Methods
2.1. Chemicals

R3/1 NF-κB reporter cell lines, glutamine, and penicillin/streptomycin antibiotics
were purchased from Lonza Bioscience. Dulbecco’s Modified Eagle’s Medium (DMEM),
trypsin-EDTA 0.5% 10×, and sodium pyruvate were obtained from Gibco® (Thermo
Fisher Scientific, Bremen, Germany). Fetal Bovine Serum (FBS) and phosphate-buffered
saline (PBS) were obtained from Euroclone® (Milan, Italy). Methanol (MeOH), acetonitrile
(MeCN), 2-propanol (i-PrOH), and formic acid (FA) (all ULC/MS-CC/SRATIO grade) were
purchased from Biosolve (Valkenswaard, The Netherlands). Methyl-tert-butyl-ether (≥99%,
MTBE) and ammonium format (NH4HCO2) MS grade were purchased from Sigma-Aldrich
(Taufkirchen, Germany). SPLASH® LIPIDOMIX® Mass Spec Standard was purchased from
Avanti Polar Lipids Inc. (Alabaster, AL, USA). In-house water purification was performed
using a PureLab Ultra Analytic System (ELGA Lab Water, Celle, Germany), achieving a
resistance >18 MΩ·cm−1 and a total organic content of <10 ppb.

2.2. Cell Culture and Treatment

R3/1 NF-κB cells (5000 cells/well) were cultured as a monolayer in a complete
medium containing DMEM 10% FBS, 1% L-glutamine, and 1% penicillin/streptomycin at
37 ◦C in a humidified atmosphere of 5% CO2. Then, cells were stimulated for 24 h with
10 ng/mL TNF-α. The concentration of TNF-α selected in this study was 10 ng/mL because
it is considered the optimal functional concentration of TNF-α in many cell types and in
experimental studies [7]. Three untreated flasks were used as the control, and 10 µM of
rosiglitazone was used as a positive control [11]. The cells were seeded in T-75 flasks and
were treated in biological triplicate with 200 µg/mL of extract of thinned apples with a
polyphenol content of 48 mg/100 g, as determined by the Folin–Ciocalteu colorimetric test,
where its composition was investigated in [7]. The viability of the cells was evaluated using
the MTT reduction assay (Sigma-Aldrich) and Real Time Glo-MT kit assay (Promega), as
previously described [2].

2.3. Sample Preparation

Once treated, all the cells were trypsinized (2 mL of trypsin-EDTA 0.5% 1:10 v/v in
PBS), transferred to Eppendorf tubes, and pelleted in cold PBS by two cycles of centrifuge
(400× g, 4 ◦C for 5 min); then, the supernatant was removed. Briefly, 500 µL of antioxidant
buffer (0.1% w/v butylated hydroxytoluene, BHT in water) was used for the resuspension,
and the solution was transferred to a new tube. Another 500 µL of the same buffer was
added to wash the old tube and pull it together, followed by centrifugation (10 min, 4 ◦C,
and 1000× g) and the discharge of the supernatant. To normalize the extraction volumes,
the final resuspension (0.1% w/v BHT in water) was performed according to the cell number
for each sample, at 0.030 × 105 cells/µL. Appropriate volumes corresponding to 50 ug of
proteins were subjected to lipid extraction.

2.4. Lipid Extraction by MTBE

A total of 50 µL of resuspended pellet was quickly spiked with 5 µL of SPLASH®

LIPIDO-MIX® (Internal Standard, ISTD) and left on ice for 15 min. Lipid extraction was
performed using the standard MTBE protocol, with MTBE/methanol/water (10:3:2.5,
v/v/v) as the extraction solvent ratio [12]. All solvents contained BHT 0.1% w/v to prevent
unwanted oxidation. Briefly, 375 µL of MeOH was added to each sample and vortexed for
5 s. Then, 1250 µL of MTBE was added, followed by 5 s of vortexing and incubation (1 h,
4 ◦C, and 210 rpm). The phase separation was induced by adding 315 µL of H2O, followed
by 5 s of vortexing and 10 min of incubation (4 ◦C and 210 rpm). Once centrifugated
(4 ◦C, 10 min, and 2000× g), the upper phase was collected in a new tube. The re-extraction
was performed through 323 µL MTBE, 96.8 µL MeOH, and 80.7 µL H20 (all spiked with
0.1% w/v BHT in H20) followed by centrifugation (4 ◦C, 10 min, and 2000× g). The
upper phases were pulled together and dried under vacuum (Eppendorf concentrator 5301,



Cosmetics 2024, 11, 140 4 of 16

1 mbar). Before the LC-MS analyses, lipid extracts were dissolved in 100 µLi-PrOH and
vortexed. Total quality control samples (QCs, n = 3) were obtained by mixing 10 µL each,
and group pool samples (n = 3, i.e., wild-type, Wt; inflamed, Inf; and inflamed treated
with thinned apple polyphenols, Inf_TAP) were obtained by mixing 5 µL of 3 biological
replicates. The QC sample was used to optimize the following chromatographic, mass
spectrometric analysis, and data annotation.

2.5. Mass Spectrometry for Untargeted Analysis of Lipidome

All samples were analyzed at UNITECH OMICs (University of Milano, Italy) using an
ExionLC™ AD system (SCIEX) connected to a TripleTOF™ 6600 System (SCIEX) equipped
with a Turbo V™ Ion Source and an ESI Probe. Chromatographic separation was achieved
on a Kinetex® EVO C18 (Phenomenex) 100 (Length) × 2.1 mm (ID) × 1.7 µm (Particle
Size) using mobile phase A (H2O/ACN (60/40, v/v, with ammonium acetate 10 mM and
0.1% formic acid) and mobile phase B (i-PrOH/ACN (90/10, v/v, with ammonium acetate
10 mM and 0.1% formic acid) at a flow rate of 400 µL/min. The column and temperatures
were set to 45 ◦C. The sample injection volume was 5 µL. The elution gradient was set as
follows: 0–2 min (45% B), 2–12 min (45–97% B), 12–17 min (97% B), 17–17.10 min (97–45%
B), and 17.10–20 min (45% B). MS spectra were collected over an m/z range of 140–1500 Da,
operating in an IDA® mode (Information Dependent Acquisition). Collision energy was set
to 35 (CES 15) (polarity: positive/negative). Three technical replicates (LC-MS/MS runs)
were performed. Raw LC-HRMS files of all samples were first imported into MS-DIAL
4.8 (http://prime.psc.riken.jp/compms/msdial/main.html, 1 April 2023) [13], followed by
manual annotation and integration, for peak detection, deconvolution, and alignment. A
linear-weighted moving average was used as the default for peak detection to determine
the peak left and right edges accurately. The next step matched features with the integrated
MS2 spectral Lipidblast database using the corresponding predicted fragment ions in
MS-DIAL. MS1 and MS2 tolerance was fixed at 0.01 Da and 0.025 Da, respectively. To avoid
false positives, the identification score cut-off was set to 80%. Peak intensities were aligned
across QC samples as reference files, followed by additional manual curation for the correct
peak integrations. The retention time tolerance was fixed at 0.05 min with MS1 tolerance
at 0.015 Da. The stability of the lipidomic method was evaluated by analyzing 6 replicate
QC samples in both positive and negative ionization. The carry-over was controlled by
regularly measured blank samples and registration of standard signals. Unknown entries
were removed from the identifications. According to the guidelines of the Lipidomics
Standards Initiative, a level 2 quantitation was performed for representative lipid classes
based on spiked deuterium-labeled internal standards with known concentrations. In brief,
Cers were normalized by Cer(d18:1/17:0); CEs, DGs, and TGs were normalized by TG
15:0/18:1(d7)_15:0; LPCs were normalized by LPC 18:1(d7); LPE and LPE-O were normal-
ized by LPE 18:1(d7); PCs and PC-O were normalized by PC 15:0/18:1(d7); PEs, PE-O, PE-S,
were normalized by PE 15:0_18:1(d7); PGs were normalized by PG 15:0/18:1(d7); and PIs
were normalized by PI 15:0/18:1(d7). The minor classes, such as CAL and NAE, were not
normalized with IS. The quantified lipids from positive and negative were merged into a
single dataset, as reported in Table S1. TG was detected as [M+NH4]+, Cers were identi-
fied in positive runs as [M+Na]+, [M+H]+, and [M+H-H2O]+, whereas PIs and PGs were
detected as [M-H]−. Some lipids were annotated in both positive and negative runs (for
example, phosphatidylcholines and sphingomyelin were detected as protonated molecular
species ([M+H]+) in the positive ion mode and as adducts [M+HCOO]− in the negative
ion mode).

Relative quantification was based on the determination of the Area Under the Curve
(AUC) for each lipid correctly identified and then normalized by the AUC of the used ISTD
to the corresponding lipid species and the original cell number. Normalized peak intensities
were then exported to Excel for statistical analysis using MetaboAnalyst version 5.0.

http://prime.psc.riken.jp/compms/msdial/main.html
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2.6. Statistical and Networking Data Analysis

MetaboAnalyst v 5.0 online software (https://www.metaboanalyst.ca/, 1 April 2023),
coupled with a Pareto scale (mean-centered and divided by the square root of the
standard deviation of each variable) prior to Principal Component Analysis (PCA) [14],
was used to perform statistical analyses (p-value < 0.05, fold change > 2, FDR) [15].
Log2ratio, a statistical measure used in lipidomics to compare the relative abundance
of lipids between two different conditions and z-scores and to predict the activation or
inhibition of biological pathways or functions based on the observed expression pat-
terns of lipids in the IPA knowledge database, was employed. Lipids showing significant
changes were identified with unique IDs corresponding to the human metabolome database
(HMDB) and subjected to network analysis using Ingenuity Pathways Analysis software
(IPA, Qiagen, version 21/03/24).

2.7. AI, ML, Monte Carlo, and ROC Analyses

Python was used to validate the detected relevant clusters of lipids to develop a
program to simulate a large dataset of cells using the Monte Carlo method [16]. The

number of Monte Carlo iterations was determined by using the formula
[

3∗dev_std(x)
avg(x) ∗0.05)

]2
,

where x is the starting dataset of each lipid under study. We assumed a normal distribution
for the simulated cells. The simulated cells were used as a training set of an ML algorithm
(based on univariate logistic regression functions [17] and the Scikit-learn package in
Python) to predict the cell condition (i.e., wild-type, inflamed, and inflamed with treatment)
from the observation of the peak normalized intensity of each lipid under study. Each
simulated dataset was partitioned into training, test, and validation sets by following the
rule of 60%, 20%, and 20%. The Receiver Operating Characteristic Curve (ROC) and the
ROC-related Area Under the Curve (AUC) scores were computed to evaluate the accuracy
of our ML model in predicting the cell conditions.

3. Results and Discussion
3.1. Setup of Analytical Method of Lipid Analysis

The metabolism alteration and unbalanced biosynthesis of lipids are involved in the
pathogenesis and clinical course of chronic inflammation diseases [18]. The aims of this
work were to first develop an untargeted HPLC-TripleTOF method for lipid identification,
followed by an integrated lipid signature prediction by AI and feature-based molecular
network analysis. The lipidomics study aimed to (i) select an appropriate cellular in vitro
model as R3/1 NF-κB reporter cells to study the inflammation under external stimuli of
inflammation, (ii) apply AI to identify clusters of lipid signatures and ML models able to
predict the cell’s conditions, (iii) investigate the potential role of thinned apple polyphenols
(TAPs) on inflamed R3/1 NF-κB reporter cells, and (iv) cover novel insights into lipid
metabolism, lipid signaling pathways, and lipid–lipid interactions by network analysis.
The engineered cell line, with the gene reporter for NF-κB, was employed as an in vitro
model to investigate the inflammation when TNF-α, a potently pro-inflammatory cytokine,
was used as an inflammatory inducer. The same cellular model was then used to probe
the anti-inflammatory activity of TAPs. The transcription factor NF-κB regulates multiple
aspects of innate and adaptive immune functions and serves as a pivotal mediator of
inflammatory responses. NF-κB induces the expression of various pro-inflammatory genes,
including those encoding cytokines and chemokines, and participates in inflammasome
regulation. In addition, NF-κB plays a critical role in regulating the survival, activation,
and differentiation of innate immune cells and inflammatory T cells.

With the aim of representing broader lipidome coverage, lipids from wild-type (Wt),
inflamed (Inf), and inflamed cells treated with TAPs (Inf_TAP) were extracted, and data
were acquired independently in positive and negative ion modes (three biological replicates
in technical triplicates). The manual curated identification allowed the identification of
469 lipid molecular species. Among the identified lipid species, phosphatidylcholines (PCs)

https://www.metaboanalyst.ca/
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and phosphatidylethanolamines (PEs) each represent 20% of the total lipids identified,
followed by sphingomyelin (SM, 10%), phosphatidylinositols (PIs, 7%), ceramides (Cers,
7%), phosphatidylglycerols (PGs, 6%), and phosphatidylserines (PSs, 5%), as reported in
Table 1. A complete lipidomic dataset (final list of identified/aligned lipid species, their
relative abundance values, and differentially abundant lipids) is provided in Table S1A.

Table 1. Total lipids identified at the bulk and structure levels divided by classes. CAR = carnitine,
CE = cholesterol ester, Cer = ceramide, HexCer = hexosylceramide, CL = cardiolipid,
NAE = N-acylethanolamine, MG = monoacylglycerol, SPB = sphinganine, ST = sterol lipid,
LPI = lyso-phosphatidylinositol, LPS = lipopolysaccharides, SM = sphingomyelin, TG = triacyl-
glycerol, DG = diacylglycerol, PC = phosphatidylcholine, LPC = lyso-phosphatidylcholine,
PE = phosphatidylethanolamine; LPE = lyso-phosphatidylethanolamine; PI = phosphatidylinositol;
PG = phosphatidylglycerol; and PS = phosphatidylserine.

Number of
Lipids %

Number of
Lipids %

Identified Features in MS-DIAL 469 Identified Features in MS-DIAL

PC 94 20.2

PE 96 20.2 LPE 10 2.0

SM 47 10.1 HexCer 9 1.8

PI 28 6.9 CAR 3 0.6

Cer 3 6.3 CE 3 0.6

PG 26 5.3 NAE 5 1.0

PS 24 5.1 MG 2 0.4

DG 18 4.5 ST 2 0.4

FA 21 4.3 SPB 2 0.4

TG 19 3.8 LPG 1 0.2

CL 16 3.2 LPI 1 0.2

LPC 10 2.2 LPS 1 0.2

3.2. Effect of Induced Inflammation on R3/1 NF-κB Reporter Cells: Study of Lipidome of
Cellular Model

The obtained global lipidome and LC-MS data were statistically evaluated using
techniques such as fold change analysis and volcano plots to distinguish lipids statistically
dysregulated between the Wt and Inf conditions. AI-based algorithms such as Partial Least
Squares Discriminant Analysis (PLS-DA) and Hierarchical Clustering Analysis (including
dendrograms and heatmaps) were adopted for predictive and descriptive modeling as well
as for discriminative variable selection. PLS-DA, with components 1 and 2 accounting
for 28.8% and 23.5% of the variance, respectively, showed a clear cluster separation be-
tween cells stimulated with the pro-inflammatory cytokine TNF-α and the wild-type (Wt)
(Figure 1A). Moreover, TNF-α induced a significant alteration based on a ratio (>1.5) of
88 features, of which 71 were upregulated and 17 were downregulated (Figure 1B and
Table S1B). The dysregulated lipids belong to acylcarnitines (CARs; n = 2), phosphatidyl-
cholines (PCs; n = 16), lyso-phosphatidylcholines (LPCs; n = 9), phosphatidylethanolamines
(PEs; n = 8), lyso-phosphatidylethanolamines (LPEs; n = 9), phosphatidylserines (PSs;
n = 10), and sphingomyelins (SMs; n = 8). Significant differences between TNF-α vs. Wt
based on the two-sample t-test and Wilcoxon rank-sum test (p < 0.05) were observed,
suggesting a significant cellular effect related to the induced inflammation (Figure 1C).
Moreover, information about the importance of the variables in the studied model was
obtained by considering the VIP variables (Figure 1D).
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Figure 1. (A) 2D scores plots reconstructed using PLS-DA. The green group corresponds to the
control samples (Wt), and the red group corresponds to cells treated with TNF-α. (B) Volcano plot
of Inf vs. Wt. The features in red were significantly upregulated (fold change (FC) > 1.5, adjusted
p-value < 0.05), and the features in blue were significantly downregulated (fold change (FC) < 1.5,
adjusted p-value < 0.05). (C) Two-sample t-tests and Wilcoxon rank-sum tests (p-value < 0.05).
(D) List of VIP scores obtained from the PLS-DA analysis of Inf vs. Wt.

Confirming the inflammatory state, a greater relative abundance of LPC was observed
for LPC 16:0 (log2ratio = 1.37), LPC 18:0 (log2ratio = 1.32), and LPC 16:1 (log2ratio = 1.32).
Specifically, increasing evidence underlines the role of LPC in the release of inflamma-
tory cytokines, such as IL-6 and IL-8 [19], as well as the induction of marked COX-2
expression [20]. The LPC can induce the migration of lymphocytes and macrophages,
increase the production of pro-inflammatory cytokines, induce oxidative stress, and pro-
mote apoptosis, which can aggregate inflammation and promote the development of
diseases. Specifically, LPC originates from the cleavage of phosphatidylcholine by phos-
pholipase A2 (PLA2) and plays a biological role by binding to G protein-coupled recep-
tors and Toll-like receptors [21]. Moreover, LPC increases the expression of target genes
through Ca2+-mediated second messenger or directly downstream inflammatory signaling
pathways [21]. Furthermore, LPE 20:4 (log2ratio = 1.33) and LPE 22:6 (log2ratio = 1.29),
which contain the omega-6 fatty acid arachidonic acid and the omega-3 fatty acid docosa-
hexaenoic acid, respectively, can also contribute to inflammation by serving as substrates
to produce eicosanoids, which are potent mediators of inflammation [22,23]. Alterna-
tively, inflammation induced by TNF-α exposure is characterized by a reduction in phos-
phatidylserine (PS) levels, known to suppress the production of pro-inflammatory cytokines
such as interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-α) by immune cells like
macrophages and dendritic cells [24]. Specifically, PS 18:0/18:1 (log2ratio = −1.16), PS
18:0/22:4 (log2ratio = −1.10), and PS 18:0/20:4 (log2ratio = −1.08) were found to be down-
regulated as revealed by thorough lipid analyses. This detailed characterization of TNF-α
inflamed cells underscores the robustness of the cellular model and the bioanalytical ap-
proach employed. Another lipid class dysregulated in an inflamed condition was the PC.
Due to the nature of their fatty acid compositions, some of them were related to inflamma-
tion; for example PC 34:4|PC 14:0/20:4 (log2ratio = 0.84) contains arachidonic acid (20:4),
which is a precursor for the synthesis of eicosanoids, a group of molecules extensively
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involved in inflammatory processes. Eicosanoids include prostaglandins, thromboxanes,
and leukotrienes, all of which are mediators and regulators of inflammation. In addition,
PC 34:3|PC 16:1/18:2 (log2ratio = 0.66) contains linoleic acid (18:2), an omega-6 fatty acid.
While omega-6 fatty acids are generally considered pro-inflammatory due to their role in
the synthesis of pro-inflammatory eicosanoids, linoleic acid is a precursor to arachidonic
acid, which is centrally involved in inflammatory processes. Similarly, SM 35:2;2O|SM
18:2;2O/17:0 (log2ratio = 0.88) which contains linoleic acid (18:2), is a precursor to arachi-
donic acid. As previously mentioned, arachidonic acid can be metabolized into various
eicosanoids, which are potent mediators of inflammation.

3.3. Effect of Thinned Apple Polyphenols (TAPs) on Inflamed R3/1 NF-κB Reporter Cells

To further validate both the cellular model and the analytical approach, the potential
anti-inflammatory effects of TAPs were investigated in TNF-α exposed cells using high-
throughput lipidomics. Statistical analysis was conducted on quantitative lipid data obtained
by comparing the TAP-treated group to the inflamed conditions without TAP treatment.
Additionally, to complement a prior study by Ferrario et al., which demonstrated an increase
in enzymatic antioxidant cellular activity and the activation of protective oxidoreductases
and their nucleophilic substrates like GSH and NADPH in response to thinned apples [7],
here, the impact on the lipidome was also assessed. The treatment with TAPs (Inf_TAP)
induced a significant dysregulation, based on a ratio >1.5 using 161 features, of which
149 were downregulated and 12 were upregulated (Figure 2B and Table S1B). The covariance
between Inf_TAP and Inf was obtained by PLS-DA (Figure 2A). The effect of TAPs on TNF-α
exposed R3/1 NF-κB reporter cells is shown in Figure 2C, which shows the hierarchical
clustering heatmaps of the 25 most significantly altered lipids upon TAP treatment.
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Figure 2. (A) 2D scores plots reconstructed using PLS-DA. The red group corresponds to Inf samples,
and the green corresponds to those treated with TAPs. (B) Volcano plot of Inf_TAP vs. Inf. Features
significantly upregulated with a fold change (FC) > 1.5 and adjusted p-value < 0.05 are shown in red,
while those significantly downregulated with an FC < 1.5 and adjusted p-value < 0.05 are shown in
blue. (C) Hierarchical clustering heatmaps of the 25 most significant altered lipids (one-way ANOVA
and post-hoc analysis, p < 0.05) of Inf_TAP and Inf. More expressed lipids are indicated in red, with
intensity values represented by colored cells (red for higher expression and dark blue for lower
expression); the samples are shown in the rows, and the features are shown in the columns. (D) List
of VIP scores obtained from the PLS-DA analysis of Inf_TAP vs. Inf.
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As demonstrated by unsupervised clustering and VIP analyses, the Inf_TAP is clearly
separated from Inf one (Figure 2C,D). Most of the downregulated lipids belong to the
ceramide class, as shown in Table 2, where all dysregulated ceramides are presented.

Ceramide can act as a pro-inflammatory mediator by stimulating the production
of cytokines and other inflammatory molecules by inducing the formation of inflamma-
somes, which are multi-protein complexes that activate caspase-1, resulting in the pro-
duction of pro-inflammatory cytokines such as interleukin-1 beta (IL-1β). Ceramides are
considered a mediator of inflammation and are involved in the pathogenesis of various
inflammatory diseases, such as atherosclerosis, rheumatoid arthritis, and inflammatory
bowel disease [25,26].

Table 2. Dysregulated ceramides after TAP treatment.

Ceramide Species Inf_TAP vs. Inf

Log2Ratio References

Cer 32:1;2O| Cer(d18:1/14:0) −1.28 [27]

Cer 33:1;2O| Cer(d17:1/16:0) −1.52

Cer 34:1;2O| Cer(d18:1/16:0) −1.56 [28,29]

Cer 34:2;2O| Cer(d18:2/16:0) −1.38

Cer 34:2;3O| Cer(d18:2/16:0(2OH)) −1.88

Cer 35:1;2O| Cer(d18:1/17:0) −1.22

Cer 36:1;2O| Cer(d18:1/18:0) −1.48 [28,29]

Cer 36:2;2O| Cer(d18:2/18:0) −1.42

Cer 37:1;2O| Cer(d18:1/19:0) −1.46

Cer 38:0;2O| Cer(d18:0/20:0) −1.09

Cer 38:1;2O| Cer(d18:1/20:0) −1.58

Cer 38:2;2O| Cer(d18:2/20:0) −1.53

Cer 39:1;2O| Cer(d17:1/22:0) −2.26

Cer 40:0;2O| Cer(d18:0/22:0) −1.08

Cer 40:1;2O| Cer(d18:1/22:0) −1.99

Cer 40:2;2O| Cer(d18:2/22:0) −1.93

Cer 41:1;2O| Cer(d18:1/23:0) −2.33

Cer 41:2;2O| Cer(d18:1/23:1) −1.75

Cer 42:1;2O| Cer(d18:0/24:1) −1.11

Cer 42:1;2O| Cer(d18:1/24:0) −1.88 [28,29]

Cer 42:1;3O| Cer(d18:0/24:1(2OH)) −0.80 [28,29]

Cer 42:2;2O| Cer(d18:1/24:1) −1.66

Cer 42:3;2O| Cer(d18:2/24:1) −1.66

Cer 43:2;2O| Cer(d18:1/25:1) −1.35

Moreover, ceramide is reported as an inducer of the inflammasome by activating the
NLRP3 inflammasome, which is a key mediator of inflammatory responses [30]. Ceramide
may play a role in cardiovascular diseases as it has been shown to increase the formation of
atherosclerotic plaques and cause inflammatory arteriolar dilation [31]. Since ceramides are
involved in various pathophysiological processes, i.e., oxidative stress/inflammatory path-
ways, and are linked to the onset and progression of cardiometabolic diseases, they could
serve as promising therapeutic targets. The three ceramide species, i.e., Cer(d18:1/16:0)
(log2ratio = −1.56), Cer(d18:1/18:0) (log2ratio = −1.48), and Cer(d18:0/24:1(2OH))
(log2ratio = −0.80), downregulated by TAPs are notable for their association with stable and
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acute coronary artery disease and metabolic abnormalities (e.g., insulin resistance) [32,33].
Therefore, since the three latter ceramides are considered good predictors of adverse cardio-
vascular events, the efficacy of polyphenols, specifically those from thinned young apples
(TAPs) in modulating the expression levels of these ceramides was highlighted. More-
over, a clear downregulation of other ceramides, i.e., Cer(d18:1/23:0) (log2ratio = −2.32),
Cer(d17:1/22:0) (log2ratio = 2.25), and Cer(d18:1/22:0) (log2ratio = −1.99) (Figure 2B–D),
was observed.

Within our dataset, the majority of dysregulated ceramides exhibit long and saturated
fatty acid chains, such as 22:0, which have been noted for their significant role in triggering
cellular stress and apoptosis, particularly evident in conditions like cancer and diabetes [34].
Various studies have demonstrated that polyphenols such as resveratrol, epigallocatechin
gallate (EGCG), and quercetin possess the ability to inhibit ceramide synthesis by downreg-
ulating the expression of key enzymes involved in their production. These polyphenols
also exhibit a wide array of beneficial effects, including anticancer, anti-inflammatory,
antioxidant, vasoprotective, and antifibrotic actions [35]. Moreover, grape polyphenol
supplementation was associated with decreasing the expression of genes required for the
biosynthesis of ceramides, which impairs glucose homeostasis [36]. Interestingly, our
findings corroborate the evidence that the co-administration of tyrosol (a dietary phenolic
compound) and white wine decreased the levels of three ceramides, namely, Cer C16:0, Cer
C18:0, and Cer C24:1, with respect to Cer C24:0 by improving the endothelial function in
subjects at high risk of cardiovascular disease [37].

3.4. Construction of ML Diagnostic Model for Inf vs. Wt and Inf_TAP vs. Inf

To corroborate the quantitative LC-MS/MS data, the ML algorithm was applied to the
lipid dataset. Two of the most relevant upregulated and downregulated lipids detected
based on their VIP scores (i.e., LPE 20:4 and Cer 34:2|Cer 18:2;2O/16:0) on inflamed and
inflamed plus treatment conditions (Figures 1B and 2B) were selected to exemplify the
potentiality of an ML-based approach. Researchers can extend and apply this approach to
other lipids that are of interest and relevant according to the VIP scores and hierarchical
clustering. Using the Monte Carlo method, a simulation for LPE 20:4 and Cer34:2 was
performed to generate a dataset of 189 and 54, respectively. The dimension of each dataset
was calculated by applying the formula reported in Section 2. The output datasets were
used as input to train an ML algorithm based on regression to construct diagnostic models
that are able to distinguish between inflamed, inflamed treated, and wild-type cells. The
ROC approach tested the quality of the ML regression models to validate their accuracy
(see Figure 3).

In general, the relation between two variables reflected by a statistical model takes the
form of a mathematical equation (or equations) with the predicted value (response) on one
side and the predictors on the other side. Linear regression models are widely accepted
as an efficient way to predict responses when their relation to the predictors is linear. An
alternative approach to model non-linear relations is logistic regression [17], where the
predicted value is never above 1 or below 0. Univariate logistic regression models can be
represented by the sigmoid equation:

p =
1

1 + e−(b0+b1x)
(1)

where p is the probability that the predicted response is 1, b1 is the slope of the line, and
b0 is the intercept.

As depicted in Figure 3, the value of the lipids LPE20:4 and Cer34:2 have predictive
power in detecting inflammation and inflammation reduction after treatment, respectively.
This conclusion is supported by the very high scores of the AUC (0.996 (Figure 3C) and
1.000 (Figure 3D)) in our Monte Carlo simulated testing environment.
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Figure 3. (A) ML logistic regression model for lipid LPE 20:4 for wild-type and inflamed cells.
(B) ML logistic regression model for Cer34:2 (Cer(d18:2/16:0)) for inflamed and treated TAP cells.
(C) ROC curve for LPE 20:4 and the associated AUC score obtained by testing the regression model
in classifying cells by simply observing the value of LPE 20:4. (D) ROC curve for Cer 34:2 (Cer
18:2;2O/16:0) and the associated AUC score obtained by testing the regression model in classifying
cells by simply observing the value of Cer 34:2.

3.5. Effect of TNF-α and TAPs on Signaling Pathway Modulation by Network Analysis

To investigate the molecular pathways in which the identified lipids were involved,
the network analysis was performed by IPA. The TNF-α induced inflammation by in-
creasing lipid accumulation, as indicated by a z-score of 1.23. Subsequently, treatment
with polyphenols from thinned young apples (TAPs) significantly reduced lipid accumu-
lation, with a corresponding z-score of −0.54. The details are presented in Figure 4A,B
and Table 3.

The accumulation of lipids, particularly saturated fatty acids, has been implicated in
the development and progression of inflammation. When cells are exposed to high levels of
lipids, particularly saturated fatty acids like palmitic acid, metabolic stress and dysfunction,
known as lipotoxicity, occur. Lipotoxicity can trigger a cascade of events that promote
inflammation. Moreover, saturated fatty acids like palmitic acid can activate Toll-like
receptors (TLRs) on immune cells, which can trigger the production of pro-inflammatory
cytokines and chemokines. This can lead to the recruitment and activation of additional
immune cells, exacerbating the inflammatory response. Palmitic (FA 16:0) and stearic acid
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(FA 18:0) have been implicated in the activation of lipid accumulation upon TNF-α-induced
inflammation (Figure 4A). Conversely, the effect of TAPs reduces the levels of FA16:0
(Log2ratio = −0.27) and FA 18:0 (Log2ratio = −0.23), leading to a positive reduction in lipid
accumulation (see Figure 4B and Table S1C).

Table 3. Functional modules evoked by TNF-α and TAP exposure. A positive z-score indicates the
activation pathway, and a negative z-score indicates the downregulation of the pathway (the analysis
was performed by IPA (Qiagen) using the quantitative LFQ dataset).

Inf vs. Wt Inf_TAP vs. Inf

Canonical Pathway p-Value z-Score p-Value z-Score

Accumulation of lipids 4.23 × 10−3 1.23 4.23 × 10−3 −0.54

Inf vs. Wt Inf_TAP vs. Inf

Lipid nomenclature Log2Ratio Log2Ratio

FA 14:0 (myristic acid) −5.9 × 10−1 4.2 × 10−1

TG 54:3|TG 18:1_18:1_18:1 (triolein) −6.0 × 10−3 7.0 × 10−2

FA 16:0 (palmitic acid) 9.0 × 10−3 −2.7 × 10−1

FA 18:0 (stearic acid) 1.5 × 10−2 −2.3 × 10−1

TNF-α induced the activation of some interleukins such as CXCL8 (IL-8) and CXCL10
(Figure 4C). Both act as a chemoattractant for immune cells, particularly T cells, at sites
of inflammation. Additionally, CXCL10 can enhance the activation of immune cells and
promote the production of other inflammatory cytokines [38]. Concurrently, the activa-
tion of the arachidonic acid (ARA) and vascular endothelial growth factor A (VEGFA)
pathways triggers the synthesis of potent pro-inflammatory mediators like prostaglandins,
leukotrienes, and thromboxanes. The initiation of both ARA and VEGFA pathways is
mediated by LPC 16:0 (log2ratio = −10.4), initiating a signaling cascade that promotes the
proliferation, migration, and survival of endothelial cells. Specifically, LPC 16:0 is a type of
lysophospholipid that has been implicated in the regulation of angiogenesis and inflam-
mation. Several studies have shown that LPC can stimulate the expression and activity of
VEGFR2 in endothelial cells, leading to the activation of downstream signaling pathways
and the promotion of angiogenesis. Our findings highlighted a negative regulation of
LPC 16:0 (log2ratio = −19.6) mediated by TAPs, which induce the downregulation of the
VEGFA pathway (Figure 4D). Nonetheless, further research is warranted to fully elucidate
the molecular mechanisms governing the interactions between LPC and VEGFA signaling
in angiogenesis regulation.
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Figure 4. Modulation of lipid accumulation in (A) inflamed vs. control and (B) inflamed_TAP vs.
inflamed. Network analysis by the IPA of (C) inflamed vs. control and (D) inflamed_TAP vs. inflamed.
The orange and blue colors of the central hub indicate an upregulation and a downregulation of the
module, respectively. The orange line represents activation, the blue line represents deactivation, the
yellow line represents findings inconsistent with the state of the downstream molecule, and the grey
line represents the effect that is not predicted. (For the interpretation of the references to color in this
figure legend, refer to the Web version).
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In addition to LPC, L-palmitoylcarnitine (CAR 16:0, log2ratio = 0.75) notably prompted
the upregulation of superoxide in TNF-α treated cells, while CAR 16:00 levels decreased
upon TAP treatment (log2ratio = −1.29), resulting in a reduction in superoxide. Given
that superoxide plays a pivotal role in inflammation by contributing to tissue damage and
fostering the production of pro-inflammatory molecules, its inhibition through TAP action
represents a promising strategy for mitigating inflammation. Overall, both LPC 16:0 and
CAR 16:0 emerge as potential mediators of inflammation, capable of inducing vasodilation,
increasing vascular permeability, facilitating immune cell migration to the inflammation
site, and bolstering the production of other inflammatory mediators.

4. Conclusions

In summary, the integration of untargeted lipidomics with AI and ML techniques of-
fers a precise, cost-effective, and time-efficient method for detecting changes in lipid-related
patterns, particularly in describing inflammation. Our finding underlines that: (i) under
induced inflammation, the most altered lipid classes were mainly PCs, LPCs, LPEs (up-
regulated), and PSs (downregulated) and that (ii) ceramides were mainly modulated by
polyphenol treatment, which leads to a reduction in the accumulation of intracellular lipids.
Moreover, the integration of omics, such as lipidomics, with AI and ML serves as a crucial
strategy to identify accurate and robust lipid signatures of diseases primarily driven by
inflammation. The example designed, implemented, and validated for LPE 20:4 and Cer
34:2 demonstrated that ML univariate logistic regressions result in powerful models that
are able to efficaciously predict cells’ conditions (such as inflamed and inflamed followed
by polyphenol treatment) simply by observing the levels of lipids under analysis. How-
ever, the investigated lipid signature necessitates further validation, particularly across
large-scale patient cohorts characterized by molecular and clinical heterogeneities. Our
results highlight the value of integrating lipidomics with Machine Learning algorithms
to explore the pathophysiology of inflammation and, consequently, improve clinical lipid
signature identification. The proposed analytical and data integration can aid in person-
alized medicine by identifying lipidomic signatures associated with specific diseases or
therapeutic interventions, thus facilitating the translational passage in routine clinical
practices after the validation of the model’s performance on an external dataset to assess its
generalizability. Achieving this objective requires close collaboration among biochemists
and clinicians, leveraging diverse skills within a multidisciplinary collaborative team.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/cosmetics11040140/s1. Table S1. List of quantified lipids obtained
by MSDAIAL software (ver. 4.90) after manual curations.
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