Enhancing Antioxidant Activity from Aquatic Plant Cymodocea nodosa for Cosmetic Formulation Through Optimized Ultrasound-Assisted Extraction Using Response Surface Methodology
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling Site and Materials Description
2.2. Preprocessing of Macrophytic Biomass
2.3. Preliminary Study: Ultrasound-Assisted Extraction of Antioxidant Compounds
2.4. Antioxidant Activities
2.5. Assessement of Anti-Inflammatory Properties
2.6. Colorimetric Quantification of Phenolics
2.7. Chromatographic Phenolic Composition Assessment
2.8. Optimization of Antioxidant Extraction Using Response Surface Methodology
2.9. Cosmetic Cream Formulation
2.9.1. Preparation of Cymodocea nodosa Extract
2.9.2. Preparation of Cymodocea nodosa Cream
2.10. Accelerated Stability Assay Assessment
2.11. Sensory Evaluation of Cosmetic Cream
2.12. Statistical Analysis
3. Results
3.1. Preliminary Study
3.2. Experimental Design
3.3. Validity of Models Through ANOVA Analysis
3.4. Interpretation of Coefficients
3.5. Analysis of Response Surface Curves
3.6. Determination of Optimal Extraction Conditions for Antioxidants from C. nodosa
3.7. Phenolic Compounds Content in C. nodosa
3.8. Phytochemicals Identification by RP-HPLC
3.9. Evaluation of Anti-Inflammatory Activity
3.9.1. Evaluation of Cytotoxicity of C. nodosa Eco-Extract
3.9.2. Measurement of Nitrite Production (NO)
3.10. Valorization of C. nodosa Eco-Extract for the Formulation of a Cosmetic Cream
3.11. Characterization and Stability of Cosmetic Cream
3.12. Sensory Analysis of the Cosmetic Cream
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- European Union. Regulation (EC) No 1223/2009 of the European Parliament and of the Council of 30 November 2009 on cosmetic products. Off. J. Eur. Union 2009, L342, 59–209. [Google Scholar]
- Manful, M.E.; Ahmed, L.; Barry-Ryan, C. Cosmetic Formulations from Natural Sources: Safety Considerations and Legislative Frameworks in the European Union. Cosmetics 2024, 11, 72. [Google Scholar] [CrossRef]
- Gono, C.M.P.; Ahmadi, P.; Hertiani, T.; Septiana, E.; Putra, M.Y.; Chianese, G. A Comprehensive Update on the Bioactive Compounds from Seagrasses. Mar. Drugs 2022, 20, 406. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.H.; Mahomoodally, M.F.; Sadeer, N.B.; Seok, P.G.; Zengin, G.; Palaniveloo, K.; Khalil, A.A.; Rauf, A. Nutritional and bioactive potential of seagrasses: A review. S. Afr. J. Bot. 2021, 137, 216–227. [Google Scholar] [CrossRef]
- Short, F.; Short, C.; Novak, A. Seagrasses. In The Wetland Book: II: Distribution, Description and Conservation; Springer Science: New York, NY, USA, 2016; ISBN 978-94-007-6173-5. [Google Scholar]
- Elkattan, A.; Amen, Y.; Matsumoto, M.; Nagata, M.; Mittraphab, Y.; Shimizu, K. Anti-phototoxicity and anti-melanogenesis activities of eelgrass Zostera marina and its phenolic constituents. Fitoterapia 2024, 173, 105817. [Google Scholar] [CrossRef] [PubMed]
- De la Torre-Castro, M.; Rönnbäck, P. Links between human and seagrasses—An example from tropical East Africa. Ocean Coast. Manag. 2004, 47, 361–387. [Google Scholar] [CrossRef]
- Zillich, O.V.; Schweiggert-Weisz, U.; Eisner, P.; Kerscher, M. Polyphenols as active ingredients for cosmetic products. Int. J. Cosmet. Sci. 2015, 37, 455–464. [Google Scholar] [CrossRef]
- Csekes, E.; Račková, L. Skin Aging, Cellular Senescence and Natural Polyphenols. Int. J. Mol. Sci. 2021, 22, 12641. [Google Scholar] [CrossRef]
- Michalak, M. Plant-Derived Antioxidants: Significance in Skin Health and the Ageing Process. Int. J. Mol. Sci. 2022, 23, 585. [Google Scholar] [CrossRef]
- Ratz-Łyko, A.; Arct, J.; Majewski, S.; Pytkowska, K. Influence of Polyphenols on the Physiological Processes in the Skin. Phytother. Res. 2015, 29, 509–517. [Google Scholar] [CrossRef]
- Zidorn, C. Secondary metabolites of seagrasses (Alismatales and Potamogetonales; Alismatidae): Chemical diversity, bioactivity, and ecological function. Phytochemistry 2016, 24, 5–28. [Google Scholar] [CrossRef] [PubMed]
- Tsioli, S.; Papathanasiou, V.; Rizouli, A.; Kosmidou, M.; Katsaros, C.; Papastergiadou, E.; Küpper, F.C.; Orfanidis, S. Diversity and Composition of Algal Epiphytes on the Mediterranean Seagrass Cymodocea Nodosa: A Scale-Based Study. Bot. Mar. 2021, 64, 101–118. [Google Scholar] [CrossRef]
- Chemat, F.; Rombaut, N.; Sicaire, A.-G.; Meullemiestre, A.; Fabiano-Tixier, A.-S.; Abert-Vian, M. Ultrasound Assisted Extraction of Food and Natural Products. Mechanisms, Techniques, Combinations, Protocols and Applications. A Review. Ultrason. Sonochem. 2017, 34, 540–560. [Google Scholar] [CrossRef] [PubMed]
- Yeom, S.H.; Gam, D.H.; Kim, J.H.; Kim, J.W. Development of Ultrasound-Assisted Extraction to Produce Skin-Whitening and Anti-Wrinkle Substances from Safflower Seed. Molecules 2022, 27, 1296. [Google Scholar] [CrossRef]
- Chemat, F.; Khan, M.K. Applications of ultrasound in food technology: Processing, preservation and extraction. Ultrason. Sonochem. 2011, 18, 813–835. [Google Scholar] [CrossRef]
- Shen, L.; Pang, S.; Zhong, M.; Sun, Y.; Qayum, A.; Liu, Y.; Rashid, A.; Xu, B.; Liang, Q.; Ma, H.; et al. A Comprehensive Review of Ultrasonic Assisted Extraction (UAE) for Bioactive Components: Principles, Advantages, Equipment, and Combined Technologies. Ultrason. Sonochem. 2023, 101, 106646. [Google Scholar] [CrossRef]
- Rguez, S.; Papetti, A.; Bourguou, S.; Msaada, K.; Hammami, M.; Mkadmini Hammi, K.; Hamrouni Sellami, I. Antifungal and Antioxidant Effects of Phenolic Acids and Flavonol Glycosides from Tetraclinis articulata. Arch. Phytopathol. Plant Prot. 2022, 55, 284–302. [Google Scholar] [CrossRef]
- Yeddes, W.; Chalghoum, A.; Aidi-Wannes, W.; Ksouri, R.; Saidani Tounsi, M. Effect of Bioclimatic Area and Season on Phenolics and Antioxidant Activities of Rosemary (Rosmarinus officinalis L.) Leaves. J. Essent. Oil Res. 2019, 31, 432–443. [Google Scholar] [CrossRef]
- Chaabani, E.; Bettaieb Rebey, I.; Bourgou, S.; Hammami, M.; Ksouri, R.; Abert Vian, M. Recovery of Pistacia lentiscus Edible Oil by Using 2-Methyloxolane as an Eco-Friendly and Sustainable Solvent. J. Food Meas. Charact. 2024, 18, 2526–2534. [Google Scholar] [CrossRef]
- Habachi, E.; Rebey, I.B.; Dakhlaoui, S.; Hammami, M.; Sawsen, S.; Msaada, K.; Merah, O.; Bourgou, S. Arbutus unedo: Innovative Source of Antioxidant, Anti-Inflammatory and Anti-Tyrosinase Phenolics for Novel Cosmeceuticals. Cosmetics 2022, 9, 143. [Google Scholar] [CrossRef]
- Zar Kalai, F.; Oueslati, S.; Dakhlaoui, S.; Hammami, M.; Msaada, K.; Ksouri, R. Chemical Profiling of Maceration and Decoction of Tamarix gallica L. Organs and in Vitro Biological Properties. Int. J. Environ. Health Res. 2024, 34, 2517–2528. [Google Scholar] [CrossRef] [PubMed]
- Delgado-Arias, S.; Zapata-Valencia, S.; Cano-Agudelo, Y.; Osorio-Arias, J.; Vega-Castro, O. Evaluation of the Antioxidant and Physical Properties of an Exfoliating Cream Developed from Coffee Grounds. J. Food Process Eng. 2020, 43, e13067. [Google Scholar] [CrossRef]
- Gonçalves, G.M.S.; Srebernich, S.M.; Vercelino, B.G.; Zampieri, B.M. Influence of the Presence and Type of Fragrance on the Sensory Perception of Cosmetic Formulations. Braz. Arch. Biol. Technol. 2013, 56, 203–212. [Google Scholar] [CrossRef]
- Susilo, B.; Setyawan, H.Y.; Prianti, D.D.; Handayani, M.L.W.; Rohi, A. Extraction of Bioactive Components on Indonesian Seagrass (Syringodium isoetifolium) Using Green Emerging Technology. Food Sci. Technol. 2023, 43, e086722. [Google Scholar] [CrossRef]
- Rashad, S.; El-Chaghaby, G.; Lima, E.C.; Simoes dos Reis, G. Optimizing the Ultrasonic-Assisted Extraction of Antioxidants from Ulva lactuca Algal Biomass Using Factorial Design. Biomass Convers. Biorefinery 2023, 13, 5681–5690. [Google Scholar] [CrossRef]
- Kumar, K.; Srivastav, S.; Sharanagat, V.S. Ultrasound Assisted Extraction (UAE) of Bioactive Compounds from Fruit and Vegetable Processing By-Products: A Review. Ultrason. Sonochem. 2021, 70, 105325. [Google Scholar] [CrossRef]
- Mansour, R.B.; Falleh, H.; Hammami, M.; Barros, L.; Petropoulos, S.A.; Tarchoun, N.; Ksouri, R. The Use of Response Surface Methodology to Optimize Assisted Extraction of Bioactive Compounds from Cucurbita maxima Fruit By-Products. Processes 2023, 11, 1726. [Google Scholar] [CrossRef]
- Mkadmini hammi, K.; Jdey, A.; Abdelly, C.; Majdoub, H.; Ksouri, R. Optimization of ultrasound-assisted extraction of antioxidant compounds from Tunisian Zizyphus lotus fruits using response surface methodology. Food Chem. 2015, 184, 80–89. [Google Scholar] [CrossRef]
- Sanou, A.; Konaté, K.; Kabakdé, K.; Dakuyo, R.; Bazié, D.; Hemayoro, S.; Dicko, M.H. Modelling and Optimisation of Ultrasound-Assisted Extraction of Roselle Phenolic Compounds Using the Surface Response Method. Sci. Rep. 2023, 13, 358. [Google Scholar] [CrossRef]
- Ahmed, T.; Rana, M.R.; Hossain, M.A.; Ullah, S.; Suzauddula, M. Optimization of Ultrasound-Assisted Extraction Using Response Surface Methodology for Total Anthocyanin Content, Total Phenolic Content, and Antioxidant Activities of Roselle (Hibiscus sabdariffa L.) Calyces and Comparison with Conventional Soxhlet Extraction. Biomass Convers. Biorefinery 2023, 13, 1–15. [Google Scholar] [CrossRef]
- Martins, R.; Barbosa, A.; Advinha, B.; Sales, H.; Pontes, R.; Nunes, J. Green Extraction Techniques of Bioactive Compounds: A State-of-the-Art Review. Processes 2023, 11, 2255. [Google Scholar] [CrossRef]
- Naser, W. The Cosmetic Effects of Various Natural Biofunctional Ingredients Against Skin Aging: A Review. Int. J. Appl. Pharm. 2021, 13, 10–18. [Google Scholar] [CrossRef]
- Lim, K.H.; Ku, J.-E.; Rhie, S.-J.; Ryu, J.Y.; Bae, S.; Kim, Y.-S.; Lim, K.H.; Ku, J.-E.; Rhie, S.-J.; Ryu, J.Y.; et al. Anti-Oxidant and Anti-Inflammatory Effects of Sinapic Acid in UVB Irradiation-Damaged HaCaT Keratinocytes. Asian J. Beauty Cosmetol. 2017, 15, 513–522. [Google Scholar] [CrossRef]
- Nićiforović, N.; Abramovič, H. Sinapic Acid and Its Derivatives: Natural Sources and Bioactivity. Compr. Rev. Food Sci. Food Saf. 2014, 13, 34–51. [Google Scholar] [CrossRef] [PubMed]
- Xie, J.; Zheng, Y. Myricetin Protects Keratinocyte Damage Induced by UV through IκB/NFκb Signaling Pathway. J. Cosmet. Dermatol. 2017, 16, 444–449. [Google Scholar] [CrossRef]
- Gupta, G.; Siddiqui, M.A.; Khan, M.M.; Ajmal, M.; Ahsan, R.; Rahaman, M.A.; Ahmad, M.A.; Arshad, M.; Khushtar, M. Current Pharmacological Trends on Myricetin. Drug Res. 2020, 70, 448–454. [Google Scholar] [CrossRef] [PubMed]
- Gęgotek, A.; Jarocka-Karpowicz, I.; Skrzydlewska, E. Cytoprotective Effect of Ascorbic Acid and Rutin against Oxidative Changes in the Proteome of Skin Fibroblasts Cultured in a Three-Dimensional System. Nutrients 2020, 12, 1074. [Google Scholar] [CrossRef] [PubMed]
- Choi, S.J.; Lee, S.-N.; Kim, K.; Joo, D.H.; Shin, S.; Lee, J.; Lee, H.K.; Kim, J.; Kwon, S.B.; Kim, M.J. Biological Effects of Rutin on Skin Aging. Int. J. Mol. Med. 2016, 38, 357–363. [Google Scholar] [CrossRef] [PubMed]
- Boo, Y.C. Ascorbic Acid (Vitamin C) as a Cosmeceutical to Increase Dermal Collagen for Skin Antiaging Purposes: Emerging Combination Therapies. Antioxidants 2022, 11, 1663. [Google Scholar] [CrossRef]
- Rodrigues, L.; Morone, J.; Hentschke, G.S.; Vasconcelos, V.; Lopes, G. Anti-Inflammatory Activity of Cyanobacteria Pigment Extracts: Physiological Free Radical Scavenging and Modulation of iNOS and LOX Activity. Mar. Drugs 2024, 22, 131. [Google Scholar] [CrossRef]
- Thao, N.P.; Luyen, B.T.T.; Koo, J.E.; Kim, S.; Koh, Y.S.; Cuong, N.X.; Nam, N.H.; Van Kiem, P.; Kim, Y.H.; Van Minh, C. Anti-Inflammatory Components of the Vietnamese Starfish Protoreaster nodosus. Biol. Res. 2015, 48, 12. [Google Scholar] [CrossRef] [PubMed]
- Mhadhebi, L.; Mhadhebi, A.; Robert, J.; Bouraoui, A. Antioxidant, Anti-Inflammatory and Antiproliferative Effects of Aqueous Extracts of Three Mediterranean Brown Seaweeds of the Genus Cystoseira. Iran. J. Pharm. Res. 2014, 13, 207–220. [Google Scholar] [PubMed]
- Sigma-Aldrich. Molecular Basis of the Anti-Inflammatory Property Exhibited by Cyclo-Pentano Phenanthrenol Isolated from Lippia nodiflora. Available online: https://www.sigmaaldrich.com/TN/en/tech-docs/paper/261334 (accessed on 5 June 2024).
- Mourelle, M.L.; Gómez, C.P.; Legido, J.L. The Potential Use of Marine Microalgae and Cyanobacteria in Cosmetics and Thalassotherapy. Cosmetics 2017, 4, 46. [Google Scholar] [CrossRef]
- Morone, J.; Lopes, G.; Morais, J.; Neves, J.; Vasconcelos, V.; Martins, R. Cosmetic Application of Cyanobacteria Extracts with a Sustainable Vision to Skincare: Role in the Antioxidant and Antiaging Process. Mar. Drugs 2022, 20, 761. [Google Scholar] [CrossRef] [PubMed]
- Georgakis, N.D.; Ioannou, E.; Chatzikonstantinou, M.; Merino, M.; Chronopoulou, E.G.; Mullor, J.L.; Madesis, P.; Labrou, N.E. The Cosmeceutical Potential of the Yellow-Green Algae Trachydiscus minutus Aqueous Extract: Preparation of a Natural-Based Dermal Formula as a Proof of Concept. Cosmetics 2023, 10, 75. [Google Scholar] [CrossRef]
- Pagels, F.; Arias, A.; Guerreiro, A.; Guedes, A.C.; Moreira, M.T. Seaweed Cosmetics under the Spotlight of Sustainability. Phycology 2022, 2, 374–383. [Google Scholar] [CrossRef]
- Malakar, B.; Mohanty, K. The Budding Potential of Algae in Cosmetics. In Algae: Multifarious Applications for a Sustainable World; Mandotra, S.K., Upadhyay, A.K., Ahluwalia, A.S., Eds.; Springer: Singapore, 2021; pp. 181–199. ISBN 9789811575181. [Google Scholar]
- Couteau, C.; Coiffard, L. Phycocosmetics and Other Marine Cosmetics, Specific Cosmetics Formulated Using Marine Resources. Mar. Drugs 2020, 18, 322. [Google Scholar] [CrossRef]
- Farhan, M. The Promising Role of Polyphenols in Skin Disorders. Molecules 2024, 29, 865. [Google Scholar] [CrossRef]
- Ma, E.Z.; Khachemoune, A. Flavonoids and their therapeutic applications in skin diseases. Arch. Dermatol. Res. 2023, 315, 321–331. [Google Scholar] [CrossRef]
- Liberti, D.; Alfieri, M.L.; Monti, D.M.; Panzella, L.; Napolitano, A. A Melanin-Related Phenolic Polymer with Potent Photoprotective and Antioxidant Activities for Dermo-Cosmetic Applications. Antioxidants 2020, 9, 270. [Google Scholar] [CrossRef]
Factors | Levels | ||
---|---|---|---|
−1 | 0 | +1 | |
Extraction time (min), X1 | 20 | 30 | 40 |
Ultrasonic power (%), X2 | 20 | 30 | 40 |
Hydro-ethanol percentage (%v/v), X3 | 20 | 25 | 30 |
Exp | Independent Variables | Responses | |||
---|---|---|---|---|---|
Time | Ultrasonic Power | Hydroethanol Percentage | YTPC | YPI | |
(min) | (%) | (%v/v) | (mg GAE/g DM) | (%) | |
1 | 20 | 20 | 20 | 137.69 | 61.61 |
2 | 40 | 20 | 20 | 112.69 | 59.12 |
3 | 20 | 40 | 20 | 142.61 | 60.03 |
4 | 40 | 40 | 20 | 105.87 | 58.15 |
5 | 20 | 20 | 30 | 97.54 | 54.24 |
6 | 40 | 20 | 30 | 120.27 | 57.27 |
7 | 20 | 40 | 30 | 120.27 | 60.30 |
8 | 40 | 40 | 30 | 127.46 | 63.21 |
9 | 20 | 30 | 25 | 127.08 | 64.03 |
10 | 40 | 30 | 25 | 120.28 | 62.75 |
11 | 30 | 20 | 25 | 117.64 | 65.24 |
12 | 30 | 40 | 25 | 124.43 | 67.51 |
13 | 30 | 30 | 20 | 124.05 | 62.57 |
14 | 30 | 30 | 30 | 119.13 | 62.6 |
15 | 30 | 30 | 25 | 129.13 | 66.45 |
16 | 30 | 30 | 25 | 129.55 | 66.30 |
17 | 30 | 30 | 25 | 129.99 | 66.45 |
18 | 30 | 30 | 25 | 129.36 | 66.97 |
19 | 30 | 30 | 25 | 122.92 | 66.30 |
Source of Variation | Sum of Squares | Degrees of Freedom | Mean Squares | Fisher’s F-Test | Significance |
---|---|---|---|---|---|
YTPC | |||||
Regression | 1.8354 | 9 | 2.0393 | 20.7245 | *** |
Validity | 5.3478 | 5 | 1.0695 | 1.2171 | 43.6% |
R2 = 0.954 | FObs(20.72) > Ftab(3.33) | ||||
YPI | |||||
Regression | 250.72 | 9 | 27.8579 | 131.9728 | *** |
Validity | 1.5965 | 5 | 0.3193 | 4.2115 | 9.5% |
R2 = 0.992 | FObs(131.97) > Ftab(3.33) |
Terms | TPC | DPPH | ||
---|---|---|---|---|
Coefficient | Significance % | Coefficient | Significance % | |
b 0 | 126.438 | *** | 66.515 | *** |
Linear Effect | ||||
b 1 | −3.862 | ** | 0.029 | 83.80% |
b 2 | 3.482 | ** | 1.172 | *** |
b 3 | −3.826 | ** | −0.386 | * |
Quadratic Effect | ||||
b 11 | −0.567 | 76.80% | −3.149 | *** |
b 22 | −3.211 | 12.20% | −0.165 | 57.40% |
b 33 | −2.658 | 19.30% | −3.954 | *** |
Interaction Effect | ||||
b 12 | −3.409 | * | 0.061 | 71.60% |
b 13 | 11.458 | *** | 1.288 | *** |
b 23 | 3.977 | ** | 1.818 | *** |
Factor | Experimental Value | Predicted Value | ||||
---|---|---|---|---|---|---|
Time (min) | Ultrasound Power (%) | Hydro-Ethanolic Percentage (%v/v) | TPC (mgEAG/gDM) | PI (%) | TPC (mgEAG/gDM) | PI (%) |
30 | 30 | 25 | 113.07 ± 1.45 | 67.02 ± 0.02 | 126.44 | 66.51 |
Assay | Values |
---|---|
Total phenolic content (mg EAG/g DM) | 113.07 ± 1.45 |
Total flavonoids content (mg EC/g MS) | 303.94 ± 1.45 |
Total condensed tannins (mg EC/g MS) | 172.85 ± 1.25 |
Total antioxidant activity (mg/mL) | 218.75 ± 1.87 |
Radical scavenging activity (DPPH) (μg/mL) | CI50 = 1.9 ± 1.26 |
Reduction power (μg/mL) | CE50 = 1.75 ± 0.07 |
Identified Compounds | mg/g DW | Calibration Curve | R2 | |
---|---|---|---|---|
1 | Ascorbic acid | 0.046 ± 0.01 | Y = 0.0255X + 0.0036 | 0.989 |
2 | Quercetin-3-o-rutinoside | 0.300 ± 0.05 | Y = 1128.4X + 21.114 | 0.999 |
3 | Sinapic acid | 0.741 ± 0.08 | Y = 7658.1X − 412.41 | 0.998 |
4 | Rutin | 0.044 ± 0.01 | Y = 16860X + 5320.60 | 0.998 |
5 | Ferulic acid | 0.324 ± 0.03 | Y = 3674.9X + 56.235 | 0.998 |
6 | Myrecitin | 0.620 ± 0.05 | Y = 995.4X − 23.982 | 0.998 |
7 | Trans cinnamic acid | 0.001 ± 0.00 | Y = 4236.6X − 36.756 | 0.998 |
Day 0 | Day 10 | Day 20 | Day 30 | |
---|---|---|---|---|
pH | 6.58 a ± 0.01 | 6.58 a ± 0.00 | 6.59 a ± 0.00 | 6.6 a ± 0.02 |
Viscosity (cp) | 5966.38 a ± 0.54 | 5972.55 a ± 0.48 | 5975.75 a ± 0.49 | 5980.60 a ± 0.02 |
Z-average (d.nm) | 326.26 a ± 15.22 | 331.99 a ± 10.15 | 342.51 a ± 16.01 | 322.85 a ± 12.48 |
Zeta potential (mV) | −38.25 a ± 2.25 | −37.44 a ± 3.66 | −37.58 a ± 1.26 | −36.27 a ± 4.26 |
L* | 80.3 | 80.3 | 80.3 | 80.3 |
a* | 0.1 | 0.2 | 0.2 | 0.3 |
b* | 4.4 | 4.5 | 4.5 | 0.6 |
Color difference ΔE | - | 0.14 | 0.14 | 0.28 |
Centrifuge stability 4 °C | stable | Stable | stable | stable |
Centrifuge stability 25 °C | Stable | Stable | stable | stable |
Centrifuge stability 40 °C | Stable | Stable | stable | stable |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chaabani, E.; Mgaidi, S.; Ben Abdennebi, A.; Dakhlaoui, S.; Hammami, M.; Selmi, S.; Zariat, M.; Shili, A.; Merah, O.; Bettaieb Rebey, I. Enhancing Antioxidant Activity from Aquatic Plant Cymodocea nodosa for Cosmetic Formulation Through Optimized Ultrasound-Assisted Extraction Using Response Surface Methodology. Cosmetics 2024, 11, 186. https://doi.org/10.3390/cosmetics11060186
Chaabani E, Mgaidi S, Ben Abdennebi A, Dakhlaoui S, Hammami M, Selmi S, Zariat M, Shili A, Merah O, Bettaieb Rebey I. Enhancing Antioxidant Activity from Aquatic Plant Cymodocea nodosa for Cosmetic Formulation Through Optimized Ultrasound-Assisted Extraction Using Response Surface Methodology. Cosmetics. 2024; 11(6):186. https://doi.org/10.3390/cosmetics11060186
Chicago/Turabian StyleChaabani, Emna, Sarra Mgaidi, Ameni Ben Abdennebi, Sarra Dakhlaoui, Majdi Hammami, Sawssen Selmi, Mohamed Zariat, Abdessalem Shili, Othmane Merah, and Iness Bettaieb Rebey. 2024. "Enhancing Antioxidant Activity from Aquatic Plant Cymodocea nodosa for Cosmetic Formulation Through Optimized Ultrasound-Assisted Extraction Using Response Surface Methodology" Cosmetics 11, no. 6: 186. https://doi.org/10.3390/cosmetics11060186
APA StyleChaabani, E., Mgaidi, S., Ben Abdennebi, A., Dakhlaoui, S., Hammami, M., Selmi, S., Zariat, M., Shili, A., Merah, O., & Bettaieb Rebey, I. (2024). Enhancing Antioxidant Activity from Aquatic Plant Cymodocea nodosa for Cosmetic Formulation Through Optimized Ultrasound-Assisted Extraction Using Response Surface Methodology. Cosmetics, 11(6), 186. https://doi.org/10.3390/cosmetics11060186