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Abstract: The cosmetics industry has experienced rapid growth, driven by consumer demand for
products in line with modern lifestyles and technological advances, with greater awareness of
the impacts on health and the ecosystem. This review explores the potential use of antibacterial
compounds derived from food waste as sustainable alternatives to synthetic preservatives in cosmetic
products. Waste obtained from food, including fruit peels, seeds, and plant remnants, is rich in
natural bioactives, including polyphenolic compounds and essential oils that exhibit antimicrobial,
antioxidant, anti-inflammatory, and soothing features. The integration of these natural ingredients
not only improves the shelf-life and safety of cosmetics but also promotes environmentally friendly
practices. We discuss the sources and antimicrobial efficacy of these compounds, along with recent
technological innovations. This sustainable approach responds to consumer preferences for natural
ingredients, reduces food waste, and supports environmental sustainability, ultimately increasing the
value and attractiveness of cosmetic products.
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1. Introduction

Over the past years, the interest in sustainability and the circular economy has led to
a growing attention towards the use of food waste as a valuable asset [1]. Food loss and
waste are globally recognized as a big problem due to their high socioeconomic costs [2].
The amount of global waste recorded a marker increase during the COVID-19 pandemic,
during which restaurants were forced to remain closed with food seized inside, and the
demand for take-out food surged [3].

If a huge worsening of the situation of food wastage was caused by COVID-19, the
cosmetics market is one of the sectors that has not been negatively affected by the pandemic,
recording an increase in the use and, therefore, in the purchase of cosmetic products [4].
More than makeup products, skin care products have received increasing demand from
consumers, who are thus more aware of the importance of the health of their skin, such
as that of the face, which has been severely stressed by the massive and unwanted use of
masks for individual protection [5]. The cosmetics market tends to grow year by year, so
much so that it can be considered the third fastest-growing market. In fact, the value of
the worldwide beauty and self-care industry was USD 565 billion in 2022, and researchers
predict that it will reach USD 758 billion by 2025 [6].

Recent scientific research has highlighted a potential link between food waste and the
cosmetics industry. A notable development in this field is the extraction of antibacterial
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compounds from food discards, which shows promise for use in cosmetics both as preser-
vatives and as bioactive molecules to treat skin infections, such as cutaneous inflammation,
atopic eczema, atopic dermatitis, and acne [7]. Rich in natural bioactives, food waste is an
untapped resource that could provide eco-friendly and sustainable alternatives to conven-
tional chemical preservatives in cosmetic products. Furthermore, aside from their cosmetic
uses, these discards show great promise for integration into various other sectors, including
pharmaceutical, food, textile, farming, and biofuel [8] (Figure 1). The growing concern for
human and environmental health related to the use of synthetic preservatives in cosmetics
has driven research toward safer and more natural ingredients. Food wastes, such as fruit
peels, seeds, and vegetable residues, contain numerous phenolic compounds, flavonoids,
and organic acids, known for their antimicrobial properties [9–17]. The extraction and
use of these compounds not only reduce waste but also improve the sustainability of the
entire production cycle. In particular, the cosmetics industry is increasingly recognizing
the value of fruit waste, turning it into effective and sustainable ingredients for beauty
products, such as apple peels, avocado seeds, and grape peels and seeds that are used
for their moisturizing, antioxidant, and anti-aging properties or for their high content of
nutrient-rich oils.
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2. State-of-the-Art Preservation Strategies

The presence of water and both organic and inorganic compounds in cosmetics, phar-
maceuticals, and food products makes them susceptible to the growth and proliferation of
microorganisms under certain physicochemical conditions. For this reason, these products
need to be effectively and adequately protected against the growth of microorganisms [18].
Microbial contamination can arise during manufacturing (primary contamination) and/or
through use and consumption (secondary contamination) [19,20]. Figure 2 provides an
overview of the sources, effects, and preventive measures for both primary and secondary
contaminations. Furthermore, every possible source of contamination needs to be found
and monitored. Cosmetics producers use a variety of tactics to prevent microbial con-
tamination without sacrificing the qualities of their products. Initially, they perform two
conservation phases: primary and secondary ones. The primary conservation approach is
implemented during the manufacturing process in compliance with good manufacturing
procedures (GMPs). GMPs must be followed in full while producing cosmetics, which
needs to happen in an absolutely aseptic environment to avoid microbiological contami-
nation [21]. An aseptic environment refers to a space in which microbial contamination is
minimized or eliminated entirely, usually through the use of air filtration systems (such
as HEPA filters), sterile clothing, and rigorous sanitization procedures [22]. The risk of
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contamination can be decreased with the use of interventions, including treating wastewa-
ter, controlling the microbiological quality of raw materials, disinfecting machinery, and
ensuring proper training for personnel [19,23]. The majority of regulatory organizations
worldwide have approved and accepted the ISO 22716:2007 certification [24] for cosmetics,
especially since the 2008 meeting of the International Cooperation on Cosmetic Regulation
(United States, European Union, Canada, and Japan) [21]. The standard ISO 22716:2007
outlines guidelines for the manufacturing, quality assurance, preservation, and shipping
of cosmetics. GMPs correspond to that part of quality assurance, which aims to ensure
that products are manufactured in such a way as to consistently be of adequate quality for
their intended use. They, therefore, have both production and quality control as their objec-
tives [25]. Post-production preservation methods, known as secondary preservation, use
chemical, physical, or physicochemical techniques to provide effective protection. Physical
preservation involves using primary packaging that acts as a barrier to prevent microbial
contamination. Packaging serves two protective functions: (1) preventing contamination
during use and (2) stopping the accumulation of contamination during distribution [26].
The design and properties of the primary packaging have a major impact on the likelihood
of microbial contamination. Among the properties, the form of the container (such as boxes,
jars, bottles, etc.) and the materials used (such as polymers, glass, etc.) are determining
factors [27,28].
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The three main physicochemical secondary preservation procedures are pH level reg-
ulation, emulsion type management, and water activity monitoring [21]. Water is typically
the primary ingredient in cosmetics, but it is also a perfect medium for microbes to prolif-
erate. Some chemicals have the ability to reduce water activity. Salts, polyols (including
sorbitol, glycerol, and ethoxydiglycol), protein hydrolysates, amino acids, hydrocolloids
(like guar gum and xanthan gum), sodium polyacrylate, glyceryl polyacrylate gel, and
sodium chloride are a few examples of these materials. The selection of these substances
depends on their properties, potential toxicity, and the nature of the cosmetics [18,23,28,29].
When comparing water-in-oil (W/O) emulsions to oil-in-water (O/W) emulsions, the latter
is generally less susceptible to microbial attacks [23]. This effectiveness is primarily due to
the continuous oil phase in W/O emulsions, which limits the availability of water necessary
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for microbial growth. The reduced water activity in the oil phase creates a less favorable
environment for microorganisms, thereby reducing the chances of contamination and pro-
liferation [30]. Moreover, the emulsion particle size can significantly enhance the efficiency
of cosmetic products containing antimicrobial agents. Smaller droplet sizes, such as those
found in nanoemulsions, increase the ratio of the surface area to volume, thus improving
the interaction between the antimicrobial agents and microorganisms [31]. This enhanced
interaction ensures a more uniform distribution of active ingredients and prolongs the sta-
bility of the product. Consequently, nanoemulsions can provide better antimicrobial activity
and improve the overall preservation of cosmetic products [31,32]. However, the nature
of the oil phase, particularly the type, quantity, and structure, also affects the antibacterial
activity [33–35]. Finally, maintaining pH balance is essential to lowering bacterial infiltra-
tion. The ideal pH range for controlling microorganism growth in cosmetics is between 5
and 8. pH values beyond this interval result in unsafe settings, which increase the rate of
growth [23,36]. The antibacterial activity of cationic hair conditioners is partly attributed
to their acidic pH (around pH = 4) [18]. Other formulations with an acidic pH, such as
antiperspirant treatments with aluminum compounds and salicylic acid (pH between 3.5
and 4.5), can also prevent the growth of bacteria [37]. Secondary chemical preservation
methods can be categorized into synthetic and natural preservatives. The EU Cosmetics
Directive defines synthetic preservatives as substances designed to primarily or exclusively
inhibit the growth of microorganisms in cosmetic products. The selection of the substances
for use in cosmetics must adhere to Annex V of the Cosmetics Regulation (Article 14 of
the Cosmetics Regulation) [25]. Usually, three criteria define the choice of preservatives
(in addition to regulatory requirements): (1) excellent antimicrobial effectiveness, (2) non-
toxicity, and (3) compatibility with other components in the cosmetic preparation [38,39].
Presently, the cosmetics industry faces a significant shortage of less toxic preservatives,
thanks to regulations frequently revising the permissible usage limits. As a result, there
has been a growing focus on discovering new preservatives that are effective and safe.
Future alternatives are expected to offer a broad spectrum against microorganisms while
possessing a better safety profile. Strong antimicrobial compounds that are low in toxicity,
including plant extracts, are viewed as desirable prospective substitutes [21].

3. Food Waste Natural Compounds with Antimicrobial Properties

Compounds derived from food waste are being used by numerous natural cosmetics
companies. More and more companies are focused on producing environmentally friendly
cosmetics using materials that would otherwise be considered waste, such as seeds, peels,
pomace, cortexes, leaves, juicing industry by-products, and stones. Food waste from plants
derived from industrial procedures can serve as a valuable source for the cosmetics indus-
try, offering biodegradable, skin-compatible, and environmentally sustainable ingredients.
These ingredients include peptides, carbohydrates, triglycerides, fibers, phytochemicals, nu-
trients, alkaloids, terpenoids, polypeptides, polyphenols, and polyacetylenes that can serve
functional or technical purposes, such as oxidative stress reduction, hydration, nutrition,
preservation, and maintenance of consistency, as well as conferring anti-aging and volume-
enhancing benefits in addition to antimicrobial activity [40–43]. Furthermore, numerous
plant-based derivatives utilized in the food sector are classified as “GRAS”—Generally
Recognized as Safe—resulting in their widespread application in cosmetics [43].

The European Regulation [25] allowed the use of only those preservatives included
in Annex V of the 7th Amendment of the Cosmetics Directive [44]. Some of the common
preservatives listed in Annex V include benzoic and salicylic acid, with their salts, paraben
compounds, formaldehyde, hydroxymethylglycine sodium salt, and triclosan (subject to
limitations and with reduced use in recent years). However, many other natural substances
that have antibacterial properties are not included in this list; among them, essential oils
and extracts are examples [21]. Indeed, these substances are not listed in Annex V as
preservatives because they are used for their therapeutic effects on the skin, but they
may unintentionally help to preserve the formulation. As a result, it is possible to create
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cosmetics with better dermo-cosmetic qualities and reduce or even eliminate the need
for traditional chemical preservatives by carefully selecting these ingredients [44]. Some
alternative preservatives are mentioned below.

3.1. Plant-Based Extracts

Stems, flowers, roots, and peels are commonly used to obtain extracts useful to prevent
microbial growth, which can cause primary and secondary skin diseases [45–48] (Table 1).
Due to their antibacterial features, these plant extracts could also be used as preserva-
tives [49]. Cosmetics can easily be contaminated by bacteria and fungi during use, with
the most common microbes being Staphylococcus aureus, Escherichia coli, and Pseudomonas
aeruginosa for bacteria and Candida albicans for fungi [21,43,45].

Table 1. Antimicrobial potential found in some plant-based extracts from wastes.

Source Specific Microorganism Effect Tested for
Cosmetic Use Reference

Pomegranate (Punica
granatum L.) peels and

seeds

S. aureus, E. coli, P. aeruginosa,
Trichophyton rubrum, T. mentagrophytes,

Microsporum canis, M. gypseum, and
C. albicans

Antibacterial and
Antifungal

√
[9–11,50,51]

Karkadè (Hibiscus
sabdariffa L.) calyx

E. coli, S. aureus, S. epidermidis, L.
monocytogenes P. aeruginosa, E. faecalis,
Salmonella typhimurium, Bacillus cereus,

Vibrio parahaemolyticus, Aspergillus
niger, Fusarium oxysporum, Penicillium

expansum, P. citrinum, P.
simplicissimum, and C. albicans

- [12,52,53]

Lavender (Lavandula
angustifolia) total waste

E. coli, P. aeruginosa, S. aureus, Proteus
vulgaris, Enterococcus faecalis, L.
monocytogenes, Bacillus subtilis,
Aspergillus niger, Penicillium
chrysogenum, and C. albicans

- [17,54]

Melissa (Melissa
Officinalis) total waste

P. aeruginosa, S. aureus, Bacillus subtilis,
Enterococcus faecalis, Candida utilis, and

Penicillium chrysogenum
- [17,54,55]

Saffron (Crocus sativus
L.) petals

B. subtilis, M. luteus, B. cereus, P.
aeruginosa, S. aureus, S. mutans, P.
gingivalis, E. coli, and C. albicans

Bacteriostatic,
Antifungal, and

Antibiofilm
- [13,56–59]

Garlic (Allium sativum
L.) peels

Methicillin-resistant Staphylococcus
aureus, Acinetobacter baumannii, E. coli,

and P. aeruginosa
Antibacterial - [14,15,60]

Mango (Mangifera
indica L.) seeds S. aureus, E. coli, and C. albicans Bacteriostatic and

Antifungal
√

[16,61–63]

Peels and seeds of pomegranates (Punica granatum L.), accounting for approximately
54% of the fruit’s bulk, are usually thrown away as waste once the juice is extracted. For
example, since 90% of the pomegranates farmed in the United States are produced in
California, about 118,000 tons of unused peels and seeds were produced in this country
alone up until 2020 [50]. In fact, these pomegranate wastes represent 43% of the weight and
11% of the weight of the fruit, respectively [64]. The trash that remains after pomegranate
juice is extracted includes a number of bioactive and nutritional elements, such as fatty
acids, hydrolyzable tannins (including ellagic acid and punicalagin), and flavonoids (like
anthocyanins). These elements, which are included in organic pomegranate waste, hold
significant potential for valuable applications in cosmetics and improving skin health [50].
Pomegranate peel extract is rich in phenolic compounds (PCs) [65]. Specifically, punicalagin,



Cosmetics 2024, 11, 151 6 of 23

is abundantly present in the fruit and constitutes its primary ellagitannin [64]. Pomegranate
peel contains tannins (punicalagin) and polyphenols (ellagic acid) that promote skin health
through the inhibition of tyrosinase and provide anti-inflammatory and antifungal benefits.
Through the chelation of carbohydrates and nutrients, these compounds exhibit promising
antibacterial activity by making these components unavailable to microorganisms [9,50].
Moreover, some researchers used pomegranate peel powder as a natural antioxidant, re-
placing synthetic compounds, in an effort to enhance lipid stability against oxidation and
preserve the product [51]. Because pomegranate peel contains phenolic components, the
peel extract not only exhibited higher sensory ratings but also decreased aerobic bacterial
counts [51]. Furthermore, a nanofiber covering for rat excision wounds was successfully
made with pomegranate peel powder, honey, and bee venom. This implies that adding
honey and pomegranate peel to the antibacterial action against E. coli will have a synergistic
impact [66]. In a recent study, Gigliobianco M.R. et al. [10] examined the peel extract of
various pomegranate varieties grown in the Marche region, such as “Wonderful”, “Mollar
de Elche”, “Parfianka”, and the less studied “G1”. The study analyzed the phenolic com-
pounds, antioxidant capacity, and antimicrobial effects of pomegranate extracts for their
use in the cosmetics field. An ultrasonic bath was used for the extraction of phenols from
peels. Three extraction cycles were conducted for each sample, employing specific solvents
to maximize the recovery of polyphenols. The extracted polyphenols were identified and
quantified using ultra-performance liquid chromatography coupled with mass spectrom-
etry (UPLC-ESI-MS/MS). The main phenolic compounds identified included isomers of
punicalagin, punicalin, gallic acid, ellagic acid, gallocatechin, and anthocyanins. Results
indicated that the peel extracts of the “Mollar de Elche” variety contained the highest
concentrations of punicalagin A and B. The total phenolic content (TPC) and antioxidant
capacity (AC) of the extracts were detected using the Folin–Ciocalteu colorimetric and
spectrophotometric methods, respectively. Peel extracts from the “Mollar de Elche” and
“Wonderful” varieties exhibited the highest TPC and AC contents, attributed to the sig-
nificant presence of punicalagin. The antimicrobial activity of the extracts was assessed,
considering E. coli, S. aureus, P. aeruginosa, and various species of Candida. Peel extracts from
the “Wonderful” and “G1” varieties showed efficacy against E. coli, showing an average
inhibition zone of 12–15 mm. Additionally, the “Wonderful” peel extract reported the best
effectiveness against S. aureus, with an inhibition zone diameter of 3 mm via disk diffusion.
The “G1” peel extract was tested using a turbidimetric test, demonstrating excellent results
against S. aureus and P. aeruginosa. A two-fold dilution of the extract was found to be
effective in reducing 97% of the bacteria. All extracts exhibited promising effects against
Candida, with inhibition zones ranging from 10 to 16 mm, depending on the concentration
and species. The cytocompatibility of the extracts was investigated on HaCaT keratinocyte
cells using concentrations ranging from 0.15 to 5.00 mg/mL. No toxic effects were reported
for the concentrations used, indicating potential safe use in cosmetic ingredients. The
results of this research endorse the use of pomegranate by-products, specifically peels, as
sustainable sources of natural antioxidants and antimicrobials for the cosmetic industry.
This approach contributes to the valorization of agri-food waste, promoting a circular
economy and reducing reliance on synthetic preservatives [10]. Pomegranate extract has
another important characteristic, which is the inhibition of the growth of several dermato-
phyte fungi, including Trichophyton rubrum, Trichophyton mentagrophytes, Microsporum canis,
and Microsporum gypseum. These fungi are known to cause dermatophytosis infections
of the skin and its appendages. The functional component, punicalagin, plays a key role
in preventing dermatophytosis [67]. Additionally, pomegranate peel has demonstrated
medicinal and antiviral properties. In a study, pomegranate peel extract was applied to
porcine skin ex vivo to evaluate its anti-inflammatory effects. The findings indicated that
punicalagin, a constituent of pomegranate peel, permeated the skin and subsequently
suppressed the activity of COX-2, an inflammatory enzyme [11]. Furthermore, the same
research group formulated a hydrogel incorporating pomegranate peel extract and zinc
sulfate as a topical intervention for Herpes simplex virus infection. This hydrogel exhibited
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both antiviral and anti-inflammatory properties, with punicalagin permeating areas of the
skin that are predisposed to infection. Overall, pomegranate extract acts as an antibacterial
agent while enhancing the healing effects to improve the strength of a cosmetic product.

Karkadè (Hibiscus sabdariffa L.) is a species belonging to the Malvaceae family that
typically thrives in tropical and subtropical regions globally. The leaves, calyxes, seeds, and
roots of Hibiscus sabdariffa L. (HsL) are often incorporated into local dishes and traditional
therapies worldwide. Calyxes are primarily used to prepare drinks, confections, liqueurs,
and baked goods. Some items are manufactured on an industrial scale, while others are
crafted using traditional methods on a smaller scale using artisanal practices. In certain
production processes, both traditional and industrial, the decoction of dried calyxes for
juice extraction results in significant waste generation, posing economic and environmental
concerns for producers [52]. However, the polyphenols and other substances contained
in the dry calyxes are partially extracted into the drink by the decoction because these
decoction residues can retain an appreciable quantity of polyphenols and other useful
substances [53]. There are limited published data on the use of HsL residues, such as
decocting calyxes to extract polyphenols and dietary fibers from waste [53]. The calyx of
this plant, for example, contains several active molecules belonging to different classes of
compounds, such as polyphenols, flavonoids, tocopherols, and organic acids (including
malate, oxalate, and shikimate). The specific contents of these mixtures can vary based
on the extraction solvent employed. Studies have demonstrated that the solvent used to
obtain hibiscus extracts possesses a crucial role in defining its antimicrobial effectiveness
against E. coli strains [12]. For instance, aqueous hibiscus extracts exhibited moderate
antimicrobial activity, creating an inhibition zone with a diameter of 18.33 mm. Notably,
these extracts were most effective against L. monocytogenes, showing an inhibition zone of
21 mm. Conversely, methanol extracts of hibiscus reported an inhibition zone of 17.12 mm.
Furthermore, hibiscus extracts on liquid media showed high efficacy against multiple
bacteria and yeasts belonging to the genera Aspergillus, Fusarium, and Penicillium, according
to MIC and MBC values performed [12]. Hibiscus extracts were also tested for their
antibacterial efficacy against nine bacterial strains that are commonly linked to foodborne
illnesses and human infections. These strains include Salmonella typhimurium, Enterococcus
faecalis, Vibrio parahaemolyticus, Listeria monocytogenes, Escherichia coli, and Staphylococcus
aureus. Additionally, four yeast strains, Candida albicans, C. tropicalis, C. kefyr, and C.
parapsilosis, were also tested. The results indicated a higher effectiveness of these extracts
against bacteria compared to yeasts. Using liquid cultures, it was found that water-based
extracts had the lowest MIC, while methanol-based extracts showed the lowest MC, with
values of 9.375 mg/mL and within the range of 18.75–37.5 mg/mL, respectively [12].
Furthermore, hibiscus extracts have been identified for their tonic, calming, softening, and
soothing properties [68], which are ideal characteristics for a cosmetic formulation. Based
on this, the scientific community should be more interested in studying the recovery of
these substances from the calyx, which, following the juice extraction process, still contain
many useful substances and could perform antimicrobial activities comparable or similar
to that of the extracts on calyx that have not undergone the decoction process.

Saffron (Crocus sativus L.) is a geophyte plant that blooms in the autumn and belongs
to the Iridaceae family. It is renowned for its stigmas, the most valued part of the plant,
which contain a wealth of bioactive substances and are utilized in culinary applications,
preservation of preparations, and as a raw material for health and cosmetic products [13,56].
Monoterpenoids, phytosterols, phenolic acids, flavonoids, terpenoids, amino acids, min-
erals, proteins, carbohydrates, and gums are all abundant in this portion of the plant [69].
Crocetin and crocin are the key bioactive molecules known for their numerous therapeutic
benefits, primarily attributed to their strong antioxidative effects [56]. However, research
on the petals that constitute the primary by-product of spice manufacturing is limited [13],
with only 10% of the plant material used and the rest thrown away [57]. In accordance with
circular economy concepts, finding effective ways to use saffron flower waste, particularly
petals, that may be rich in active components like flavonoids, crocin, anthocyanins, and
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lutein diesters is crucial [57]. Some researchers proved the antimicrobial efficacy of extracts
obtained from saffron petals against both fungi and bacteria, as well as a pronounced an-
tioxidant effect [55,57]. Among them, Belyagoubi et al. [59] used seven bacterial strains and
two Candida strains to investigate the antimicrobial properties of saffron stigma and flower
extracts. Data recorded from B. subtilis and M. luteus reported flowers’ MIC values signifi-
cantly lower than stigmas’ MIC values (781.25 and 6250 µg/mL for flowers and 1406.25
and 22,500 µg/mL for stigmas). Moreover, the MBC of the flower extract of B. subtilis and B.
cereus was at least twice that recorded against M. luteus (MBC 100,000 µg/mL). Concerning
stigma extracts, previous results already reported the resistance of M. luteus and B. subtilis
to this treatment not exceeding values of 45,000 µg/mL for MBC values. In another study
conducted by Wali et al., three extracts of saffron petals, obtained using solvents having
varying polarity, reported promising antimicrobial efficacy against P. aeruginosa and S.
aureus [70].

Garlic (Allium sativum L.) belongs to the Amaryllidaceae family. Originating in Asia, it
is extensively cultivated in regions such as Egypt, Mexico, China, and Europe [71]. His-
torically, garlic has been used for both cooking and therapeutic uses due to its antioxidant
and antimicrobial properties [72]. Gabriel and colleagues investigated the antimicrobial
qualities of ultrasonicated garlic extracts, demonstrating that it was effective against various
bacteria (namely S. aureus sub. aureus, S. mutans, P. gingivalis, and E. coli). The presence
of amino acids, carboxylic groups, proteins, phenolic compounds, and organosulfur com-
pounds in the examined extracts, according to the researchers, may be responsible for these
characteristics [73]. Furthermore, it has been previously reported that water or toluene
garlic extracts act well against P. aeruginosa or Shigela flexnerii bacteria [74,75] Variations
in the composition of phytochemicals in garlic powder, juice, or extracts obtained using
various extractive procedures were noted in the literature review conducted by Bhatwalkar
et al. [76]. According to Subramaniam et al., mouthwash formulations containing garlic
extract have been found to successfully eradicate S. mutans bacteria in the oral cavity [77].
Chlorhexidine, one of the ingredients in these mouthwashes, has been shown to be effective
against Porphyromonas gingivalis, a bacterium often associated with soft tissue inflammation,
infection, and compromised stability of dental implants [78]. Interestingly, studies have
demonstrated the effectiveness of garlic extracts against this bacteria and their possible
use as active ingredients in mouth hygiene products [79]. Owing to their wide range of
antimicrobial actions, they can function as organic preservatives for dentistry and cosmetic
treatments. Aqueous garlic extracts have been shown by Yadav et al. to be efficacious
against S. aureus and E. coli [80]. Notably, they discovered that the 100% concentration
against S. aureus and E. coli created the biggest zone of inhibition, measuring 34 mm
and 37 mm, respectively. Compared to the overuse of antibiotics or preservatives, the
researchers found that raw garlic extract efficiently inhibits bacteria and fungi without cre-
ating medication resistance [80]. Consequently, it is worthwhile to investigate the possible
use of garlic extracts in the pharmaceutical, medical, and cosmetic industries as natural
preservatives that can guard against primary and secondary infections in cosmetics. Since
fungal growth is more rapid and obvious compared to bacterial one, fungal infections
in the cosmetics sector are a significant issue [81]. Among the fungi that can contami-
nate cosmetics include Aspergillus, Penicillium, and Candida species, which may have an
adverse effect on cosmetic product quality and decrease consumer safety [81]. Dadashi
et al. found that shared cosmetic kits had a high level of fungal contamination, affecting
30.0% of eyeliners and 38.5% of powders [82]. Furthermore, Penicillium spp., Aspergillus
fumigatus, and C. albicans have been found in cosmetics such as lip pencils, eye pencils,
and mascaras, according to Muhammad et al. [83]. The antifungal action of garlic extracts
has the potential to replace stronger antifungal drugs in medical and cosmetic sectors,
given the sensitivity of products to microbial growth due to water and other nutrients. Pai
S. et al. [84] proposed this possible use after demonstrating that concentrated garlic oil
and aqueous extracts had either equal or greater inhibitory effects on Aspergillus species
than pharmaceutical preparations. Nevertheless, garlic processing yields a significant
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quantity of peel waste, approximately 25% of the raw material’s weight, amounting to
about 2.3–2.9 million tons annually [14]. Finding ways to use this by-product instead of
discarding it is crucial to prevent negative impacts on the sustainability and economy of the
garlic processing industry. Interestingly, garlic peels are considered to be richer in bioactive
compounds compared to the inner parts of fruits and vegetables due to their protective
role [15]. Garlic peel extracts (GPEs) have been reported to be rich in phenolic compounds
and exhibit antimicrobial effects comparable to those of fresh garlic extracts [85]. Salem
et al. [60] confirmed the great presence of phenols in garlic peels, together with a wide
amount of other bioactive compounds, including flavonoids, saponins, and alkaloids, con-
ferring notable antioxidant and antibacterial properties. In particular, garlic peel extract
has shown high levels of diosgenin, sarsasapogenin, feruloyltyramide, and quercetin. The
garlic peel extract has exhibited significant effects against bacteria such as methicillin-
resistant Staphylococcus aureus, Acinetobacter baumannii, E. coli, and P. aeruginosa, with MBC
of 6.25 ± 0 mg/mL for Acinetobacter baumannii and 12.5 ± 0 mg/mL for the other bacteria
under investigation [60]. Considering this, it would be more advantageous to exploit waste
by transforming it into a resource rather than using fresh products, which would also
generate additional waste requiring disposal. This approach enhances sustainability and
maximizes the use of existing resources, reducing the environmental footprint associated
with waste management and fresh product consumption. Lavender (Lavandula angustifolia)
is a commonly cultivated plant useful for the essential oil industry. The major producers
of lavender oil include Bulgaria, Ukraine, France, the United Kingdom, Spain, China, and
Morocco. Bulgaria holds the leading position in lavender production, with over 100 tons
produced annually [54]. Melissa (Melissa Officinalis) is a popular medicinal herb that has
found various applications over the years [55]. The relatively small amounts of essential oil
in lavender and in melissa (lower than 1.5% for both fresh species) result in a large amount
of solid waste produced yearly [54]. However, both wastes reported quantities of active
ingredients useful in carrying out biological activities, including antimicrobial activity [17].
In a study by Vasileva I. et al. [54], the ability of these waste materials to be used as natural
preservatives was investigated. Ethanol extracts from lavender and melissa waste, obtained
through ultrasound-assisted extraction, revealed high levels of polyphenols and flavonoids,
along with abundant terpenoids. Given the rich content of these compounds, characterized
by antimicrobial properties, researchers decided to assess the antimicrobial activity of waste
extracts. Gram-negative bacteria (E. coli, P. aeruginosa), Gram-positive bacteria (S. aureus,
Proteus vulgaris, Enterococcus faecalis, Listeria monocytogenes), yeasts (Candida utilis), and
saprophytic microorganisms (Bacillus subtilis, Aspergillus niger, Penicillium chrysogenum)
were used to test the antimicrobial activity. All microorganisms showed sensitivity to the
lavender extract, with S. aureus being particularly susceptible, demonstrating a MIC at
least ten times lower than that of the other microorganisms. The ethanol extract of melissa
inhibited the growth of S. aureus, P. aeruginosa, Enterococcus faecalis, and Candida utilis, with
greater MICs (over 600 µg/mL). However, both ethanol extracts exhibited antimicrobial
activity against the fungus Penicillium chrysogenum (MIC greater than 600 µg/mL) and the
bacterium Bacillus subtilis (MIC 60 µg/mL and 600 µg/mL for ethanol extract of lavender
and melissa, respectively).

Mangifera indica L., widely recognized as mango, is a fruit plant extensively cultivated
in tropical regions. It is an extremely sought-after fruit in the global market, but its
processing generates substantial waste [61]. Approximately 30–50% of the fruit is discarded,
often without treatment, or is used as animal feed. Mango waste comprises peels and
seeds, with peels making up 7% to 24% of the fruit’s weight, while seeds constitute 20%
to 60% of the fruit’s weight. Furthermore, between 45% and 85% of the weight of the
seed is composed of the kernel inside. Mango seeds contain a variety of antioxidant
biomolecules, including gallic, caffeic, ellagic, and ferulic acids, as well as carotenoids,
tocopherols, and phenolic compounds, including quercetin, anthocyanins, and catechins,
varying in their contents as a function of the extraction technique. Mangiferin, a phenolic
substance recognized for its exceptional antioxidant qualities, is present in mango peels
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and leaves. A patent (U.S. Pat. No. US 2011/0135772 A1) has been filed describing its
properties against tyrosinase, elastase, and collagenase [62] and its use in the creation of
anti-aging cosmetics and dermatological formulations, for example, products acting against
cutaneous pigmentation. In addition, in a study conducted by Mutua J.K. et al. [16], the
potential against oxidative stress and microbial agents of extracts recovered from mango
seeds was evaluated by considering four different varieties. The study showed that mango
seed powder possesses high antioxidant effects and high total polyphenol content. The
position and variety of the mango seeds affected the overall scavenging performance in
moderately significant (p < 0.05) ways. On the other hand, no appreciable variations in total
polyphenols were discovered according to cultivar or location. C. albicans, E. coli, and S.
aureus were used to check the antimicrobial effects of mango seed extracts. Based on the size
of the inhibition zones, the results demonstrated the antibacterial efficacy of all mango seed
extracts. The strong antibacterial activity of the extracts was ascribed by the researchers
to the presence of certain phytochemicals, such as coumarins, tannins, terpenes, and
flavonoids. Furthermore, compared to E. coli, the methanolic extracts in the study showed
higher inhibition against the Gram-positive S. aureus bacterium at different doses. This
difference can be attributed to the different structures of their cell walls [16]. In addition, in
a study by Poomanee et al. [63], the researchers explored the use of hydroethanolic mango
seed extract (KMHE) as a cosmetic anti-aging ingredient, including cytotoxicity tests to
assess its safety. The experiments were conducted on two cell lines: human BJ fibroblasts
and murine RAW 264.7 macrophages. In BJ fibroblasts, KMHE did not show significant
cytotoxicity, maintaining cell viability even at high concentrations up to 1000 µg/mL.
Additionally, KMHE demonstrated a protective effect against DNA fragmentation induced
by hydrogen peroxide (H2O2), an oxidizing agent used to simulate oxidative stress. In RAW
264.7 macrophages, however, KMHE reduced cell viability below 80% at concentrations
between 100 and 1000 µg/mL, indicating slight cytotoxicity. Nevertheless, no cytotoxic
effects were reported at concentrations ranging from 0.1 to 10 µg/mL. These results suggest
that KMHE can be considered safe for cosmetic use, provided it is used at appropriate
concentrations.

3.2. Phenolic Compound

Agri-food wastes are significant sources of phytochemicals, encompassing polyphe-
nols, carotenoids, tocopherols, and terpenes (Table 2. These phytochemicals possess an-
tioxidant, therapeutic, nutritional, and antibiotic properties. Their effective use allows
for the realization of upgraded formulations, food additives, therapeutic products, and
cosmetics [86–89]. Plant polyphenols, also referred to as phenolic compounds, are organic
substances characterized by the presence of multiple phenolic units differing from aromatic
rings by the presence of one or more hydroxyl (OH) groups attached [90].

Table 2. Antimicrobial potential of phenolic compounds found in some agri-food wastes.

Phenolic Compound Source Specific Microorganism Effects Reference

Protocatechuic acid Red pepper waste
E. coli, S. aureus, S.

typhimurium, E. coli, K.
pneumoniae, and B. cereus

Antibacterial and
bactericidal [91,92]

Quercetin and its
glucosides

(quercetin aglycone,
quercetin-4′-O-
monoglucoside,
quercetin-3,4′-O-

diglucoside, anthocyanin)

Skinned onions

S. aureus, P. aeruginosa, P.
vulgaris, E. coli, S. flexneri, and

L. casei var. Shirota,
drug-resistant E. coli, or
carbapenem-resistant P.

aeruginosa

Antibacterial and
antibiofilm [93,94]
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Table 2. Cont.

Phenolic Compound Source Specific Microorganism Effects Reference

Caffeic acid
Apple, lime, grape,
pomegranate, and

papaya wastes

E. coli and K. pneumoniae, A.
flavus and A. parasiticus

Antibacterial and
reduced aflatoxin

production
[91,95]

Vanillic acid Unripe tomatoes
Carbapenem-resistant E.

hormaechei, A. flavus, and A.
parasiticus

Antibacterial,
antibiofilm and

reduced aflatoxin
production

[96,97]

Gallic acid Broccoli leaves and
flowers S. aureus Enhancement of

antibiotic activity [98,99]

Pyrogallol Cactus pear peels C. albicans population and S.
aureus

Reduction in required
concentrations of

antibiotics necessary to
kill

[99,100]

Kaempferol Grape pomace and
peels S. aureus Antibacterial and

antibiofilm [101–103]

p-coumaric acid Yellow passion fruit
pulp and seeds B. cereus Antibacterial [91,104]

Oleuropein Olive leaves B. cereus Antibacterial [42,91]

Apigenin and luteolin Pineapple peels E. coli and P. aeruginosa Antibacterial [105,106]

Based on their structures, we can distinguish flavonoids and non-flavonoids [107,108]
that serve as crucial secondary metabolites in plant physiology, playing a key role in
protection against herbivores and pathogens while also offering mechanical support to the
vegetal organism [107]. Notably, phenolic compounds naturally present in plants exhibit
antimicrobial properties and encompass phenolic acids, flavones, lignans, and tannins [109].

Phenolic molecules can show several functions. Protocatechuic acid (PCA), or 3,4-
dihydroxy benzoic acid, for example, has been found to present various health benefits,
including antibacterial, hepatoprotective, cardiac, neurological, nephroprotective, antiviral,
anti-inflammatory, antidiabetic, anticancer, antiulcer, anti-aging, and antifibrotic proper-
ties [110]. PCA is efficient against fungi, bacteria, and Gram-positive and Gram-negative
bacteria. Additionally, it cooperates with several antibiotics to combat resistant infec-
tions [110–112]. Jalali et al. stated that (PCA) exhibits dose-related effects against Cutibac-
terium acnes and is recommended as a broad-spectrum antiseptic effective against germs
linked to skin discomfort from surgery, also derived from drug-resistant microbes [113]. The
study by Šeregelj et al. [92] revealed the isolation of multiple bioactive compounds from chili
pepper processing waste. These compounds include carotenoids (β-carotene, lutein, zeaxan-
thin, β-cryptoxanthin), hydroxybenzoic acids (gallic, vanillic acid), hydroxycinnamic acids
(sinapic, caffeic, rosmarinic, chlorogenic acid), flavan-3-ols (epicatechin), and flavonols
(rutin, quercetin, and myricetin), along with PCA and other D-phytochemicals [92].

Aziz and colleagues investigated how phenolic chemicals inhibited the growth of
bacteria, including B. cereus, K.pneumoniae, A. flavus, A. parasiticus, and E. coli. Their research
showed that a dose of 0.3 mg/mL of caffeic and protocatechuic acids successfully inhibits
the growth of E. coli and K. pneumoniae. Furthermore, similar concentrations (0.5 mg/mL)
of p-Hydroxybenzoic, vanillic, caffeic, protocatechuic, and p-coumaric acids, as well as
oleuropein and quercetin, showed total suppression of B. cereus growth [91]. At a dosage
of 0.4 mg/mL, oleuropein, p-hydroxy benzoic, vanillic, and p-coumaric acids showed
inhibitory effects against the development of B. cereus, K. pneumoniae, and E. coli. Moreover,
at a dosage of 0.2 mg/mL, vanillic and caffeic acids completely limit the development and
aflatoxin generation of A. flavus and A. parasiticus [91]. An illustrative instance of how
manufacturing by-products serve as reservoirs for these bioactive compounds [114,115]
can be found in a study conducted by Monteiro et al. [116]. In this study, chlorogenic
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acids were extracted from the leaves of Arabica and Robusta coffee plants. Notably, coffee
leaves constitute a significant residual product of coffee bean processing. The research
revealed that 5-caffeoylquinic acid was the most prevalent compound in coffee leaves, with
greater concentrations identified in arabica than in robusta coffee. This underscores the
potential value of using manufacturing waste as a container of bioactive sources [116,117].
As shown in the study, phenolic chemicals can stop bacteria from growing in cosmetics
that cause secondary illnesses. The creation of tailored cosmetics, realized to match the
specific requirements of each individual customer, represents a relevant industry examined
by Kim et al. [81]. The study emphasized the use of heat treatment during production
and minimizing the transfer of cosmetics between containers as effective procedures to
reduce germs levels and prevent cross-contamination, respectively. Sequencing research
has revealed the presence of mold and bacteria, specifically S. epidermidis, B. circulans, B.
cereus, and A. versicolor, in customized cosmetic products [81]. It has been demonstrated
that phenolic compounds are useful additions to customized cosmetics, acting as safe and
natural guardians against the development of dangerous substances. There has been much
research conducted on phenolic acids’ antibacterial and antifungal qualities. Vanillic acid
was investigated by Qian et al. [97], testing its antibacterial properties against Enterobacter
hormaechei (CREH) resistant to carbapenem. According to their findings, vanillic acid was
effective against CREH, reporting a MIC value of 0.8 mg/mL. The acid broke down the
cell wall, resulting in the cell’s destruction. Vanillic acid also successfully prevented CREH
from forming biofilms. The researchers have suggested that this phenolic acid may find
application as a disinfectant and preservative. Other phenolic acids that have antibacterial
properties are gallic acid and caffeic acid. Gallic acid, caffeic acid, and pyrogallol were
found to have antibacterial, antifungal, and antibiotic-modulatory properties by Lima
et al. [99]. It was shown that pyrogallol, like gallic acid, increased antibiotic action against S.
aureus and optimized the necessary antibiotic concentration needed to eradicate the whole
C. albicans population [99]. Other phenolic compounds with antibacterial properties could
be useful for this, in addition to phenolic acids, like flavonoids. According to Jaisinghani
et al., quercetin has antibacterial effects against E. coli and P. vulgaris at doses of 300
and 400 µg/mL, as well as S. aureus and P. aeruginosa at 20 µg/mL. Furthermore, even
at 500 µg/mL, Lactobacillus casei var. shirota and Shigella flexneri showed no discernible
reactions [94].

Another example of the presence of these substances in a waste product from the
agro-food industry comes from a study by Sharma et al. that investigated the effects of
polyphenols derived from fresh peeled and aged onions. The research findings revealed
an increasing antibiofilm activity against different microorganisms (E. coli, P. aeruginosa,
S. aureus, and B. cereus) in step with the aging of onions. Concurrently, there was a
proportional rise in quercetin and total phenolic amounts with the aging of the onion
varieties under investigation. These results underscore the presence of these substances
in waste products generated by the agro-food industry [93]. As stated by Yang et al.,
quercetin possesses a wide range of antibacterial activities aimed at nucleic acid synthesis
suppression and bacterial cell wall breakdown. Their study elaborated on how quercetin
inhibits the growth of various bacteria by interfering with their DNA and RNA synthesis,
effectively preventing replication and causing cell death. This broad-spectrum antibacterial
effect makes quercetin a potent agent against several pathogenic bacteria [118]. The authors
enumerated a number of bacteria found in cosmetic goods that quercetin demonstrated
antibacterial activity against. Specifically, quercetin has shown efficacy against S. aureus, E.
coli, and P. aeruginosa, which are common contaminants in cosmetic products. These bacteria
can cause spoilage and pose health risks to consumers, making their control fundamental to
ensure the safety and long-lasting of cosmetic formulations [118]. Orús et al. [119] reported
that the chemical exhibited an inhibitory impact on E. coli resistant to drugs and P. aeruginosa
resistant to carbapenem. These microorganisms are particularly concerning because they
have developed resistance to multiple antibiotics, including carbapenems, which are often
used as a last-resort treatment for severe infections. The researchers demonstrated that



Cosmetics 2024, 11, 151 13 of 23

quercetin could effectively inhibit the growth of these resistant strains, highlighting its
potential as a preservative in cosmetic products to combat antibiotic-resistant bacteria [119].

Di Ming et al. conducted studies to hinder the formation of S. aureus biofilm, caus-
ing implant-associated infections without using antibiotics [103]. The authors employed
kaempferol as a biofilm-inhibiting agent against S. aureus. It was demonstrated that an
application of 64 µg/mL of kaempferol suppressed biofilm growth by 80%. Kaempferol
exhibited no antimicrobial action versus S. aureus, according to growth curve experiments
and minimum inhibitory concentration measurements. They reported that kaempferol
might prevent the initial adhesion in the biofilm development, as well as a reduction in the
function of S. aureus sortaseA (SrtA) and the expression of genes linked to adhesion [103].
Kaempferol, alongside other phenolic compounds, is detected in significant quantities in
grape waste, as evidenced by a study from Moschona et al. [101]. Grapes, particularly
of the Vitis vinifera variety, are cultivated extensively worldwide for the purpose of wine
production. The residual waste from grapes contains valuable secondary metabolites,
including phenols. Notably, an investigation into the phenolic content of wine wastes
(of the Malagouzia and Syrah varieties) was undertaken using high-performance liquid
chromatography (HPLC) and electrospray ionization mass spectrometry (ESI/MS). The
subsequent encapsulation of the identified phenolic compounds was performed using
different polymers. The study revealed that extracts from all grape wastes yielded substan-
tial total phenolic levels (ranging from 13 ± 2.72 to 22 ± 2.69 mg/g) and exhibited great
antioxidant effect (67–97%) [101].

The study confirmed that investigating how bacterial contamination and biofilm for-
mation affect the instruments used in the manufacturing of cosmetics is crucial, particularly
in light of the rising demand for natural goods that are handmade or customized. Although
these molecules present enormous potential, it is important to underline the possible appli-
cation of naturally occurring plant phenolic compounds as antibacterial agents in cosmetics,
and the themes require further investigation. For example, Kumar et al. have shown
that kaempferol is a polyphenolic substance that has excellent antibacterial action [120].
However, its significant mass and low water solubility limit its activity. Despite this, the
researchers hypothesized that, through inhibition of bacterial porin channels or stimulation
of the ATP-dependent efflux pump mechanism, these substances could still effectively sup-
press bacterial growth [120]. In a different study, Karpiński et al. discovered that apigenin
was poorly effective against S. aureus strains (MIC = 500–1000 µg/mL), which were also
resistant to the derivatives vitexin and isovitexin (MIC > 1000 µg/mL), while apigenin and
luteolin had a MIC of 500 µg/mL against E. coli and P. aeruginosa [106]. Given their potential
to replace strong artificial preservatives in cosmetics, it is evident that greater research
focus is needed on these materials. The possibility of utilizing naturally sourced phenolic
compounds not only represents a sustainable solution for managing agro-industrial waste
but could also revolutionize the cosmetic sector by offering safer and more natural alterna-
tives to consumers. Therefore, it is crucial that future studies concentrate on this promising
field of application to develop effective and environmentally friendly products.

3.3. Terpenoids

Similar to terpenes, terpenoids are a wide and diverse class of chemical molecules,
also known as isoprenoids [107]. These substances are present in every type of living
thing and are produced by plants, where they play a pivotal role in a variety of biotic
interactions. Terpenoids have numerous essential roles in plants. They contribute to
the formation of some carotenoid pigments, as well as the hormones gibberellin and
chlorophyll. Furthermore, they are the precursors of steroids and sterols [107]. Terpenoids
are the progenitors of tetraterpenoids, also known as carotenoids. Carotenoids are a vast
class of pigments found in many plant and animal kingdoms; their colors range from deep
red to yellow. At the moment, a large percentage of carotenoids are produced artificially
since this is less expensive, but natural sources are being utilized more frequently [121].
Spinach leftovers can be used to extract xanthophylls, whereas orange and red foods
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are sources of carotene [122]. Mono- and sesquiterpenoids are typically predominant in
essential oils (EOs) [107,108]. EOs are plant-based volatile compounds that can be obtained
from a variety of plant sections, including fruits and flowers [108]. Their composition
consists of a blend of phytochemicals or low-mass plant natural compounds, such as citral,
geraniol, eugenol, carvacrol, linalool, citronellal, carvone, limonene, terpinenes, menthol,
and menthone [107,108]. They are frequently extracted using a range of techniques from
food production waste. In addition to the species, portion of the plant, development stage,
cultivation technique, processing method, and storage conditions, the extraction method
also affects the content, quality, and characteristics of essential oils [123].

Since EOs have reported several positive effects, the cosmetics industry makes exten-
sive use of their constituent parts. They may have analgesic, antibacterial, diuretic, antioxi-
dant, or anti-inflammatory qualities, in addition to giving products a unique scent [124].
Due to their antibacterial properties, essential oils can be used as preservatives in cosmetics,
either as the sole preservative or as an adjunct to other preservatives. Studies have shown
that when EOs are mixed with other stabilizers, chelating agents, and preservatives, their
antibacterial action increases. EOs must be safe for consumers, toxicity-free, and highly
active at low concentrations to be employed as preservatives in cosmetics. They should not
have a strong flavor, smell, or color, and their effects should be directed at a wide range of
microbes. Almost all kinds of cosmetics can employ EOs as preservatives [124]. Essential
oils are predominantly found in another agri-food waste: citrus peels [107,125–131]. The
Rutaceae family of plants, which includes 17 species of citrus plants, is distributed in
tropical, subtropical, and temperate climates [132]. This genera includes one of the fruits
most consumed globally [133]. Estimates suggest that approximately 124 million tons of
citrus fruits are produced per year. Oranges (Citrus sinensis L.) account for 67 million tons,
mandarins (Citrus reticulata L.) for 33 million tons, and lemons (Citrus limon L.) and limes
(Citrus aurantifolia L.) for 16 million tons [134]. Fresh fruit production generates substantial
waste during the entire process, including peels, pulp, and seeds, which are around 50%
of the fruit mass. These waste materials can be reused for creating sources of co-products
with added value, such as terpenoids [135,136]. It is important to note that citrus peel EOs
have been widely studied for their antimicrobial properties. However, further research
on the bioactivities of fractions from citrus waste by-products is necessary. Additionally,
because certain residues have been valorized but others are still disposed of in landfills,
the molecules in the peels cause environmental issues. Therefore, the valorization of these
by-products is crucial for protecting the environment in addition to raising the possible
economic return [135,136].

Geraci et al. [130] used peels from 12 cultivars of oranges (C. sinensis) to obtain EOs
by steam distillation and analyzed their chemical composition. They also carried out a
comparison between the cultivars based on their composition in EOs. The identification of
the components was evaluated by gas chromatography–mass spectrometry (GC-MS). In the
12 varieties of orange peel essential oils analyzed, a total of 54 compounds were identified.
These compounds included hydrocarbons, aldehydes, ketones, alcohols, monoterpene
esters, and oxides. Limonene was identified as the predominant component in all EO
samples from orange cultivars, with peak area percentages ranging between 73.9% and
97.6%. Additionally, discrete proportions of monoterpenoid alcohols (namely linalool,
geraniol, nerol, and α-terpineol) were observed, while the other components were present
in trace amounts. Some differences in composition were found among the groups of sweet
oranges. All the obtained EOs were tested (2.5–100 mg/mL) on a panel of Gram-positive
and Gram-negative strains (S. aureus, L. monocytogenes, P. aeruginosa). The EO of the “San-
guinello di Paternò” cultivar showed a MIC value six times lower than that reported for
“Moro Solarino” EO against two strains of L. monocytogenes. The antimicrobial activity
detected reinforced the data on the effectiveness of orange peel EOs against pathogens.
Contrarily, lower efficacy was observed from EOs derived from the two cultivars, “San-
guinello” and “Moro”, against Gram-negative bacteria, such as S. aureus and P. aeruginosa.
These findings are consistent with other research showing the great resistance to citrus EOs
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of Gram-negative bacteria compared to Gram-positive ones [137,138]. A greater resistance
to citrus EOs of S. aureus than L. monocytogenes was also noted [130]. This suggests the
potential use of these essential oils in combination with another compound of the same
origin, possibly seeking a synergistic effect to overcome these limitations.

Another fruit peel with a high content of bioactive compounds is bergamot (Citrus
bergamia Risso et Poiteau) from the Rutaceae family, Citrus genus, which is almost exclusive
to the Calabria region, Italy, growing along the southeastern coast in the Reggio area. In
a study, Quirino et al. [131] investigated the antibacterial activity of distilled bergamot
peel extracts using various methods to determine their efficacy against multidrug-resistant
pathogens. Distilled bergamot extracts were prepared and chemically characterized us-
ing gas chromatography–mass spectrometry (GC-MS), revealing a composition rich in
monoterpenes, such as limonene, linalool, and linalyl acetate, which are known for their
antimicrobial properties. The activity of extracts against bacteria and fungi was investigated
through broth microdilution assays to find MBC values. Experiments were conducted
with serial dilutions of the extracts (from 5% to 0.03% v/v). After incubation at 37 ◦C for
24 h, the MBC was identified as the lowest dilution at which no microbial growth was
observed, indicating the bactericidal efficacy of the extract. The MIC varied depending on
the pathogen, with values ranging from 0.125% to 1% (v/v). Kinetic bactericidal profiles
were detected using the time-kill assay. Results were presented in terms of log10 CFU/mL,
with a bactericidal effect identified as a reduction of 3 log10 CFU/mL from the initial
inoculum. Microbial cultures were incubated with the bergamot peel extract, and samples
were taken at predefined intervals (0 and 30 min and 1, 2, 4, 6, 8, and 24 h) reported a
significant reduction in bacterial growth, confirming the antibacterial efficacy of the extract.
Disk diffusion tests demonstrated that distilled bergamot peel extracts produce significant
inhibition zones against various pathogens. For instance, the inhibition zones for S. aureus
were approximately 15 mm, while for E. coli, they were 18 mm. These results indicate great
antibacterial efficacy of the extracts versus both Gram-positive and Gram-negative bacteria.
Confocal laser scanning microscopy was utilized to observe the interaction of bergamot
extracts with multidrug-resistant bacteria and C. albicans cells. Microscopic preparations of
untreated and treated strains, after at least 4 h of incubation, revealed a marked reduction
in cell viability, indicating a potent antimicrobial effect. These results suggest that berg-
amot peel extracts possess significant potential as natural antimicrobial agents, offering a
promising therapeutic alternative against multidrug-resistant pathogens [131].

One more fruit whose peels are rich in active compounds is the pomelo (Citrus max-
ima). This exemplifies how waste materials, which could represent a disposal issue, can be
repurposed to provide beneficial solutions. Karakaya et al. [139] evaluated the chemical
composition and antimicrobic effect of pomelo (Citrus maxima) EO obtained from the fruit
peel. The EO was extracted by hydrodistillation from the flavedo layer of the peel and
analyzed using gas chromatography–mass spectrometry (GC-MS), and a total of 62 com-
pounds were found. Monoterpenes comprised 89.36% of the essential oil, predominantly
D-limonene, which is almost the entirety of the monoterpenes (76.97%). The EO is notable
for its nootkatone content (1.13%). Antimicrobial activity was measured using the broth
macrodilution method against S. aureus, B. cereus, E. coli, Saccharomyces cerevisiae, and C.
albicans, reporting MIC values of the EO ranging between 2000 and 16,000 µg/mL for all the
mentioned microorganisms. These findings suggest that pomelo EO could be utilized as a
natural and cost-effective taste enhancer and antimicrobial additive in food, pharmaceutical,
and cosmetic fields.

Weng et al. [129] focused on the antimicrobial potential of mandarin (Citrus depressa
Hayata) peel essential oil (CD-EO). In their study, EOs were extracted through steam
distillation and analyzed using gas chromatography–mass spectrometry (GC-MS). The
analysis identified approximately 31 compounds, accounting for 99.98% of the total volatile
substances. The principal components were (R)-(+)-limonene (38.97%) and γ-terpinene
(24.39%). The antimicrobial activity was assessed against C. albicans, E. coli, P. aeruginosa,
and S. aureus. The findings demonstrated that higher concentrations of CD-EO led to more
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pronounced antimicrobial effects. Using a concentration of 8 mg/mL CD-EO, the authors
observed relevant inhibition rates against C. albicans (70.82%), E. coli (68.38%), P. aeruginosa
(60.15%), and S. aureus (56.89%). Furthermore, the inhibitory concentration required to
suppress 50% of microbial growth (IC50) was determined for each microorganism. The
results indicated that CD-EO demonstrated the strongest effects against the following
microorganisms: C. albicans > P. aeruginosa > E. coli (IC50 of 7.13 mg/mL) > S. aureus [129].

In addition to emphasizing the primary agricultural and food wastes, such as citrus
peels, from which essential oils rich in antimicrobial terpenoids can be obtained, other
forms of waste capable of yielding the same compounds exist. To elucidate this point
further, we can cite a study by Salvatori et al. [140], in which the authors evaluated the anti-
inflammatory and antimicrobial effects of EOs produced from processing waste of seven
types of eucalyptus waste. Australia, New Zealand, and Tasmania are the natural homes of
eucalyptus species (Myrtaceae), which are highly valued for their financial contribution
to the forestry sector that produces wood and paper [141]. In Brazil, 5.7 million hectares
of planted trees are part of eucalyptus plantations [142]. These plants are mostly used
in the forestry sector, which supports the economy but also produces millions of tons
of waste that is expensive for both the environment and the industry [141]. Leaves and
branches of eucalyptus trees are left on the ground since they are mostly used in Brazil
to produce timber or pulp for the paper industry [140]. The researchers of this study
identified an opportunity in these residues, using them as raw materials in the production
of compounds with antimicrobial and anti-inflammatory activities, such as EOs [143].
Studies have previously demonstrated that eucalyptus EOs exhibit antimicrobial activity
against both Gram-positive (S. aureus) and Gram-negative (E. coli) bacteria, indicating the
possibility of employing the oil as a natural antimicrobial to treat contaminations caused by
these two bacteria [144]. These results highlight the need to develop novel compounds with
antibacterial potential by suggesting that 1,8-cineole, the primary molecule in eucalyptus,
may be in charge of this action [144]. In the study by Salvatori et al. [140], the essential oils
were obtained through steam distillation, and their chemical composition was analyzed
using gas chromatography–mass spectrometry (GC-MS). The analysis revealed the presence
of several terpenoid compounds such as α-pinene, β-pinene, γ-terpinene, Pinocarvone,
Caryophyllene, Himbaccol, α-terpineol acetate, Viridiflorol, Aromandendrene, and D-
limonene, with some varieties of eucalyptus containing higher concentrations of specific
compounds. Interestingly, 1,8-cineole (eucalyptol) was found in all species except one, with
the hybrid “Urocam” showing the highest concentration at 82.18%. The effects against
bacteria and fungi of the EOs were tested against S. aureus, E. coli, and C. albicans. The
agar dilution experiment was utilized to define the EOs’ MIC. The results indicated that all
seven oils showed efficacy against S. aureus, E. coli, and C. albicans. In the tests conducted
against the two bacteria, the types “E. dunnii” and “Grancam” in particular showed the
greatest effectiveness.

4. Limitations and Challenges

Agri-food waste comprises a multifaceted blend of substances, often found in varying
concentrations. This intricate composition presents challenges in isolating and purifying
the active components, necessitating the application of sophisticated and costly extraction
and characterization techniques. The inherent variability in waste components can compro-
mise the quality and quantity of extracted compounds, posing additional complexities in
establishing standardized production processes [145].

One important aspect to consider is the safety and effectiveness of these compounds.
Although many studies have confirmed the antimicrobial and antioxidant properties of
natural extracts, it is vital to conduct additional research to assess their potential toxicity
and any possible side effects. This is especially important when considering their use in
cosmetic products, where ensuring consumer safety is of utmost importance [146].

The absence of a specific regulatory framework for the employment of innovative nat-
ural antibacterial compounds may pose an additional obstacle. The absence of established
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guidelines can delay the adoption of these compounds, requiring greater efforts by regula-
tory authorities to establish clear and safe regulations for their use [147]. Additionally, it
is important to consider the potential onset of resistance to the component of the extracts,
which could compromise their long-term effectiveness and lead to the development of
more hostile microbial strains [21].

In numerous instances, the bioactive impact does not stem from a lone phytochemical
but rather from the collaborative effect of multiple compounds within an extract. This syn-
ergistic collaboration can introduce challenges in standardizing and scaling up production,
as the removal or addition of any compound has the potential to modify the effectiveness
of the entire extract [148].

Another potential limitation and, consequently, a new challenge can be considered
as the microbial resistance induced by the natural extracts obtained from food waste. As
with other natural and/or synthetic compounds with antimicrobial activity, the food waste-
derived molecules can stimulate the onset of resistance in the treated microorganisms,
especially when there is no high specificity of action. The strong point of some substances
obtained from waste is their dual function, not only antimicrobial preservative activity on
the formulation but also beneficial activities on the skin. This would allow, if included in a
cosmetic product, the use of a single ingredient with a dual function and, therefore, would
allow to streamline the formulation, reducing the risk of harmful effects on the skin [149].

5. Conclusions

Despite challenges, using natural antimicrobial compounds from agri-food waste in
cosmetics offers significant advantages. These phytochemicals serve as viable alternatives
to synthetic preservatives and enhance product quality with additional aesthetic and ther-
apeutic benefits. This approach meets growing consumer demand for safe, sustainable
products and supports waste reduction and the circular economy. Moreover, many natural
compounds possess antioxidant and anti-inflammatory properties, further enriching cos-
metic formulations. The adoption of these compounds not only improves consumer safety
but also minimizes the environmental impact of the cosmetic industry. To fully harness
their potential, an interdisciplinary effort involving research, technological advancement,
and regulatory support is essential. With appropriate investment and collaboration, natural
compounds could play a fundamental role in the future of sustainable cosmetics.

Author Contributions: Conceptualization, D.P.; writing—original draft preparation, A.S., A.M. and
N.d.; writing—review and editing, M.C.C. and D.P.; supervision, D.P. All authors have read and
agreed to the published version of the manuscript.

Funding: This research was funded by the Next Generation EU-Italian NRRP, Mission 4, Component
2, Investment 1.5, call for the creation and strengthening of ‘Innovation Ecosystems’, building
‘Territorial R&D Leaders’ (Directorial Decree n. 2021/3277)—project Tech4You—Technologies for
climate change adaptation and quality of life improvement, n. ECS0000009. This work reflects
only the authors’ views and opinions, and neither the Ministry for University and Research nor the
European Commission can be considered responsible for them.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: No new data were created or analyzed in this study.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Usmani, Z.; Sharma, M.; Awasthi, A.K.; Sharma, G.D.; Cysneiros, D.; Nayak, S.C.; Thakur, V.K.; Naidu, R.; Pandey, A.; Gupta, V.K.

Minimizing hazardous impact of food waste in a circular economy—Advances in resource recovery through green strategies. J.
Hazard. Mater. 2021, 416, 126154. [CrossRef]

2. Chauhan, C.; Dhir, A.; Akram, M.U.; Salo, J. Food loss and waste in food supply chains. A systematic literature review and
framework development approach. J. Clean. Prod. 2021, 295, 126438. [CrossRef]

https://doi.org/10.1016/j.jhazmat.2021.126154
https://doi.org/10.1016/j.jclepro.2021.126438


Cosmetics 2024, 11, 151 18 of 23

3. Morganti, P.; Gao, X.; Vukovic, N.; Gagliardini, A.; Lohani, A.; Morganti, G. Food Loss and Food Waste for Green Cosmetics and
Medical Devices for a Cleaner Planet. Cosmetics 2022, 9, 19. [CrossRef]
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