Bioactive Compounds, Antioxidant Properties, and Cosmetic Applications of Selected Cold-Pressed Plant Oils from Seeds
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Extraction and Analysis of Chlorophylls and Carotenoids by Spectrophotometric Method
2.3. Evaluation of Antioxidant Activity
2.4. Statistical Analysis
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Michalak, M.; Kiełtyka-Dadasiewicz, A. Oils from Fruit Seeds and Their Dietetic and Cosmetic Significance. Herba Pol. 2018, 64, 63–70. [Google Scholar] [CrossRef]
- Gharby, S. Refining Vegetable Oils: Chemical and Physical Refining. Sci. World J. 2022, 2022, 6627013. [Google Scholar] [CrossRef] [PubMed]
- Obiedzińska, A.; Waszkiewicz-Robak, B. Oleje tłoczone na zimno jako żywność funkcjonalna. Food Sci. Technol. Qual. 2012, 19, 27–44. [Google Scholar]
- Sionek, B. Cold pressed oils. Rocz. Panstw. Zakl. Hig. 1997, 48, 283–294. [Google Scholar]
- Zielińska, A.; Wójcicki, K.; Klensporf-Pawlik, D.; Marzec, M.; Lucarini, M.; Durazzo, A.; Fonseca, J.; Santini, A.; Nowak, I.; Souto, E.B. Cold-Pressed Pomegranate Seed Oil: Study of Punicic Acid Properties by Coupling of GC/FID and FTIR. Molecules 2022, 27, 5863. [Google Scholar] [CrossRef]
- Rodríguez-Werner, M.; Winterhalter, P.; Esatbeyoglu, T. Phenolic Composition, Radical Scavenging Activity and an Approach for Authentication of Aronia melanocarpa Berries, Juice, and Pomace. J. Food Sci. 2019, 84, 1791–1798. [Google Scholar] [CrossRef]
- Milala, J.; Grzelak-Błaszczyk, K.; Sójka, M.; Kosmala, M.; Dobrzyńska-Inger, A.; Rój, E. Changes of Bioactive Components in Berry Seed Oils during Supercritical CO2 Extraction. J. Food Process. Preserv. 2018, 42, e13368. [Google Scholar] [CrossRef]
- Pascariu, O.-E.; Israel-Roming, F. Bioactive Compounds from Elderberry: Extraction, Health Benefits, and Food Applications. Processes 2022, 10, 2288. [Google Scholar] [CrossRef]
- Fazio, A.; Plastina, P.; Meijerink, J.; Witkamp, R.F.; Gabriele, B. Comparative Analyses of Seeds of Wild Fruits of Rubus and Sambucus Species from Southern Italy: Fatty Acid Composition of the Oil, Total Phenolic Content, Antioxidant and Anti-Inflammatory Properties of the Methanolic Extracts. Food Chem. 2013, 140, 817–824. [Google Scholar] [CrossRef]
- Bakowska-Barczak, A.M.; Schieber, A.; Kolodziejczyk, P. Characterization of Canadian Black Currant (Ribes nigrum L.) Seed Oils and Residues. J. Agric. Food Chem. 2009, 57, 11528–11536. [Google Scholar] [CrossRef]
- Mińkowski, K.; Grześkiewicz, S.; Jerzewska, M.; Ropelewska, M. Chemical Composition Profile of Plant Oils with High Content of Linolenic Acids. Food Sci. Technol. Qual. 2010, 17, 146–157. [Google Scholar] [CrossRef]
- Crozier, G.L.; Fleith, M.; Traitler, H.; Finot, P.A. Black Currant Seed Oil Feeding and Fatty Acids in Liver Lipid Classes of Guinea Pigs. Lipids 1989, 24, 460–466. [Google Scholar] [CrossRef]
- Grajzer, M.; Prescha, A.; Korzonek, K.; Wojakowska, A.; Dziadas, M.; Kulma, A.; Grajeta, H. Characteristics of Rose Hip (Rosa canina L.) Cold-Pressed Oil and Its Oxidative Stability Studied by the Differential Scanning Calorimetry Method. Food Chem. 2015, 188, 459–466. [Google Scholar] [CrossRef] [PubMed]
- Özcan, M. Nutrient Composition of Rose (Rosa canina L.) Seed and Oils. J. Med. Food 2002, 5, 137–140. [Google Scholar] [CrossRef]
- Güven, N.; Gökyer, A.; Koç, A.; Temiz, N.; Selvi, S.; Koparal, B.; Dedeoğlu, B.; Öztürk, S.; Büyükhelvacigil, H.; Büyükhelvacıgil, R.; et al. Physiochemical Composition of Fig Seed Oil from Turkey. J. Pharm. Pharmacol. 2019, 7, 541–545. [Google Scholar] [CrossRef]
- Rahmani, A.H.; Aldebasi, Y.H. Ficus carica and its constituents role in management of diseases. Asian J. Pharm. Clin. Res. 2017, 10, 49–53. [Google Scholar] [CrossRef]
- Khemakhem, M.; Zarroug, Y.; Jabou, K.; Selmi, S.; Bouzouita, N. Physicochemical Characterization of Oil, Antioxidant Potential, and Phenolic Profile of Seeds Isolated from Tunisian Pomegranate (Punica granatum L.) Cultivars. J. Food Sci. 2021, 86, 852–859. [Google Scholar] [CrossRef]
- Vito, V.; Patricia, G.-S.; Elena, B.; Antonio, S.-C.; Alberto, F.-G.; Fiorenza, C.M. Pomegranate Seeds as a Source of Nutraceutical Oil Naturally Rich in Bioactive Lipids. Food Res. Int. 2014, 65, 445–452. [Google Scholar]
- Beyzi, E. Chemometric Methods for Fatty Acid Compositions of Fenugreek (Trigonella foenum-graecum L.) and Black Cumin (Nigella sativa L.) Seeds at Different Maturity Stages. Ind. Crops Prod. 2020, 151, 112488. [Google Scholar] [CrossRef]
- Akbari, S.; Abdurahman, N.H.; Yunus, R.M.; Alara, O.R.; Abayomi, O.O. Extraction, Characterization and Antioxidant Activity of Fenugreek (Trigonella-foenum graecum) Seed Oil. Mater. Sci. Energy Technol. 2019, 2, 349–355. [Google Scholar] [CrossRef]
- Bozan, B.; Temelli, F. Chemical Composition and Oxidative Stability of Flax, Safflower and Poppy Seed and Seed Oils. Bioresour. Technol. 2008, 99, 6354–6359. [Google Scholar] [CrossRef] [PubMed]
- Erinç, H.; Tekin, A.; Özcan, M.M. Determination of Fatty Acid, Tocopherol and Phytosterol Contents of the Oils of Various Poppy (Papaver somniferum L.) Seeds. Grasas Aceites 2009, 60, 375–381. [Google Scholar] [CrossRef]
- Gao, F.; Yang, S.; Birch, J. Physicochemical Characteristics, Fatty Acid Positional Distribution and Triglyceride Composition in Oil Extracted from Carrot Seeds Using Supercritical CO2. J. Food Compos. Anal. 2016, 45, 26–33. [Google Scholar] [CrossRef]
- Ji, B.; Lee, H.; Jang, B.-K.; Kim, Y.-J.; Park, K.; Jeong, H.-S.; Cho, J.-S. Extraction Conditions to Improve Antioxidant and Antibacterial Activity of Carrot Seed Oil. Ind. Crops Prod. 2023, 202, 116993. [Google Scholar] [CrossRef]
- Ciftci, O.; Przybylski, R.; Rudzińska, M. Lipid Components of Flax, Perilla, and Chia Seeds. Eur. J. Lipid Sci. Technol. 2012, 114, 794–800. [Google Scholar] [CrossRef]
- Zhao, B.; Fu, S.; Li, H.; Chen, Z. Chemical Characterization of Chinese Perilla Seed Oil. J. Oleo Sci. 2021, 70, 1575–1583. [Google Scholar] [CrossRef]
- Michalak, M.; Glinka, R. Plant oils in cosmetology and dermatology. Pol. J. Cosmetol. 2019, 21, 2–9. [Google Scholar]
- Feingold, K.R.; Elias, P.M. Role of Lipids in the Formation and Maintenance of the Cutaneous Permeability Barrier. Biochim. Biophys. Acta 2014, 1841, 280–294. [Google Scholar] [CrossRef]
- Gause, S.; Chauhan, A. UV-Blocking Potential of Oils and Juices. Int. J. Cosmet. Sci. 2016, 38, 354–363. [Google Scholar] [CrossRef]
- Oleowita. Available online: https://oleowita.pl/ (accessed on 8 August 2024).
- Chu, C.; Nyam, K. Application of Seed Oils and Its Bioactive Compounds in Sunscreen Formulations. J. Am. Oil Chem. Soc. 2021, 98, 713–726. [Google Scholar] [CrossRef]
- Valerón-Almazán, P.; Gómez-Duaso, A.; Santana-Molina, N.; García Bello, M.; Carretero, G. Evolution of Post-Surgical Scars Treated with Pure Rosehip Seed Oil. J. Cosmet. Dermatol. Sci. Appl. 2015, 5, 161–167. [Google Scholar] [CrossRef]
- Ilyasoglu, H. Characterization of Rosehip (Rosa canina L.) Seed and Seed Oil. Int. J. Food Prop. 2014, 17, 1591–1598. [Google Scholar] [CrossRef]
- Lin, T.-K.; Zhong, L.; Santiago, J.L. Anti-Inflammatory and Skin Barrier Repair Effects of Topical Application of Some Plant Oils. Int. J. Mol. Sci. 2017, 19, 70. [Google Scholar] [CrossRef]
- Tarlacı, S. A New Source of Omega-3 and Gamma Tocopherol: Fig (Ficus carica L.) Seed Oil. Harran J. Agric. Food Sci. 2021, 25, 556–560. [Google Scholar] [CrossRef]
- Zielonka-Brzezicka, J.; Synowiec, L.; Nowak, A.; Klimowicz, A. Selected fruits as a source of valuable ingredients used in cosmetology. Postępy Fitoter. 2017, 2, 126–131. [Google Scholar]
- Fadhil, N.; Thamer, S.; Abed, M.; Fadhil, N.; Hadi, S. Chemical Composition of Trigonella foenum-graecum Seeds and Inhibitory Activity of Their Seeds Oil against Some Microbes. Int. J. Life Sci. Biotechnol. 2018, 1, 75–83. [Google Scholar]
- Singh, S.; Lohani, A.; Mishra, A.K.; Verma, A. Formulation and Evaluation of Carrot Seed Oil-Based Cosmetic Emulsions. J. Cosmet. Laser Ther. 2019, 21, 99–107. [Google Scholar] [CrossRef]
- Musnaini, M.; Fransisca, S.; Leslie, W. Effectiveness of Cream Formulation of Carrot Seed Oil as Anti-Aging. Int. J. Health Pharm. 2022, 3, 331–340. [Google Scholar] [CrossRef]
- Özcan, M.; Chalchat, J.-C. Chemical Composition of Carrot Seeds (Daucus carota L.) Cultivated in Turkey: Characterization of the Seed Oil and Essential Oil. Grasas Aceites 2007, 58, 359–365. [Google Scholar] [CrossRef]
- Sowińska, M. Natural Properties of Lycopene and Its Application in Medicine. Eur. J. Clin. Exp. Med. 2021, 2, 170–173. [Google Scholar] [CrossRef]
- Igielska-Kalwat, J.; Gościańska, J.; Nowak, I. Carotenoids as natural antioxidants. Adv. Hyg. Exp. Med. 2015, 69, 418–428. [Google Scholar] [CrossRef]
- Sąsiadek, W.; Michalski, J.; Ulatowski, P. Charakterystyka nienasyconych kwasów tłuszczowych zawartych w rybach. Pr. Nauk. Uniw. Ekon. Wrocławiu 2018, 542, 161–176. [Google Scholar] [CrossRef]
- Kaur, N.; Chugh, V.; Gupta, A.K. Essential Fatty Acids as Functional Components of Foods—A Review. J. Food Sci. Technol. 2014, 51, 2289–2303. [Google Scholar] [CrossRef]
- Venter, C.; Meyer, R.W.; Nwaru, B.I.; Roduit, C.; Untersmayr, E.; Adel-Patient, K.; Agache, I.; Agostoni, C.; Akdis, C.A.; Bischoff, S.C.; et al. EAACI Position Paper: Influence of Dietary Fatty Acids on Asthma, Food Allergy, and Atopic Dermatitis. Allergy 2019, 74, 1429–1444. [Google Scholar] [CrossRef]
- Kaźmierska, A.; Bolesławska, I.; Polańska, A.; Dańczak-Pazdrowska, A.; Jagielski, P.; Drzymała-Czyż, S.; Adamski, Z.; Przysławski, J. Effect of Evening Primrose Oil Supplementation on Selected Parameters of Skin Condition in a Group of Patients Treated with Isotretinoin–A Randomized Double-Blind Trial. Nutrients 2022, 14, 2980. [Google Scholar] [CrossRef]
- Ferreri, C.; Masi, A.; Sansone, A.; Giacometti, G.; Larocca, A.V.; Menounou, G.; Scanferlato, R.; Tortorella, S.; Rota, D.; Conti, M.; et al. Fatty Acids in Membranes as Homeostatic, Metabolic and Nutritional Biomarkers: Recent Advancements in Analytics and Diagnostics. Diagnostics 2016, 7, 1. [Google Scholar] [CrossRef] [PubMed]
- Yang, M.; Zhou, M.; Song, L. A Review of Fatty Acids Influencing Skin Condition. J. Cosmet. Dermatol. 2020, 19, 3199–3204. [Google Scholar] [CrossRef] [PubMed]
- Darvin, M.E.; Sterry, W.; Lademann, J.; Vergou, T. The Role of Carotenoids in Human Skin. Molecules 2011, 16, 10491–10506. [Google Scholar] [CrossRef]
- Martins, T.; Barros, A.N.; Rosa, E.; Antunes, L. Enhancing Health Benefits through Chlorophylls and Chlorophyll-Rich Agro-Food: A Comprehensive Review. Molecules 2023, 28, 5344. [Google Scholar] [CrossRef]
- Różańska, M.B.; Kowalczewski, P.Ł.; Tomaszewska-Gras, J.; Dwiecki, K.; Mildner-Szkudlarz, S. Seed-Roasting Process Affects Oxidative Stability of Cold-Pressed Oils. Antioxidants 2019, 8, 313. [Google Scholar] [CrossRef]
- Gustinelli, G.; Eliasson, L.; Svelander, C.; Andlid, T.; Lundin, L.; Ahrné, L.; Alminger, M. Supercritical Fluid Extraction of Berry Seeds: Chemical Composition and Antioxidant Activity. J. Food Qual. 2018, 2018, 6046074. [Google Scholar] [CrossRef]
- Symoniuk, E.; Ksibi, N.; Wroniak, M.; Lefek, M.; Ratusz, K. Oxidative Stability Analysis of Selected Oils from Unconventional Raw Materials Using Rancimat Apparatus. Appl. Sci. 2022, 12, 10355. [Google Scholar] [CrossRef]
- Turan, S.; Solak, R.; Kiralan, M.; Hassanien, M. Bioactive Lipids, Antiradical Activity and Stability of Rosehip Seed Oil under Thermal and Photo-Induced Oxidation. Grasas Aceites 2018, 69, e248. [Google Scholar] [CrossRef]
- Pan, F.; Wen, B.; Luo, X.; Wang, C.; Wang, X.; Guan, X.; Xu, Y.; Dang, W.; Zhang, M. Influence of Refining Processes on the Bioactive Composition, in Vitro Antioxidant Capacity, and Their Correlation of Perilla Seed Oil. J. Food Sci. 2020, 85, 1160–1166. [Google Scholar] [CrossRef]
- Fromm, M.; Bayha, S.; Kammerer, D.R.; Carle, R. Identification and Quantitation of Carotenoids and Tocopherols in Seed Oils Recovered from Different Rosaceae Species. J. Agric. Food Chem. 2012, 60, 10733–10742. [Google Scholar] [CrossRef] [PubMed]
- Rotkiewicz, D.; Konopka, I.; Tanska, M. Barwniki karotenoidowe i chlorofilowe olejow roslinnych oraz ich funkcje. Rośliny Oleiste-Oilseed Crops 2002, 23, 561–579. [Google Scholar]
- Choe, E.; Lee, J.; Min, D.B. Chemistry for Oxidative Stability of Edible Oils. In Healthful Lipids; Akoh, C.C., Lai, O.M., Eds.; AOCS Press: Champaign, IL, USA, 2005; pp. 569–574. [Google Scholar]
- Endo, Y.; Usuki, R.; Kaneda, T. Antioxidant Effects of Chlorophyll and Pheophytin on the Autoxidation of Oils in the Dark. I. Comparison of the Inhibitory Effects. J. Am. Oil Chem. Soc. 1985, 62, 1375–1378. [Google Scholar] [CrossRef]
- Prescha, A.; Siger, A.; Lorenc, K.; Biernat, J.; Nogala-Kałucka, M.; Szopa, J.; Katedra; Medycznej, D. Badania Nad Składem i Podatnością Na Utlenianie Oleju z Nasion Lnu Modyfikowanego Genetycznie. Bromat. Chem. Toksykol. 2008, 41, 286–292. [Google Scholar]
- Kaseke, T.; Opara, U.L.; Fawole, O.A. Effects of Enzymatic Pretreatment of Seeds on the Physicochemical Properties, Bioactive Compounds, and Antioxidant Activity of Pomegranate Seed Oil. Molecules 2021, 26, 4575. [Google Scholar] [CrossRef]
- Çavdar, H.K.; Yanık, D.K.; Gök, U.; Göğüş, F. Optimisation of Microwave-Assisted Extraction of Pomegranate (Punica granatum L.) Seed Oil and Evaluation of Its Physicochemical and Bioactive Properties. Food Technol. Biotechnol. 2017, 55, 86–94. [Google Scholar] [CrossRef]
- Ishtiaque, S.; Khan, N.; Siddiqui, M.A.; Siddiqi, R.; Naz, S. Antioxidant Potential of the Extracts, Fractions and Oils Derived from Oilseeds. Antioxidants 2013, 2, 246–256. [Google Scholar] [CrossRef]
- Ligęza, M.; Wyglądacz, D.; Tobiasz, A.; Jaworecka, K.; Reich, A. Natural Cold Pressed Oils as Cosmetic Products. Fam. Med. Prim. Care Rev. 2016, 18, 443–447. [Google Scholar] [CrossRef]
- Sułek, M.W.; Mirkowska, B.; Kalicka, A. Kosmetyki certyfikowane naturalne i organiczne—Obowiązujące standardy. Towarozn. Probl. Jakości. 2015, 1, 96–103. [Google Scholar]
- Zilles, J.C.; Duarte, L.P.; Ruaro, T.C.; Zimmer, A.R.; Kulkamp-Guerreiro, I.C.; Contri, R.V. Nanoemulsion Containing Kojic Dipalmitate and Rosehip Oil: A Promising Formulation to Treat Melasma. Pharmaceutics 2023, 15, 468. [Google Scholar] [CrossRef] [PubMed]
- Pereira Oliveira, C.N.; Nani Leite, M.; de Paula, N.A.; Araújo Martins, Y.; Figueiredo, S.A.; Cipriani Frade, M.A.; Lopez, R.F.V. Nanoemulsions Based on Sunflower and Rosehip Oils: The Impact of Natural and Synthetic Stabilizers on Skin Penetration and an Ex Vivo Wound Healing Model. Pharmaceutics 2023, 15, 999. [Google Scholar] [CrossRef] [PubMed]
- Truong, V.-L.; Jeong, W.-S. Hair Growth-Promoting Effects of Rosehip (Rosa canina L.) Seed Oil in C57BL/6 Mice. Prev. Nutr. Food Sci. 2023, 28, 411–417. [Google Scholar] [CrossRef]
- Bogdan, C.; Iurian, S.; Tomuta, I.; Moldovan, M. Improvement of Skin Condition in Striae Distensae: Development, Characterization and Clinical Efficacy of a Cosmetic Product Containing Punica granatum Seed Oil and Croton lechleri Resin Extract. Drug Des. Dev. Ther. 2017, 11, 521–531. [Google Scholar] [CrossRef]
INCI | Properties/Application | Ref. |
---|---|---|
Aronia melanocarpa seed oil | Tired, mature skin; exfoliating, soothing for irritated skin after depilation and sunbathing | [7,30] |
Sambucus nigra seed oil | Antioxidant properties; anti-ageing and revitalising cosmetics and products for dyed hair | [30] |
Ribes nigrum seed oil | Protective and antioxidant properties; anti-wrinkle ingredient, strongly regenerating and intensively conditioning; dry and sensitive skin; psoriasis, atopic dermatitis | [27,30] |
Rosa canina seed oil | Wound healing and antioxidant properties; high potential to act as natural UV filters, skin vitaliser, and skin barrier repairing; post-surgical scars (reduces atrophy, dyschromia, and discolouration); for sensitive skin; anti-ageing, anti-cellulite cosmetics | [27,30,31,32,33,34] |
Ficus carica seed oil | Dry, ageing skin; anti-cellulite and massage; hair styling and shine products | [30,35] |
Punica granatum seed oil | Anti-inflammatory and antioxidant properties regenerating, revitalising, firming, anti-ageing, discolouring activity; effectively soothing sunburnt skin and minor skin injuries; high potential to act as natural UV filters; mature, dry, and peeling skin; used for the treatment of Acne rosacea and Acne vulgaris, psoriasis, eczema | [5,30,31,34,36] |
Trigonella foenum-graecum seed oil | Couperose skin requiring revitalisation; supports epidermal regeneration after dermatological treatments; antimicrobial agent; prevents greasy scalp and hair loss | [30,37] |
Papaver rhoeas seed oil | Sensitive and vascular skin; anti-cellulite cosmetics and products for hair which is greasy at the roots and dry at the ends | [30] |
Daucus carota sativa seed oil | Regenerative activity; dry, ageing skin with pigmentation disorders; products for the scalp, hair and weakened nails; high potential to act as natural UV filters | [30,38,39,40] |
Perilla ocymoides seed oil | Anti-inflammatory, anti-bacterial, antioxidant activity; skin with visible signs of fatigue, oily skin, and acne; products for rough hair and hair in need of regeneration | [30] |
No. | Oil Name | Transparency/ Colour | Fatty Acids Composition (%) * | |||||
---|---|---|---|---|---|---|---|---|
C16:0 | C16:1 | C18:0 | C18:1 | C18:2 | C18:3 | |||
1. | Chokeberry seed oil | No clear oily liquid/dark yellow | 6.0–9.0 | nd | 0.5–3.0 | 15.0–30.0 | 57.0–69.0 | 1.0–3.0 |
2. | Elderberry seed oil | No clear oily liquid/green | 5.0–7.2 | nd | 1.0–3.0 | 12.4–19.0 | 37.0–46.2 | 30.0–40.0 |
3. | Black currant seed oil | No clear oily liquid/dark green | 4.0–7.0 | nd | 0.5–4.0 | 15.0–28.0 | 50.0–65.0 | 2.0–16.0 |
4. | Rosehip seed oil | No clear oily liquid/yellow | 4.0–8.0 | nd | 2.0–5.0 | 29.0–38.0 | 50.0–65.0 | 0.2–7.0 |
5. | Fig seed oil | No clear oily liquid/yellow | 7.0–10.0 | nd | 3.0–5.0 | 15.0–25.0 | 28.0–45.0 | 28.0–44.0 |
6. | Pomegranate seed oil | No clear oily liquid/yellow | 2.0–7.0 | nd | 2.0–5.0 | 10.0–25.0 | 17.0–40.0 | nd |
7. | Fenugreek seed oil | No clear oily liquid/yellow | 5.0–15.0 | nd | 0.5–9.0 | 10.0–25.0 | 54.0–75.0 | 0.5–5.0 |
8. | Poppy seed oil | No clear oily liquid/yellow | 8.0–12.5 | 0.05–0.8 | nd | 16.0–25.0 | 65.0–70.0 | nd |
9. | Carrot seed oil | No clear oily liquid/yellow to green | 3.0–7.0 | nd | 0.05–4.0 | 73.0–85.0 | 5.0–15.0 | 0.0–1.0 |
10 | Perilla seed oil | No clear oily liquid/yellow | 5.0–8.0 | nd | 0.5–4.0 | 11.0–25.0 | 12.0–20.0 | 44.0–67.0 |
No. | Oil | Chlorophyll a | Chlorophyll b | Lycopene | β-Carotene |
---|---|---|---|---|---|
1. | Chokeberry | 4.81 ± 0.17 a | 3.38 ± 0.29 a | 0.67 ± 0.05 a | 20.36 ± 0.28 a |
2. | Elderberry | 55.79 ± 0.18 b | 4.04 ± 0.34 b | 3.51 ± 0.16 b | 11.40 ± 0.38 b |
3. | Black currant | 48.45 ± 0.16 c | 10.50 ± 0.25 c | 4.51 ± 0.10 c | 7.34 ± 0.23 c |
4. | Rosehip | 0.81 ± 0.00 d | 1.30 ± 0.00 d | 4.71 ± 0.06 c | 16.45 ± 0.05 d |
5. | Fig | 2.31 ± 0.16 e | 4.28 ± 0.25 b | 1.62 ± 0.08 d | 1.99 ± 0.21 e |
6. | Pomegranate | 0.55 ± 0.00 d | 0.88 ± 0.00 e | 0.14 ± 0.01 e | 1.87 ± 0.08 e |
7. | Fenugreek | nd | nd | nd | 32.90 ± 0.08 f |
8. | Poppy | 2.18 ± 0.00 e | 3.50 ± 0.00 a | 1.22 ± 0.05 f | nd |
9. | Carrot | 11.23 ± 0.17 f | 2.57 ± 0.06 f | 0.96 ± 0.07 g | 6.88 ± 0.09 g |
10. | Perilla | 4.92 ± 0.19 a | 1.40 ± 0.35 d | 0.17 ± 0.10 e | 8.16 ± 0.27 h |
No. | Oil | DPPH—EPR | No. | Oil | DPPH—EPR |
---|---|---|---|---|---|
1. | Chokeberry | 7.46 ± 0.01 a | 6. | Pomegranate | 14.83 ± 0.2 f |
2. | Elderberry | 6.65 ± 0.02 b | 7. | Fenugreek | 7.77 ± 0.02 c |
3. | Black currant | 7.61 ± 0.06 c | 8. | Poppy | 7.64 ± 0.1 c |
4. | Rosehip | 7.21 ± 0.01 d | 9. | Carrot | 6.35 ± 0.05 g |
5. | Fig | 5.3 ± 0.03 e | 10. | Perilla | 6.67 ± 0.09 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Michalak, M.; Błońska-Sikora, E.; Dobros, N.; Spałek, O.; Zielińska, A.; Paradowska, K. Bioactive Compounds, Antioxidant Properties, and Cosmetic Applications of Selected Cold-Pressed Plant Oils from Seeds. Cosmetics 2024, 11, 153. https://doi.org/10.3390/cosmetics11050153
Michalak M, Błońska-Sikora E, Dobros N, Spałek O, Zielińska A, Paradowska K. Bioactive Compounds, Antioxidant Properties, and Cosmetic Applications of Selected Cold-Pressed Plant Oils from Seeds. Cosmetics. 2024; 11(5):153. https://doi.org/10.3390/cosmetics11050153
Chicago/Turabian StyleMichalak, Monika, Ewelina Błońska-Sikora, Natalia Dobros, Olga Spałek, Agnieszka Zielińska, and Katarzyna Paradowska. 2024. "Bioactive Compounds, Antioxidant Properties, and Cosmetic Applications of Selected Cold-Pressed Plant Oils from Seeds" Cosmetics 11, no. 5: 153. https://doi.org/10.3390/cosmetics11050153
APA StyleMichalak, M., Błońska-Sikora, E., Dobros, N., Spałek, O., Zielińska, A., & Paradowska, K. (2024). Bioactive Compounds, Antioxidant Properties, and Cosmetic Applications of Selected Cold-Pressed Plant Oils from Seeds. Cosmetics, 11(5), 153. https://doi.org/10.3390/cosmetics11050153