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Abstract: Skin aging is a complex, multifaceted process influenced by both intrinsic and extrinsic
factors. Understanding the molecular mechanisms underlying skin aging is crucial for developing
effective anti-aging strategies. Dermal stem cells play a pivotal role in maintaining skin homeostasis,
but their functionality is compromised with aging. This study investigated the impact of aging
on dermal stem cells and explored the potential of natural extracts in modulating their biological
characteristics. Using bulk RNA barcoding and sequencing (BRB-seq), we identified differentially
expressed genes (DEGs) between young and aged dermal stem cells, revealing alterations in cellular
processes, including cell proliferation, ECM synthesis, and RNA splicing. We also demonstrated that
a natural extract, comprising callus cells and Alpine rose leaf extracts, influenced RNA splicing in
aged dermal stem cells, leading to improved dermal structure and integrity in vitro. Our findings
suggest that natural extracts may exert their effects through senolytic activity and the modulation of
RNA splicing, a process crucial to gene expression and cellular function. This study underscores the
potential of integrating high-throughput transcriptomics in understanding skin aging, presenting
new avenues for the development of innovative, sustainable, and effective anti-aging strategies.

Keywords: xeno-free; primary human 3D culture; PhytoCellTecTM; emerging hallmark of aging; skin
longevity; callus cells

1. Introduction

Skin aging is a multifaceted process influenced by both intrinsic and extrinsic factors,
leading to changes in skin elasticity, texture, and resilience [1]. Understanding the molecular
mechanisms of skin aging is notably critical for the development of effective anti-aging
strategies. Stem cells, particularly dermal stem cells, play a pivotal role in maintaining skin
homeostasis and regeneration [2]. However, these cells are not unaffected by the aging
process. Aging-related changes in stem cell functionality, including diminished proliferative
capacity and altered differentiation potential, can significantly contribute to tissue aging [3].
The cellular mechanisms underlying stem cell aging are of great interest, as enhancing
stem cell regenerative capacity is a favorable strategy to promote healthy aging. Several
molecular pathways affect skin stem cells at the cellular level, including alterations in DNA
repair and stability, telomere shortening, oxidative stress, mitochondrial dysfunction, and
altered hormonal signaling [4–6]. As such, these pathways may further be interdependent,
delivering cues that affect the skin stem cell niche in a complex manner. For instance,
estrogen signaling is reported to help maintain telomere length [7], while oxidative stress
and the resulting reactive oxygen species result in DNA damage and telomere shortening [8].
Several reports have found that maintaining adult stem cells required for skin maintenance
can prevent premature skin aging [9–11]. Therefore, exploring the complex impact of
aging on skin stem cells is essential to comprehending and combating skin aging at a
cellular level.
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Plant extracts have shown significant potential in stem cell modulation, attributed
in part to their high content of beneficial molecules such as flavonoids, polyphenols, and
isoflavones [12]. For example, flavonoids identified in an Alpine rose leaf extract (Rhododen-
dron ferrugineum) have been identified as probable senolytic molecules [13]. A limitation
of natural plant-derived materials is the sustainable cultivation and sourcing [14]. In this
context, plant callus cells offer a sustainable alternative to obtain bio-active material from
whole plant extracts. Grown under controlled conditions, a consistent profile of bioactive
compounds can be achieved, further eliminating the risk of contamination by environmen-
tal pollutants and pathogens [15]. Callus cell extracts have further demonstrated promising
potential for skin cell treatments, as they have been found to promote antioxidant ac-
tivity, enhance collagen formation, and stimulate cell migration and proliferation [16,17].
However, the effects of plant callus extracts on dermal stem cells remain largely unexplored.

RNA sequencing (RNA-seq) offers numerous benefits in the field of molecular biology
and clinical diagnostics [18]. Particularly bulk RNA-seq, which is performed on pooled cell
populations, has been proven useful in gaining novel insights into the biological mecha-
nisms underlying pathologies, such as very early onset inflammatory bowel disease [19],
glioblastoma [20], and systemic sclerosis [21]. Despite being a powerful tool, the limitations,
including the extensive time and cost of the technology, have driven researchers to find
viable alternatives to address these constraints. One such approach is bulk RNA barcoding
and sequencing (BRB-seq), a cost-effective method for high-throughput transcriptomics,
which combines cost-effective single-cell RNA-seq efficiency with the performance of the
bulk RNA-seq procedure [22]. Employing this technology facilitates the generation of
libraries that parallel the benchmark TruSeq in terms of gene expression quantification
and quality, even applied to low-quality RNA samples [22,23]. As such, BRB-seq repre-
sents a valuable tool to explore the molecular mechanisms present in both physiology
and pathology.

Our study primarily aims to investigate the impact of aging on dermal stem cells by
exploring the gene expression changes in both young and aged cells. Given the reported
potential of plant extracts, particularly plant callus extracts, in skin cell treatments and the
detailed insight gained from BRB-seq analysis, we identify a significant research opportu-
nity. Our study, therefore, will further investigate the impact of a natural extract, comprised
of grape (Vitis vinifera Linné) and apple (Malus Domestica Borkh) callus cells, and Alpine
rose leaf extract (Rhododendron ferrugineum) on the biological and molecular attributes of
aged dermal stem cells. By employing BRB-seq, we aim to generate a comprehensive gene
expression profile of young and aged dermal stem cells, thereby elucidating the cellular
mechanisms occurring during aging, and explore whether they can be influenced by the
callus cell extract.

2. Materials and Methods
2.1. Preparation of Extract

The extract evaluated in this study was prepared with a mixture of callus cells obtained
from grape callus cells (Vitis vinifera Linné) and a specific apple variety of Malus Domestica
(Malus Domestica Borkh), the Uttwiler Spätlauber, according to an established and patented
in-house protocol following the principle of wound-induced callus formation [24]. The
mixture was further enriched with an Alpine rose leaf extract (Rhododendron ferrugineum).
The final extract, SenoCellTecTM (hereafter referred to as “SCT extract”), was provided by
Mibelle Biochemistry, Buchs, Switzerland.

2.2. Validation of Xeno-Free Culture Medium

To validate the use of a xeno-free media for the primary culture of human dermal stem
cells (DSCs), human dermal fibroblasts were cultured in DSC media supplemented with
2% human serum (Curio Biotech, Visp, Switzerland, reference CB-DSC-GM) for a total of
7 days. Control cells were cultured in CB-DSC-GM supplemented with 2% fetal bovine
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serum (FBS). Brightfield images of the cultured cells, were taken after 7 days to compare
cell morphology (Nikon ECLIPSE Ts2-FL, Tokyo, Japan).

2.3. CCK-8 Cell Viability Assay

For the determination of cell viability, cell proliferation and cytotoxicity assays using
the Cell Counting kit-8 (CCK-8) (Cat. N.: HY-K0301, MCE (Med Chem Express, Mon-
mouth Junction, NJ, USA)) were performed according to the kit’s instructions. Briefly,
8000 cells/cm2 were seeded into 96-well plates and preincubated for 24 h in a humidified
incubator (37 ◦C, 5% CO2). Then, various concentrations of the SCT extract were added
into the appropriate wells, and plates were incubated for 48 h (37 ◦C, 5% CO2). After this
period, cell media were replaced with standard media, and 10 µL of CCK-8 solution was
added into each well of the plates. After a further 2 h of incubation (37 ◦C, 5% CO2), the
absorbance was measured at 450 nm using a microplate reader.

2.4. Dermal Stem Cell (DSC) Isolation and Treatment

DSCs were isolated from human skin explants by a standard methodology. Human
skin samples from the abdomen of Caucasian females from two age groups (“young” group,
18–30 years old and “aged” group, >70 years old, n = 3 per group) were acquired from a
tissue collection site in France with license number AC-2017 3030 from French Ministry of
Higher Education and Research according to French laws including ethics regulations. The
tissues had been collected during plastic surgery after informed consent had been obtained.
Tissues were washed and treated with dispase II enzyme (Sigma Aldrich, Taufkirchen,
Germany), overnight at 40 ◦C. After, the epidermis was peeled, the microvessels from the
upper part of dermis were extruded mechanically, and the remaining tissue was washed
several times. The tissue was then chopped into tiny pieces with a scalpel blade and
digested with collagenase I (Thermo Fischer Scientific, Waltham, MA, USA) till fully
digested by shaking every hour. Isolated cells were filtered using a cell strainer (Milian,
Switzerland) and cultured in validated (supplementary data) xeno-free dermal stem cell
growth medium (CB-DSC-GM, Curio Biotech, Visp, Switzerland) containing 2% human
serum (Type AB—heat inactivated, P30-2501-HI, PAN-Biotech, Aidenbach, Germany). Cells
were grown to a confluency of 60% in growth medium (CB-DSC-GM), and then the media
were exchanged with fresh medium containing 0.5% human serum and the cells treated for
2 days either in presence or absence of 0.4% SCT extract. After 2 days of treatment, cells
were detached, lysed in RNA lysis buffer (Bio-Rad Laboratories, Hercules, CA, USA), and
RNA extraction was performed according to the manufacturer’s protocol. Untreated DSCs
of young donors and aged donors were cultured as a control until confluency, without
extract treatment, for 2 days according to the above-described procedure.

2.5. Flow Cytometry Analysis

The populations of stem-cell marker-expressing cells were determined on a Cytoflex S
flow cytometer (Beckman Coulter, Brea, CA, USA). Cells were fluorescently labeled with
anti-human monoclonal antibodies (BioLegend, San Diego, CA, USA) against CD29 (Cat.
No. # 303015), CD49f (# 313607), CD133 (# 397905), CD34 (# 343503), CD31 (# NB100-
65336AF488), CD73 (# 344003), CD90 (# 328107), and CD105 (# 323203). Unstained cells
and appropriate IgG controls were used in parallel as controls. The protocol used was as
follows: Cell suspensions were first fixed in 4% formaldehyde for 10 min, washed in a
wash buffer (WB: 0.25% Tween-20 in DPBS + 5% FBS), and spun down. The cell pellets
were resuspended in the presence of the labeled monoclonal antibody diluted in WB and
incubated for 1 h on ice in the dark. Then the samples were washed twice with cold WB,
and the cell pellets were resuspended in cold PBS and subjected to flow cytometry analysis.
A total of 105 cells were measured at medium speed and gated to exclude doublets. Data
acquisition s was performed with CytExpert Acquisition Software (version 2.5, Beckman
Coulter, Brea, CA, USA) and analysis was performed using FloJoTM software (version
10.8.1, FlowJo, Ashland, OR, USA).
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2.6. RNA Extraction and Quantification

Total RNA was extracted from the samples using the Aurum Total RNA Mini Kit
(Bio-Rad Laboratories, Hercules, CA, USA) according to the manufacturer’s instructions.
Briefly, adherent cells were lysed in lysis buffer, then one volume of 70% ethanol was added,
and the resulting mix was directly added into each spin column and further processed
following several sequential washes with high and low stringency buffers included in the
kit. DNase I treatment was performed to eliminate eventual residual genomic DNA. Finally,
RNA was eluted in 10 mM Tris-Cl pH 8.0. The resulting total RNA was quantified via
NanoDrop 2000 apparatus (Thermo Fisher Scientific, Waltham, MA, USA).

2.7. Bulk RNA Barcoding (BRB) and Sequencing

For BRB mRNA sequencing, library preparation was performed using MERCURIUS
BRB Sequencing Library preparation Kit (Alithea Genomics, Epalinges, Switzerland) and
were subjected to Illumina sequencing with 5 million reads/sample, as previously de-
scribed [22]. Briefly, NanoDrop quantified RNA was further quality controlled for RNA
integrity on BioAnalyzer (Agilent technologies, Santa Clara, CA, USA). RNA was reverse
transcribed directly in the reverse transcription (RT) reaction with barcoded oligo-dT
primers. The resulting cDNA was pooled in a single tube prior to cDNA second strand
synthesis. The Illumina-compatible Unique Dual Indexed (UDI) library preparation was
performed, and the libraries were sequenced on the Illumina NovaSeq (Illumina, San
Diego, CA, USA) instrument. The FASTQ files were sample-demultiplexed and aligned
to the reference genome using STARsolo version 2.7.9a [25]. The resulting count matrices
were used for downstream gene expression analysis. For the identification of differentially
expressed genes (DEGs), the data were analyzed using the DESeq2 R package, and func-
tional enrichment tests were performed for finding associated biological pathways. First,
the raw count data obtained from BRB-seq experiments were pre-processed to remove
low-quality reads and filter out lowly expressed genes. The data were then normalized
using DESeq2 to account for differences in library size and composition. The variance of the
data was estimated using a negative binomial distribution to model the read counts. LRT
hypothesis testing was performed to identify DEGs based on adjusted p-values and logFC
(fold change). The detected DEGs were further analyzed to identify Gene Ontology terms
and KEGG pathways associated with them using functional enrichment tests. Significant
enrichment was indicated by a minimum gene overlap of 3, p-value cut-off of 0.01, and
minimum enrichment factor of 1.5.

2.8. Dermis Culture and Treatment

DSCs from young and aged donors were seeded in 3D cell culture inserts with a
seeding density of 200,000 cells/insert in growth medium (CB-DSC-GM), serum-free,
overnight. The following day, the culture medium was exchanged with fresh medium
containing 0.5% human serum and treated in the presence or absence of 0.4% SCT extract
for 10 days, with media change and treatment renewal every alternate day. After exposure,
3D models were harvested at day 10, fixed and processed for histological staining.

2.9. Histology and Immunohistochemistry

Inserts were fixed in 4% PFA for 15 min, then PFA was changed for 70% ethanol. The
inserts were then processed for paraffin embedding. Paraffin-embedded sections (5 mm) were
stained with H&E (Hematoxylin and Eosin) for gross morphology. Bright field histological
microscopy (Nikon TS2-FL, Tokio, Japan, magnification 20×) images were acquired, and the
thickness of 3D dermis formed in the presence and absence of SCT extract was quantified
using an open-source software, ImageJ (Version 20, NIH, Bethesda, MD, USA).

2.10. Statistical Analysis

Statistical comparisons were performed using GraphPad Prism 8 software (GraphPad,
Boston, MA, USA), and all data are expressed as mean ± SD of at least 3 independent
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experiments. Comparisons among different groups were made using one-way ANOVA or
Student’s t-test with homoscedasticity. p values < 0.05 were considered significant.

3. Results
3.1. Characterization of Dermal Stem Cells by Fluorescence-Activated Cell Sorting (FACS)

To ensure optimal culture conditions for human stem cells, including DSCs, ideally
defined culture conditions are applied. This includes the removal of non-human animal-
derived components, which helps to eliminate issues associated with batch variation and
pathogen transmission [26]. Therefore, isolated DSCs were cultured, and the experiments
performed in xeno-free culture media supplemented with human serum. The primary
cell culture in the defined xeno-free media was validated prior to the experiment’s start
by assessing cell viability and morphology (Supplemental Figure S1) and provides, to the
best of our knowledge, the first evidence of successful xeno-free human DSC culture. The
isolated cells were characterized by FACS analysis to confirm their identity, with CD29,
CD73, and CD90 as positive markers, whereas CD31 and CD34 were chosen as negative
markers [27,28]. CD29 is a commonly used skin stem cell marker [29,30], which identifies
dermal mesenchymal stem cells. Further, CD73 and CD90 are a favorable combination to
label dermal stem cells [31,32], as they can distinguish different subsets of human dermal
stem cells, including dermal stromal cells [33]. After cell isolation, FACS analysis of three
independent donors demonstrated clearly negative signals for both CD31 and CD34, con-
firming the cells are not of a hematopoietic or endothelial origin (Supplemental Figure S2).
In contrast, the isolated cell populations from all three donors had clear positive signals
for the dermal stem cell markers CD29, CD73, and CD90. The combination of these three
markers confirms that the cells, as isolated by the protocol used for this study, are indeed a
dermal stem cell population.

3.2. Differential Gene Expression in Young and Aged Human DSCs

The BRB sequencing of DSCs isolated from young and aged donor tissues identified a
total of 7409 genes, of which 75 were differentially expressed genes (DEGs). Compared to
young DSCs, 20 genes were upregulated, and 55 genes were significantly downregulated
in the aged DSC samples (Figure 1a). The volcano plot highlights the most significant
up- and downregulated genes in aged donors, compared to young DSCs (Figure 1b). The
full names and log2 fold changes of the top 10 up- and downregulated genes in aged
cells are further depicted in Table 1. Compared to young DSCs, old cells had significantly
upregulated genes associated with the inhibition of cell proliferation, such as PHLDA2 and
SFRP1 [34,35]. Furthermore, protective factors such as glutathione peroxidase 3 (GPX3)
and clusterin (CLU) were identified to be significantly downregulated [36,37]. Further
downregulated genes include DKK1, CCN5, PTGIS, and SCARA5, which are involved in
processes affecting cellular aging, such as cell proliferation [38], immune cell infiltration [39],
and protein clearance [40].
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Figure 1. Differential gene expression in young and aged human DSCs. BRB sequencing of young and
aged DSCs identified 75 differentially expressed genes (DEGs), with 20 upregulated, and 55 significantly
downregulated in the aged DSCs compared to young DSCs (a). A volcano plot (b) was used to visualize
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the DEGs identified. Gene Ontology analysis performed reveals changes in biological process (c),
molecular function (e), and cellular components (g). Linkages of genes, terms, and pathways for the
respective GO categories are graphed in (d,f,h), respectively. Colors correspond to significant fold
change expression. Red, high expression; blue, low expression.

Table 1. Top 10 DEGs up- and downregulated in aged DSCs.

Upregulated Downregulated

Gene ID Gene Name Log2 Fold
Change p Value Gene ID Gene Name Log2 Fold

Change p Value

PHLDA2 Pleckstrin homology-like domain
family A member 2 1.83 6.02 × 10−3 GPX3 Glutathione peroxidase 3 −5.28 4.90 × 10−6

SFRP1 Secreted frizzled-related protein 1 1.59 3.83 × 10−8 CCN5 Cellular communication network
factor 5 −2.81 1.67 × 10−4

IGF2BP3 Insulin-like growth factor 2
mRNA-binding protein 3 1.51 3.70 × 10−5 SCARA5 Scavenger receptor class A

member 5 −2.57 3.91 × 10−5

FOSL1 Fos-related antigen 1 1.37 1.11 × 10−4 PTGIS Prostaglandin I2 synthase −2.06 2.10 × 10−4

PTGS1 Prostaglandin-endoperoxide
synthase 1 1.32 6.28 × 10−7 SPATC1L Spermatogenesis and centriole

associated 1 like −1.85 1.84 × 10−8

STAMBPL1 STAM-binding protein like 1 1.30 2.37 × 10−8 FBLN2 Fibulin 2 −1.82 7.20 × 10−6

PLK3 Polo-like kinase 3 1.27 1.27 × 10−5 MEDAG Mesenteric estrogen-dependent
adipogenesis −1.78 8.99 × 10−5

SH2B3 SH2B adaptor protein 3 1.26 7.92 × 10−13 MASP1 MBL-associated serine protease 1 −1.76 9.42 × 10−11

SLC20A1 Solute carrier family 20 member 1 1.20 5.37 × 10−5 DKK1 Dickkopf-related protein 1 −1.76 2.34 × 10−5

SPRY2 Sprouty RTK signaling antagonist 2 1.19 1.63 × 10−8 CLU Clusterin −1.66 1.16 × 10−4

Gene Ontology (GO) functional enrichment analysis was further performed for the
DEGs identified by RNA-seq and grouped according to biological process (Figure 1c),
molecular function (Figure 1e), and cellular components (Figure 1g). The analysis revealed
altered processes (and linked genes) in the aged DSCs, such as the negative regulation
of ossification (downregulated ECM1, DKK1, and PTK2B and upregulated SFRP), and
prostanoid and prostaglandin metabolic processes (downregulated AKR1C1 and PTGIS
and upregulated PTGS1 and PRXL2B) (Figure 1d). When analyzing the molecular functions,
an altered regulation of various cell binding processes (sulfur compound, heparin, gly-
cosaminoglycan, IGF, and ECM) was identified, which was linked to cell-communication
genes including CCN2 (upregulated), CCN5 (downregulated), and the extracellular matrix
(ECM)-modulating factors ADAMTS5, ADAMTS15, FBLN2, and ECM1 (downregulated)
(Figure 1f). The GO further identified the collagen-containing ECM to be a cellular compo-
nent significantly altered in aged DSCs (Figure 1h). In line with this, the DEGs associated
with the ECM include LAMA2, ECM1, ADAMTS5, ADAMTS15, FBLN2, CLU, CLEC3B,
and PRG4 (downregulated) and CCN2 and SFRP1 (upregulated).

3.3. Natural Extract Affects RNA Splicing in Aged Cells

RNA-seq can yield detailed insights to the cellular transcriptome and has been fre-
quently used to identify effects of botanical actives on biological processes in vitro [41,42].
To identify possible effects of the SCT extract on aged DSCs, cells treated with the extract
were compared to their untreated aged and cultured controls. In total, 8006 genes were
identified, wherein, interestingly, only seven DEGs were found to be downregulated with
the treatment in comparison to untreated aged controls (Figure 2a). Further, no signifi-
cantly upregulated genes were detected in this analysis. The heat map of the RNA-seq
analysis shows the expression pattern of the downregulated DEG in both technical and
biological replicates, highlighting the strong differential expression between untreated and
SCT-treated aged DSCs (Figure 2b). The seven DEGs identified were PNISR, RSRP1, MEG3,
PNN, LUC7L3, AHSA2P, and GOLGA4 (Figure 2b). The full names and log2 fold changes
are highlighted in Table 2.
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Figure 2. Altered gene expression in aged DSCs treated with SCT Extract. BRB sequencing of aged
DSCs treated with or without SCT identified 7 significantly downregulated genes in the treated DSCs
(a). The heat map highlights the expression pattern of the downregulated DEGs in the different
groups (b), and the volcano plot (c) visualizes the DEGs identified. Gene Ontology analysis performed
reveals changes in biological process (d) and cellular components (f). Linkages of genes, terms, and
pathways for the respective GO categories are graphed in (e,g) respectively. Colors correspond to
significant fold change expression. Red, high expression; blue, low expression.



Cosmetics 2024, 11, 167 9 of 15

Table 2. DEGs downregulated in aged DSCs treated with SCT extract.

Downregulated

Gene ID Gene Name Log2 Fold Change p Value

AHSA2P Activator of HSP90 ATPase Homolog2, Pseudogene −2.81 1.67 × 10−4

RSRP1 Arginine and Serine Rich Protein 1 −2.57 3.91 × 10−5

PNISR PNN Interacting Serine and Arginine-Rich Protein −2.06 2.10 × 10−4

PNN Pinin, Desmosome-Associated Protein −1.85 1.84 × 10−8

LUC7L3 LUC7-like 2 Pre-MRNA Splicing Factor −1.82 7.20 × 10−6

GOLGA4 Golgin Subfamily A Member 4 −1.78 8.99 × 10−5

MEG3 Maternally Expressed 3 −1.76 9.42 × 10−11

Gene Ontology functional enrichment analysis identified molecular targets and path-
ways, which suggest that RNA splicing could underlie the biological activity of the SCT
extract. Four of the seven DEGs identified, namely, PNN, PNISR, RSRP1, and LUC7L3,
are associated with RNA binding activity and RNA splicing via spliceosome or transes-
terification reactions (Figure 2d) [43]. This was also reflected in the biological processes
(Figure 2e) and cellular components identified to be involved, which included the nu-
clear speck, prespliceosome, and spliceosomal complex (Figure 2f). Further, GO analysis
identified desmosomes as critical cell components modulated with the SCT treatment.
This cellular component was in turn linked to PNN, which was originally identified as a
desmosome-associated protein [44].

3.4. Improved Dermal Structure with Extract Treatment

To assess the functional outcome of the treatment, primary DSCs of aged tissues were
cultured in the presence of SCT extract to form a stratified 3D structure and compared to
untreated young and aged DSC controls. By adjusting the culture conditions and scaffold,
the formation of organoids could be avoided [45], and the cells formed a stratified dermal
structure. Compared to young DSCs, which formed a dense stratified multilayer (Figure 3a),
the aged DSCs failed to form a comparable structure (Figure 3b). Morphologically, the
structures appeared less dense and, upon the visualization and quantification of the dermis
thickness (Figure 3d), it was observed that the dermal structures formed by aged DSCs were
significantly thinner compared to those formed by young DSCs. Intriguingly, when aged
DSCs were cultured in the presence of SCT extract, the structural integrity was rescued, and
the DSC formed a dermal structure almost equivalent to the young DSCs (Figure 3c). This
highlights the potential of the extract to stimulate aged cells, presumably by modifying
RNA splicing machinery. As a result, dermal stem cell function was enhanced, which
subsequently led to improved dermal integrity in vitro.
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Figure 3. Effects of SCT treatment on 3D dermis reconstruction. Representative images of 3D
reconstructed dermis of cells isolated from young (<30 y) donors (a), aged donors (>70 y), (b) and
aged donors treated with SCT extract (c) after 10 days of culture. Quantification and graphical
representation of dermis thickness (µm) (d). Scale bar = 100 µm. Students t-test, mean± SD, n = 3,
** p < 0.01 compared to aged (>70 y) untreated DSCs.

4. Discussion

The process of skin aging is a complex and inevitable phenomenon that has garnered
increasing interest in recent years. Understanding the molecular mechanisms underly-
ing skin aging is crucial for the development of effective anti-aging therapies and tissue
rejuvenation strategies. The skin’s ECM plays a fundamental role in the aging process,
both intrinsic and extrinsic [46]. Among the known ECM modulators, the family of CCN
matricellular proteins plays a critical role in various physiological processes in the skin,
such as cell proliferation, migration, adhesion, and ECM synthesis [47]. However, some
may also contribute to pathological conditions such as fibrotic disease [48]. In this study,
a differential regulation of two CCNs was identified in aged DSCs, with an upregulation
of CCN2 and a downregulation of CCN5, respectively. The expression of different CCN
proteins is indeed spatially and temporally regulated [49] and can further be modulated
by environmental factors such as UV irradiation. In healthy human volunteers, the UV
irradiation of sun-protected buttock skin demonstrated a significant increase in CCN2,
whilst CCN5 was significantly reduced 24 h post irradiation [50]. Furthermore, in human
fibroblasts, TGF-β-induced fibrosis led to the upregulated expression of CCN2 whilst
CCN5, in contrast, was downregulated [48]. In regard to skin aging, studies report both
the increased [51] and reduced [52,53] expression of CCN2 in human dermal fibroblasts.
The increased expression of CCN2 was found to induce cellular senescence in human
foreskin fibroblasts via p53 and P16INK4a [51]. In contrast, an age-related downregulation of
CCN2 was observed in aged human skin, which was found to mediate collagen loss [52,53].
These differing observations may in part be allocated to the different culture conditions
and exposures used. Elevated levels of CCN2 are further commonly observed in inflam-
matory and fibrotic skin conditions [54,55]. In contrast, CCN5 has been described as an
antifibrotic molecule [56], and its expression may be induced by estrogen [57]. Considering
that the DSCs of this study were obtained from female donors, it can be speculated that the
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age-related decline of estrogen contributes to the observed decrease in CCN5. Moreover,
the characteristic expression of CCN2 and CCN5 observed in the aged DSCs could be
associated with age-related fibrotic processes. Interestingly, plant-derived molecules such
as fisetin and curcumin have been found to benefit the skin via the regulation of the CCN
pathways [58]. As such, the flavonoids present in the natural extract of this study could
potentially modulate these pathways, leading to positive effects on aging skin.

GO functional enrichment analysis further identified changes in prostanoid and
prostaglandin metabolic processes in the aged DSCs. Prostaglandins, particularly
prostaglandin E2 (PGE2), play a significant role in skin aging [59]. In human dermal
fibroblasts (HDFs), PGE2 inhibits collagen production and induces matrix metallopeptidase
1 (MMP1) expression, contributing to dermal matrix degradation and skin aging [60]. Addi-
tionally, PGE2 induces cellular senescence in HDFs, leading to decreased cell proliferation
and increased senescence-associated β-galactosidase staining [61]. Furthermore, senescent
cells synthesize prostaglandins, which further promote the senescence status and reinforce
the proliferative arrest [62]. As such, blocking PGE2 is a favorable approach to combat skin
aging. In line with this, several natural compounds have been reported to prevent PGE2
synthesis [63–65].

When evaluating the extract treatment in this study, a substantial effect of the SCT
treatment was observed on functional outcome, despite only a small number of DEGs
associated with RNA splicing having been identified. Alternative RNA splicing is a post-
transcriptional regulatory mechanism by which a single pre-mRNA transcript can be
differentially processed into diverse mRNA isoforms, thereby expanding proteomic com-
plexity and functional diversity from a limited set of genes [66]. The dysregulation of this
mechanism is described as an emerging hallmark of aging [67] and may serve as a predictor
of biological age and life expectancy, offering potential for developing therapeutics to ex-
tend healthy lifespan in humans [66]. Indeed, a study evaluating gene expression changes
in aging murine skin observed an increase in alternatively spliced genes [68]. These alter-
natively spliced genes were consistently allocated to functions, including RNA processing
and splicing, and found to be enriched within cellular components such as the nucleus and
the spliceosome. Targeting RNA splicing has, therefore, emerged as a promising approach
for anti-aging interventions. One of the first studies addressing such a modulation found
that treating human dermal fibroblasts (NHDFs) with novel small resveratrol analogs was
associated with altered splicing factor levels and a reversal of cellular senescence [69].
Further, in models of accelerated aging including Cockayne syndrome, Hutchinson–Gilford
Progeroid syndrome (HGPS), and Werner syndrome, all three progeroid dermal fibroblast
types showed dysregulated splicing factor gene expression [70]. Intriguingly, treatment
with the kinase inhibitor trametinib led to altered gene expression of a panel of splicing
factors in the HGPS and Cockayne syndrome cells, which was accompanied by a reduced
senescence burden. Our study found that the SCT treatment of aged DSCs affected genes
associated with the spliceosomal complex, the prespliceosome, and the nuclear speckles.
Nuclear speckles, also known as splicing factor compartments, are located in the inter-
chromatin regions of the cell nucleoplasm and serve as reservoirs for pre-mRNA splicing
factors [71]. Based on the modulations observed, it can be speculated that the SCT extract
exerts its restorative effects by modulating splicing factors, which in turn leads to improved
cell function in the aged DSCs. When evaluating the extended duration of treatment, from
2 days in 2D models to 10 days for the 3D dermis functional assay, it can be speculated
that further downstream mechanisms are initiated after prolonged treatment with the
SCT extract. Further investigations, for example, with the targeted transcriptomics and
evaluation of senescence burden in appropriate cell models, will certainly provide more
insight into this proposed mechanism.

Dermal stem cells play a crucial role in skin maintenance, for example, growth factors
derived and secreted from human dermal stem/progenitor cells can ameliorate UV-A-
induced damage in NHDF [2]. Preserving dermal stem cell function is critical for skin
homeostasis, which could be achieved by regenerative treatment with natural sources
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such as callus extracts. Indeed, it was previously observed that the plant-callus-derived
shikimic acid effectively regenerates human skin by converting human dermal fibroblasts
into multipotent skin-derived precursor cells, facilitating wound healing and dermal
reconstruction [72]. Furthermore, the Rhododendrum ferrugineum extract was shown to have
a senolytic effect in senescent fibroblasts [13]. Building on this understanding, the SCT
extract examined in this study presents a promising strategy for addressing skin aging, as
it potentially modulates RNA splicing, thereby influencing the expression and function of
proteins critical to the maintenance of skin health and vitality. The successful cultivation of
human DSCs under xeno-free conditions and the identification of DEGs between young
and aged DSCs further offer a foundation for the exploration into the mechanisms of skin
aging and potential therapeutic interventions.

5. Conclusions

Our findings highlight the potential of natural extracts in modulating biological char-
acteristics of aged dermal stem cells. Importantly, our data suggest that these extracts may
exert their effects through possible senolytic activity and the modulation of RNA splicing,
a process crucial to gene expression and cellular function and described as an emerging
hallmark of aging. In conclusion, this study underscores the potential of integrating high-
throughput transcriptomics and natural extracts in understanding and combating skin
aging. The findings present new avenues for the development of innovative, sustainable,
and potentially more effective anti-aging strategies.
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