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Abstract: Skin grows old due to intrinsic factors, such as age and associated hormonal changes, and
external factors, like solar radiation and chemical substances to which we are exposed. With age,
skin shows thinning, laxity, pallor, increased dryness, and the appearance of wrinkles, attributed
to a decrease in collagen and elastin produced by fibroblasts. Several theories explain skin aging,
including the free radical formation, neuroendocrine, and mitochondrial decline theories. Based on a
scientific understanding of skin behavior, different in vitro methods are used to evaluate the effects
of new ingredients in cosmetics. Commonly used methods include anti-collagenase, anti-elastase,
and anti-hyaluronidase activity alongside techniques utilizing skin cells or 3D models. Although
these methods are recognized and widely used, they lack standardization. In this review, a literature
search has been conducted to examine the characteristics and variations of these methods across the
laboratories. A key issue identified in this review is that many papers provide insufficient detail
regarding their protocols. Moreover, the number of studies using cells is less significant than the
ones determining enzyme inhibition. Our findings revealed that, in many cases, there is limited
information available, underscoring the urgent need to initiate a comprehensive standardization
process for the methodologies used to demonstrate anti-aging activity.

Keywords: anti-aging; in vitro techniques; anti-collagenase; anti-elastase; anti-hyaluronidase;
standardization

1. Introduction

Aging is a physiological process resulting from the passage of time, with well-known
triggering mechanisms and observable changes. The skin exhibits a series of characteristic
alterations, such as loss of collagen, atrophy of the dermis, degeneration of the elastic
network, and loss of hydration, inducing wrinkle formation [1]. Different studies have
demonstrated the effect of decreased mitochondrial function on skin aging, promoting
wrinkle formation and changes in pigmentation [2].

The appearance of the skin differs from young to old, as is shown in the following
figure (Figure 1), where we can observe that changes in fibroblasts, keratinocytes and
melanocytes as well as in the extracellular matrix (ECM) result in a dysfunctional epidermal
barrier, thinner dermis and induction of chronic inflammation [3,4].

The changes observed in the skin result from the combination of different intrinsic
and extrinsic factors. Intrinsic factors are the consequence of the general aging process, and
extrinsic factors include air pollution, ultraviolet (UV) exposure, diet, and smoking, among
others [4,5].

Individuals often attempt to conceal the effects of aging on their skin, and conse-
quently, numerous surgical procedures are available to reverse these effects and transform
the appearance of aged skin into a more youthful look. However, not only can a better
skin appearance be achieved through surgical means, but cosmetics also play a significant
role. The cosmetic industry has developed numerous formulations aimed at producing
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anti-aging effects, all of which are based on the pursuit of the best ingredients and extensive
research. There exists a recommendation about the characteristics that ingredients of anti-
aging cosmetics should achieve, including antioxidant activity and should also prevent
the degradation of skin components, e.g., collagen, elastin or hyaluronic acid, as well as
protection against increased melanin synthesis [6]. Various methods exist to demonstrate
the anti-aging effects of cosmetics, from tests on volunteers conducted with finished prod-
ucts [7–9] to in vitro methods employed for the discovery of new ingredients [10]. These
methods are based on the current understanding of the cutaneous aging process. Many of
these methods have been described in the recent excellent review by Cruz et al. in 2023 [11].
In that review, examples of studies utilizing different methods are presented, though not in
depth. In contrast, the objective of this manuscript was to explore whether standardized
protocols exist by analyzing the most widely used methods with a focus on material and
method descriptions. We go beyond surface-level comparisons by critically highlighting
the key discrepancies between these methods and offering new insights that have not been
addressed in previous reviews.
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Figure 1. Schematic representation of skin aging and the involved cells. Reprinted from Ref. [4]. Figure 1. Schematic representation of skin aging and the involved cells. Reprinted from Ref. [4].

In cosmetic research, various methods have been used to explain the same biological
activity. However, significant discrepancies arise due to differences in protocols—such
as incubation time, temperature, solvents, wavelength readings, signal types, and the
use of standards or controls. These methodological variations can lead to inconsistent
or even erroneous conclusions despite using the same materials. In this review, we
aim to thoroughly analyze these discrepancies, providing a detailed comparison of the
most employed techniques and highlighting the risks of misinterpretation stemming from
protocol inconsistencies.
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2. Materials and Methods

A search was conducted across PubMed following the recommendations of the
PRISMA statement [12]. The search was performed by combining representative key-
words, namely anti-aging cosmetics, and was limited to the title, abstract, or index words.
This first search was refined by including only the documents published between 2003 and
2023. Then, a second search among the documents retrieved was performed, including
keywords such as in vitro, anti-aging, and cosmetic, and it was limited to the last 10 years.

The found documents have been classified in an Excel (Microsoft Office 2016) sheet
where the following fields have been recorded: authors, title of the work, journal, year of
publication, type of document (article, review, book chapter, conference abstract, etc.), and
language. Then, those records not written in English, as well as those that were not original
articles (reviews, conference abstracts, clinical studies, letters, book chapters, etc.), were
discarded. The documents were assessed for eligibility by screening the title and abstract.

Finally, we have analyzed the different methodologies and the differences among
the different papers using the same methodology. For each methodology, a minimum of
ten articles have been reviewed, and the information recorded.

3. Results and Discussion

In the first PubMed search, we looked for papers containing the keywords “antiaging”
and “cosmetics” to explore research related to anti-aging activity in the cosmetic industry
in the last twenty years. The number of studies obtained was 1118, and the evolution from
2003 to 2013 is presented in Figure 2. The studies in 2024 have not been included because
they are not representative of the total number of studies for the entire year since we are
only halfway through the year. We can see a progressive increase in the number of studies
from 2003, but a more significant increase is observed in the last 7 years, including 2020;
nevertheless, it was the year of the pandemic.
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Figure 2. Evolution of the number of papers related to anti-aging cosmetics from 2003 to 2023.

Similarly, we searched for papers related to the in vitro methods to study the anti-
aging effect of cosmetics in the last ten years (2013–2023). The results are presented in
Figure 3, where a progressive increase can be observed in the number of studies, with a
total of 258 studies.

Finally, we conducted an analysis of the various studies found in the last ten years
focusing on the different methods proposed for evaluating anti-aging activity. In our analy-
sis, we considered the methodological differences as well as cited references to methods by



Cosmetics 2024, 11, 170 4 of 19

the different authors. In the following subsections, we explain the main findings for each
of the methods analyzed.
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3.1. Methods Based on Antioxidant Capacity

As aging induces oxidative stress on the skin, it is essential to use straightforward
assays to evaluate the potential anti-aging effects of cosmetics and their ingredients. These
assays mainly focus on demonstrating the antioxidant activity. Some studies combined the
evaluation of antioxidant ability with the effects on different enzymes, whereas other studies
exclusively utilized the antioxidant effect to demonstrate anti-aging activity. Figure 4
shows the number of papers using the different assays used to evaluate the antioxidant
capacity. The most commonly used method is the 2,2-diphenyl-1-picrylhydrazyl (DPPH)
assay used either as a standalone method [13–15] or in combination with 2,2-azinobis
(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) [16–19] or with ABTS and ferric reducing
antioxidant power (FRAP) [20–22]. Other assays for studying antioxidant capacity, which
have been used only in a few studies, include the measurement of antioxidant power
(AP). This parameter quantifies both the antioxidant capacity and reactivity, determined
by electron spin resonance, and has been employed in a single study with vitamin C as
a positive control [23]. Additionally, the total antioxidant capacity (TOAC) [24] and the
cupric reducing antioxidant capacity (CUPRAC) spectrophotometric methods were used
when polyphenols and flavonoids were present [24,25]. Moreover, the inhibition of lipid
peroxidation [14,15], the metal chelation ability [14,15,17], the oxygen radical absorbance
capacity assay (ORAC) [25] or the Folin–Ciocalteu assay [19,20] were also reported.

One important aspect of these assays is the use of a well-known antioxidant chemical as
a positive control or reference control to better identify and classify the antioxidant capacity
of the compounds or extracts assayed. We found that the chemicals most used in the studies
analyzed were ascorbic acid or vitamin C and Trolox, independent of the assays performed.
In the case of the DPPH assay, ascorbic acid is reported in seven studies [13–15,18,21–23],
while other two reported the use of Trolox [19,25], and finally, only one study [24] used
butylated hydroxytoluene [BHT] as a reference control. For ABTS, ascorbic acid is found in
three studies [18,21,22] and Trolox in another three [17,20,25]. An analysis of FRAP indicates
that BHT was used as a reference control [24], but a calibration curve with FeSO4 [21,22,24]
or Trolox is also described [20,25]. Finally, for the other assays (CUPRAC, OAC, TOAC,
lipid peroxidation, chelation, and Folin–Ciocalteu), besides Trolox [25], the use of gallic
acid [19,20], EDTA [14,15,17] and vitamin E [14,15] are reported.
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3.2. Methods Based on Enzyme Inhibition

Oxidative stress is primarily responsible for triggering the activation of matrix metal-
loproteinases (MMPs), such as collagenases, elastases, and hyaluronidases. These enzymes
contribute to the degradation of collagen, elastin, and hyaluronic acid (HA), which are key
components of the extracellular matrix (ECM) essential for maintaining skin elasticity, firm-
ness, and regeneration. Hyaluronic acid, a non-sulfated glycosaminoglycan, plays a crucial
in the dermal and epidermal compartments of the skin by retaining water, promoting skin
rejuvenation, and increasing viscosity. Skin hydration is dependent on the hyaluronic acid
bound to water in the dermis and the vital area of the epidermis [26]. During the aging
process, hyaluronic acid levels decrease due to the synthesis of hyaluronidase, an enzyme
that degrades hyaluronic acids, leading to a loss of skin strength, flexibility and moisture.
Consequently, one anti-wrinkle strategy involves prolonging skin moisture by preserving
HA contents in the skin. Therefore, a method to study anti-aging activity is to determine
the inhibitory effect of cosmetics on the various enzymes responsible for the degradation of
the extracellular matrix components.

Tyrosinase is another enzyme associated with aging, playing a crucial role in the syn-
thesis of melanin, a pigment produced by melanocytes through melanogenesis. Melanin
provides a protective function for the skin against environmental factors, particularly ultra-
violet (UV) radiation. However, excessive melanin production can lead to skin disorders
such as melasma and age spots, contributing to premature aging. Consequently, the inhi-
bition of tyrosinase activity is a strategy employed in anti-aging cosmetics [27]. Figure 5
illustrates the various assays used in the analyzed studies to inhibit different enzymatic
activities as a strategy to demonstrate anti-aging effects.
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Elastase, a member of the MMPs family, breaks down elastin fibers, leading to the
formation of wrinkles, loss of skin elasticity, and, consequently, skin aging. Reducing
elastase levels is a strategy for achieving anti-aging effects. The anti-elastase assay involves
the inhibition of the elastase enzyme, determined by a spectrophotometric method using
porcine pancreatic elastase and N-succinyl-Ala–Ala–Ala–p-nitroanilide (AAAPVN) as a
substrate. Table 1 presents the different protocols used in the evaluated papers, highlighting
differences in wavelength, incubation time with the enzyme and the use of positive controls.
The information about the origin of the elastase and the units are not always described in
the material and methods.

Table 1. Characteristics of the anti-elastase assay to predict the anti-aging activity of cosmetics as
described in the studies analyzed.

Study Enzyme * Controls Technique Incubation Reference
Method

Acero et al., 2024 [28] NI, 0.03 U/mL Yes S, 410 nm RT, 10 min [29]

Altyar et al., 2020 [30] NI, 3.33 mg/mL Yes S, 381–402 nm NI, 15 min [31]

Andrade et al., 2021 [32] NI, 1 U/mL Yes S, 405 nm 25 ◦C, 10 min [33]

Bakrim et al., 2022 [34] PPE, 3.33 mg/mL Yes S, 400 nm NI, 15 min [35]

Barak et al., 2022 [24] PPE, 3.33 mg/mL Yes F, Ex 365 nm–Em
410 nm 37 ◦C, 15 min [36,37]

Buarque et al., 2023 [38] PPE, ≥4.0 U/mg
protein No S, 410 nm NI [33]

Castejón et al., 2021 [39] PPE, 1 U/mL Yes S, 420 nm 30 ◦C, 15 min [40]

Chaiyana et al., 2021 [41] NI Yes NI NI [42]

Dymek et al., 2023 [43] PPE, 10 µg/mL No S, 405 nm 25 ◦C, 15 min NI

El-Nashar et al., 2022 [44] Assay Kit Yes F, Ex 400 nm–Em
505 nm 37 ◦C, 5 min [45]

Jiratchayamaethasakul et al., 2020 [46] PPE, 7.5 U/mL No S, 410 nm 25 ◦C, 10 min [29]

Jugreet et al., 2022 [47] PPE, 4.9 U Yes S, 405 nm 37 ◦C, 5 min [48]

Lee, et al., 2020 [49] PPE, WS: 1 U/mL No S, 410 nm 25 ◦C, 20 min [50]

Lim et al., 2022 [51] NI, 0.1 U/m No S, 410 nm 37 ◦C, NI [52]

Madan et al., 2018 [53] Assay kit No S, 410 nm 25 ◦C, 15 min [54]

Michalak et al., 2023 [55] Assay Kit (NE) Yes F, Ex 400 nm–Em
505 nm 37 ◦C, 5 min [56]

Nutho, et al., 2024 [57] PPE, NI Yes S, 410 nm NI [50]

Pagels et al., 2022 [58] NI, 1 U/mL No S, 405 nm 37 ◦C, 10 min [59]

Tawfeek et al., 2023 [60] PPE, 3.33 mg/mL Yes S, 400 nm NI, 15 min [35]

Vaithanomsat et al., 2022 [61] NI, 7.5 U/mL Yes S, 410 nm 25 ◦C, 20 min [42]

Wang, et al., 2024 [62] NI, 600 mU/mL Yes S, 410 nm 25 ◦C, 15 min [63]

Wichayapreechar et al., 2024 [64] PPE, 1 mM Yes S, 410 nm RT, 5 min [52]

Widowati et al., 2016 [65] PPE, 0.5 mU/mL No S, 410 nm 25 ◦C, 15 min [52]

Xu et al., 2022 [66] NI, 0.5 U/µL No S, 405 nm 37 ◦C, 15 min [67]

Younis, et al., 2022 [68] PPE, 3.33 mg/mL Yes S, 400 nm RT, 15 min [31]

* Origin and concentration of the enzyme used; F—fluorimetry; NE—neutrophil elastase; NI—not indicated;
PPE—porcine pancreatic elastase; RT—room temperature; S—spectrophotometry.

As observed, the majority of studies evaluated (64%) used positive controls epigallocat-
echin gallate (EGCG) the most used control [24,41,61,62,64,68], kojic acid [34,60], oleanolic
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acid [28,57], and ursolic acid [32,47] were other substances used as control, and in three
studies the positive control was not provided [30,39,44]. Spectrophotometry is the preferred
technique to evaluate the inhibition of the elastase enzyme because only three studies used
fluorimetry. Also, two studies reported the use of an elastase enzyme assay kit. Regarding
the steps and conditions of the reaction, 17 studies incubated the samples with the en-
zyme prior to adding the substrate, whereas 3 reported a preincubation with the substrate
before adding the elastase, the other three incubated both enzyme and substrate, and in
two articles is not reported. These differences, together with those in time and tempera-
ture, can be attributed to the different protocols followed; however, Thring et al. [52] are
reported by three studies [51,64,65] with differences in incubation time and temperature
and preincubation with the elastase enzyme [64,65] or with the substrate [51].

The degradation of collagen is induced by collagenases, a type of metalloproteinases
produced by keratinocytes and fibroblasts. Levels of these specific metalloproteinases
are elevated in aged skin [69]. Thus, one strategy to reduce wrinkles is the inhibition of
these enzymes, which is a method used to evaluate the anti-aging activity of cosmetics.
The proposed in vitro method involves the spectrophotometric determination of enzyme
activity using collagenase from Clostridium histolyticum. While this methodology has been
described in various studies, there are notable differences among them. Table 2 presents
several studies employing this in vitro method, highlighting variations in incubation time,
the wavelength used to determine the enzymes and the references related to the methodol-
ogy. It is also important to note that some studies lack crucial details such as incubation
time and temperature, or when provided, the information is inconsistent.

Table 2. Characteristics of anti-collagenase assay to predict the anti-aging activity of cosmetics as
described in the studies analyzed.

Study Enzyme * Controls Technique Incubation Reference
Method

Acero et al., 2024 [28] CH, 0.8 U/mL Yes S, 340 nm 25 ◦C, 15 min [52]

Altyar et al., 2020 [30] CH, 0.8 U/mL Yes S, 335 nm NI, 15 min [52]

Andrade et al., 2021 [32] CH, 1 U/mL Yes S, 450 nm 37 ◦C, 10 min [52,70]

Ashmawy, 2023 [71] Assay Kit Yes F, Ex 490 nm–Em
520 nm 25 ◦C, 15 min [70]

Bakrim et al., 2022 [34] CH, 0.8 U/mL Yes S, 490 nm NI, 15 min [35]

Barak et al., 2022 [24] CH, 0.8 U/mL Yes NI NI, 15 min [72]

Buarque et al., 2023 [38] CH, 0.8 g/L No S, 345 nm NI [70]

Castejón et al., 2021 [39] Assay Kit No NI NI NI

Chaiyana et al., 2021 [41] CH, 0.16 U/mL Yes S, 340 nm 37 ◦C, 15 min [42]

El-Nashar et al., 2022 [44] Assay Kit Yes F, Ex 490 nm–Em
520 nm RT, 15 min [67]

Jiratchayamaethasakul et al., 2020 [46] CH, 200 U/mL No S, 550 nm 43 ◦C, 60 min [73]

Jugreet et al., 2022 [47] Assay Kit
CH, 0.2 U/mL Yes F, Ex 4850

nm–Em 515 nm 37 ◦C, 15 min [74]

Madan et al., 2018 [53] Assay Kit No S, 345 nm 37 ◦C, 20 min [65]

Michalak et al., 2023 [55] Assay Kit Yes F, Ex 490 nm–Em
520 nm RT, 15 min [75]

Nutho et al., 2024 [57] CH, NI Yes S, 335 nm NI [50]

Pagels et al., 2022 [58] NI, 1 U/mL No S, 345 nm 37 ◦C, 15 min [32,70]
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Table 2. Cont.

Study Enzyme * Controls Technique Incubation Reference
Method

Tawfeek et al., 2023 [60] CH, 0.8 U/mL Yes S, 490 nm NI, 15 min [35]

Vaithanomsat et al., 2022 [61] NI, 0.5 U/mL Yes S, 340 nm 37 ◦C, 15 min [52]

Wichayapreechar et al., 2024 [64] CH, 0.8 U/mL Yes S, 335 nm RT, 10 min [52]

Widowati et al., 2016 [65] CH, 0.01 U/mL No S, 335 nm 37 ◦C, 20 min [52]

Xu et al., 2022 [66] NI, 2 U/mL Yes F, Ex 320 nm–Em
405 nm 37 ◦C, 15 min [76]

Younis, et al., 2022 [68] CH, 0.8 U/mL Yes S, 490 nm RT, 15 min [52]

* Origin and concentration of the enzyme used; CH—clostridium histolyticum; F—fluorimetry; NI—not indicated;
RT—room temperature; S—spectrophotometry.

In a similar way as in the case of anti-elastase activity, the majority of studies used positive
controls (73%), and EGCG was the preferred one in 50% of them [24,30,32,41,61,64,66,68]. Only
seven studies cite the same reference [52], but one of them uses a very different wavelength
(490 nm instead of 340 nm) [68]. Additionally, fluorometric determination kits are available,
showing differences in excitation and emission wavelengths and incubation temperature.
In contrast to the case of elastase, almost all studies (80%) incubate the collagenase enzyme
before adding the substrate to start the reaction.

The inhibition of hyaluronidase is of significant importance due to its critical role in skin
aging. Consequently, skincare cosmetic products with high efficacy against hyaluronidase
activity have been well developed. The activity of hyaluronidase is determined using
UV spectroscopy by measuring the amount of N-acetylglucosaminoglycan formed from
the degradation of hyaluronic acid using hyaluronidase from bovine testes [77]. Table 3
outlines the various protocols used, highlighting the different measurement procedures,
including spectrophotometry, fluorimetry, turbidimetry, and gel electrophoresis.

Table 3. Characteristics of the anti-anti-hyaluronidase assay to predict the anti-aging activity of
cosmetics as described in the studies analyzed.

Study Enzyme * Controls Technique Incubation Reference
Method

Acero et al., 2024 [28] HBT, 1.5 U/µL Yes S, 600 nm 37 ◦C, 10 min [78]

Altyar et al., 2020 [30] HBT Type I-S, NI Yes S, 585 nm NI [79]

Ashmawy, 2023 [71] HBT, 7900 U/mL Yes S, 585 nm 37 ◦C, 20 min [80]

Bakrim et al., 2022 [34] NI, ST: 1.5 mg/mL Yes S, 600 nm 100 ◦C, 3 min [35]

Barak et al., 2022 [24] NI No S, 600 nm 37 ◦C, 20 min [81,82]

Castejón et al., 2021 [39] HBT Type I-S,
2100 U/mL Yes S, 585 nm 37 ◦C, 20 min [83]

Chaiyana et al., 2019 [42] HBT, 0.1 g/mL No SDS-PAGE 37 ◦C, 48 h NI

El-Nashar et al., 2022 [44] HBT, 7900 U/mL Yes S, 585 nm 37 ◦C, 20 min [84]

Jiratchayamaethasakul et al., 2020 [46] NI, 8 mg/ml No S, 585 nm 37 ◦C, 20 min [85]

Lee, et al., 2020 [49] HBT, 3000 U/mL No S, 570 nm 37 ◦C, 40 min [86]

Lim et al., 2022 [51] NI, 585 U/mL No T, 600 nm 37 ◦C, 10 min [87]

Madan et al., 2018 [53] NI No T, 540 nm 37 ◦C, 10 min [88]

McCook et al., 2015 [89] HBT type IV-S, NI Yes T, 595 nm NI [90]
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Table 3. Cont.

Study Enzyme * Controls Technique Incubation Reference
Method

Pagels et al., 2022 [58] NI, 900 U/mL No S, 560 nm 37 ◦C, 30 min [91]

Tawfeek et al., 2023 [60] NI, 1.5 mg/mL Yes S, 600 nm NI [35]

Tomou et al., 2021 [92] HBT Type I-S,
400 U/mL No S, 590 nm 37 ◦C, 20 min [77]

Vaithanomsat et al., 2022 [61] NI, 1.5 U/mL Yes S, 600 nm 37 ◦C, 10 min [52]

Wang, et al., 2024 [62] NI, 500 mU/mL Yes S, 530 nm 37 ◦C, 20 min [93]

Widowati et al., 2016 [65] HBT Type I-S, NI No T, 600 nm 37 ◦C, 10 min [29]

Younis, et al., 2022 [68] NI, 1.5 mg/mL No F, Ex 545 nm–Em
612 nm NI [77,94]

* Origin and concentration of the enzyme used; F—fluorimetry; HBT—hyaluronidase from bovine testes; NI—not
indicated; S—spectrophotometry; T—turbidimetry.

Only 50% of the studies analyzed used a positive control to compare the anti-hyaluronidase
activity of the extracts or compounds assessed. Among the chemicals used as stan-
dards, oleanolic acid [28,61] and tannic acid [39,89] were the only ones used in more
than one study.

Finally, Table 4 presents various studies using the anti-tyrosinase assay as a method to
evaluate anti-aging activity.

Table 4. Characteristics of the anti-anti-tyrosinase assay to predict the anti-aging activity of cosmetics
as described in the studies analyzed.

Study Enzyme * Controls Technique Incubation Reference
Method

Acero et al., 2024 [28] NI, 200 U/mL Yes S, 475 nm 37 ◦C, 15 min [95]

Andrade et al., 2021 [32] Mushroom, 5000 U Yes S, 450 nm 37 ◦C, 5 min [96]

Bakrim et al., 2022 [34] Mushroom,
2500 U/mL Yes S, 475 nm NI [35]

Castejón et al., 2021 [39] Mushroom, 50 U/mL Yes S, 475 nm 37 ◦C, 5 min [83]

Chaiyana et al., 2021 [41] Mushroom, NI Yes NI NI [97]

Dymek et al., 2023 [43] Mushroom,
0.2 mg/mL No S, 475 nm NI [98]

El-Nashar et al., 2022 [44] Assay Kit Yes S, 510 nm 25 ◦C, 10 min NI

Herawati et al., 2022 [99]
Mushroom,
≥1000 U/mg

of activity
Yes S, 492 nm RT, 5 min [100]

Jiratchayamaethasakul et al., 2020 [46] Mushroom,
1500 U/mL No S, 490 nm 37 ◦C, 12 min [101]

Lasota et al., 2024 [16]
Mushroom, 500 U/mL

Murine, 20 µg
protein lysate

Yes S, 450 nm RT, 10 min
RT, 4 h [102]

Lim et al., 2022 [51] Mushroom, 6 U/mL No S, 450 nm 37 ◦C, 10 min [103]

Mohamadi et al., 2022 [104] Mushroom, 50 mM No S, 490 nm 20 min [105]

Nutho et al., 2024 [57] Mushroom,
0.2 mg/mL Yes S, 475 nm NI [106]
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Table 4. Cont.

Study Enzyme * Controls Technique Incubation Reference
Method

Pagels et al., 2022 [58] NI, 50 U/mL Yes S, 475 nm 25 ◦C, 5 min [107]

Patathananone et al., 2023 [108] NI, 250 U/mL No S, 495 nm 37 ◦C, 10 min [109]

Tawfeek et al., 2023 [60] Mushroom,
2500 U/mL Yes S, 475 nm NI [35]

Vaithanomsat et al., 2022 [61] NI, 1380 U/mL Yes S, 475 nm NI, 10 min [110,111]

Younis, et al., 2022 [68] Mushroom,
2500 U/mL Yes S, 475 nm NI [112]

* Origin and concentration of the enzyme used; NI—not indicated; RT—room temperature; S—spectrophotometry.

All methods employ spectrophotometry with wavelength ranging from 450 to 495 nm,
differing in incubation time and concentrations used except in the case of [99], which only
indicates the specific activity provided by the supplier. Some studies do not indicate the
origin of tyrosinase, but we assume they used tyrosinase from mushrooms. Moreover,
Lasota et al. [16] have also used tyrosinase obtained from murine melanoma cells. The
use of kojic acid as positive control is reported in 67% of the studies, and only [39] used
quercetin as a well-known anti-tyrosinase chemical.

3.3. Methods Based on Cell Culture
3.3.1. Fibroblast Cell Culture

Fibroblasts are the most representative cells found in the dermis, and many studies
use primary human dermal fibroblasts [113], human foreskin fibroblast cell lines [28],
and murine fibroblast cell lines for in vitro research [104]. Previously, the cytotoxicity of
the different ingredients was tested in these cells because ingredients should have poor
cytotoxicity for cosmetic applications. In order to demonstrate the anti-aging activity of
ingredients, the antioxidant activity of the ingredient on fibroblasts is assessed by measuring
intracellular reactive oxygen species (ROS) production on cells in the presence of oxidative
stimuli such as tert-Butyl hydroperoxide (TBHP) [113], H2O2 [28,104], or UV irradiation
at 30 J/cm2 [114]. Clearly, the protocols of oxidative stress are different using various
oxidative stimuli; in the case of H2O2, the amount applied varies depending on the cell
line used, then 1500 µM H2O2 for murine fibroblast, and only 200 µM H2O2 for the human
foreskin fibroblast cell line.

Fibroblasts are dermal cells responsible for the synthesis of collagen and elastin. It is
well-documented that aged fibroblasts exhibit reduced collagen synthesis capacity [115].
Therefore, using in vitro fibroblasts to measure the production of these fibers is a strategy
employed to investigate anti-aging effects. Collagen type I (COL1A1) is the predomi-
nant structural protein in skin, while collagen type VII (COL7A1) forms anchoring fibrils
in dermo-epidermal junctions, contributing to skin mechanical stability. During pho-
toaging, the levels of COL7A1 decrease, weakening the bond between the dermis and
epidermis [116].

In the present review, studies focusing on human dermal fibroblasts (HDFs) from mul-
tiple donors are highlighted. These studies determined the levels of COL1A1 and COL7A1
proteins after HDFs are exposed to various test products. After demonstrating their antiox-
idant activity, studies have shown that both Bakuchiol and retinol application significantly
increases levels of COL1A1 and COL7A1 [23]. Other investigations using HDFs have eval-
uated the production of procollagen type I C-peptides assessed by ELISA [51,117,118] and
CoL1A1 gene expression by Quantitative Reverse Transcription Polymerase chain reaction
(Q-RTPCR) [119]. Additional studies quantified collagen and elastin using respective colori-
metric kits [120], Sirius Red-based colorimetric microassay [121], or differentiated collagen
types I and III by employing specific antibodies and secondary antibody conjugates [122].
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In each instance, the protocols vary in terms of cell seeding density, incubation duration,
and the method used for collagen assessment.

Other assays to study the anti-aging activity of ingredients have been based on
the determination of the expression of genes encoding tyrosinase, collagenase, elastase,
hyaluronidase and hyaluronic acid synthase in human dermal fibroblasts [123] and the
production of hyaluronic acid by an enzyme-linked immune sorbent assay (ELISA)-like
hyaluronic acid assay [121].

3.3.2. Keratinocyte Cell Culture

The human epidermis is mainly composed of keratinocytes and corneocytes, which
are continuously produced through the differentiation of keratinocytes and arranged in
multiple cell layers. The evidence suggests that the buildup of senescent cells with age
may play a role in age-related skin changes. The senescent cells are characterized by their
lack of ability to proliferate, resistance to apoptosis, and secretion of factors that promote
inflammation and tissue breakdown. The characteristic thinning of aging skin is partly due
to the reduced proliferation and renewal capacity of basal keratinocytes [124].

Some authors have used the ability to enhance keratinocyte proliferation as an indi-
cator of the anti-aging activity of cosmetic ingredients. However, the number of articles
related to keratinocyte activity in the evaluated period is significantly lower than those
studying the effects on fibroblasts. The proliferation of keratinocytes induced by cos-
metics has been studied in HaCaT cells by the 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl
tetrazolium bromide (MTT) assay [125].

A model of photoaging can be studied in keratinocytes of the HaCaT cell line exposed
to UV radiation, demonstrating the decrease in the production of interleukin 8 (IL8) and
prostaglandin E2 after the treatment of the cells with potential antiaging agents [126].

3.3.3. Full Skin Models

A three-dimensional (3D) full-thickness in vitro skin model containing normal human
epidermal keratinocytes and normal human dermal fibroblasts has been used to determine
the polymerase chain reaction (PCR), the gene expression of genes that play important
roles in skin biology as a method to demonstrate the activity of cosmetic ingredients
with anti-aging activity. Authors have demonstrated an increase in genes related to ker-
atinocyte differentiation and barrier function [127,128]. When studying gene expression, it
is important to select the more significant gene related to the aging process.

The 3D skin model allows for the study of the cosmetic application for seven days
and the posterior histology observation. The treatment with anti-aging compounds, such
as resveratrol, can demonstrate an increase in collagen expression and stratification of
epidermis [129]. The 3D model can be commercial or prepared in a lab [130].

3.3.4. Skin in a Chip

Innovative methodologies can be developed to study the skin. In this context, biochip
technology with 3D culture skin-on-a-chip systems employs skin equivalents that mimic
the characteristics of the human skin. The pumpless skin-on-a-chip (Figure 6) utilizes a
microfluidic chip, creating a biomimetic environment that enables various physiological
functions. The system supplies nutrients to cells and removes cell waste via microfluidic
channels. Additionally, the pumpless skin-on-a-chip can be engineered to have a physi-
ological residence time that matches the blood flow. Post-treatment analysis of filaggrin,
involucrin, keratin 10, integrin, and collagen I genes in human skin on the chip can be used
to demonstrate the anti-aging effects [131].
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3.3.5. Skin Explants

Another strategy to study anti-aging cosmetics involves utilizing human skin ob-
tained from volunteers irradiated with UV light. Post-treatment, the skin is fixed with
4% formaldehyde and subsequently dehydrated using an ascending concentration of
ethanol. The tissue is then embedded in paraffin, sectioned, and mounted on slides.
The sections are stained with Masson trichrome following the manufacturer’s protocols
to assess collagen and elastin production. A qualitative histological analysis revealed a
marked increase in these components within the extracellular matrix [126].

Explants have also been used to assess collagen III production by immunostaining
skin samples with monoclonal mouse anti-collagen III antibodies and the alkaline phos-
phatase/RED detection system. The antigen quantity on each slide was quantified by pixel
intensity, and the distribution of the red staining within a defined area of the upper part of
the dermis was analyzed using ImageJ. This analysis yields a staining score, which was
normalized as a percentage relative to the untreated control [122].

In this review, we have analyzed publications from the last five years that studied the
anti-aging effects of various cosmetics and cosmetic ingredients, with the aim of identifying
the most commonly used methodologies to demonstrate this effect in vitro. It has been
observed that most studies focused on demonstrating the antioxidant capacity of the tested
products. These constitute the simplest, fastest, and most cost-effective methodologies,
as they involve chemical methods that do not require special infrastructure, unlike cell
cultures. The DPPH assay has been the most commonly used method to determine the
antioxidant effect, as in most cases, this method was used alone [13] and, to a lesser extent,
in combination with another assay. However, these in chemico methods are not enough to
demonstrate the anti-aging activity; nevertheless, some studies used only these assays.

Knowledge of the skin aging process has enabled the development of simple methods
that involve determining the inhibitory effect on enzymes that degrade extracellular matrix
fibers, such as elastase and collagenase, leading to loss of firmness and the appearance of
age-related wrinkles. Among the studies analyzed, the effects on elastase constitute the
most commonly used method, followed by the effects on collagenase.

As previously mentioned, there are fewer studies based on the use of cell culture
than those using chemical methods. Fibroblasts, representative cells of the dermis and
producers of the extracellular matrix, have been the most commonly used cells. Secondly,
the proliferation of keratinocytes has been used as a method to demonstrate a cosmetic’s
ability to reverse the effects of skin aging. In a few cases, reconstructed human skin models
or explants obtained from the surgeries of volunteers have been used.

When the expression of genes is used as a model to demonstrate anti-aging activity,
the selection of the more representative genes of this effect is crucial, especially when a
large panel is used [127].
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4. Conclusions

The number of studies about the applicability of different ingredients, in general from
natural origin, for anti-aging cosmetics has increased significantly in the last few years.
There are different strategies to demonstrate the anti-aging effect in vitro. Many of these
studies focus on the antioxidant activity of these compounds and their ability to reduce the
activity of enzymes responsible for age-related changes in the skin. These methods based
on the activity of these enzymes present significant differences in protocols because there
are no standardized methods, contrary to what happens with the toxicological methods,
which are more rigorously defined. The number of studies using cells is less significant
than the ones determining enzyme inhibition. Similarly, there are no standardized methods,
with differences in the cell number seeded, the incubation time and so on. The lack of
standardized methods in both enzyme- and cell-based assays creates challenges for drawing
clear, comparable conclusions across studies.

Looking ahead, the establishment of standardized methodologies is essential to ensure
the reliability and reproducibility of results. This is especially important as we move
toward human trials, where consistency in preclinical findings can help avoid unnecessary
or flawed studies involving volunteers. Developing universally accepted protocols for eval-
uating the anti-aging properties of new ingredients will enhance the credibility of research
in this field and facilitate the transition from laboratory studies to real-world applications.
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Abbreviations

3D three-dimensional.
7-AAD 7-aminoactinomicina D.
AAAPVN N-succinyl-Ala–Ala–Ala–p-nitroanilide.
ABTS 2,2-azinobis (3-ethylbenzothiazoline-6-sulfonic acid)
AP Antioxidant power.
BHT Butylated hydroxy toluene.
CH Clostridium histolyticum.
COL1A1 Collagen type I.
COL7A1 Collagen type VII.
CUPRAC Cupric reducing antioxidant capacity.
DPPH 2,2-diphenyl-1-picrylhydrazyl.
ECM Extracellular matrix.
EGCG Epigallocatechin gallate.
ELISA Enzyme-Linked ImmunoSorbent Assay.
F Fluorimetry.
FRAP Ferric reducing antioxidant power.
HA Hyaluronic acid.
HBT hyaluronidase from bovine testes.
HDFs Human dermal fibroblasts.
IL8 interleukin 8.
MMPs matrix metalloproteinases.
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MTT (3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide).
NE neutrophil elastase.
NI not indicated.
ORAC oxygen radical absorbance capacity assay.
PCR Polymerase chain reaction.
PPE porcine pancreatic elastase.
PRISMA Preferred Reporting Items for Systematic reviews and Meta-Analyses
Q-RTPCR Quantitative Reverse Transcription Polymerase chain reaction.
ROS Reactive oxygen species.
RT room temperature.
S spectrophotometry.
SDS-PAGE sodium dodecyl sulfate polyacrylamide gel electrophoresis.
T Turbidimetry.
TBHP tert-Butyl hydroperoxide.
TOAC total antioxidant capacity.
UV Ultraviolet.
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