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Abstract: Given the pivotal role played by the microbiome in skin health, it is important to understand
how its composition varies with age, sex, and body site and regular use of topical products. Four
studies were carried out to determine the effects of long-term (4-week) use of different dexpanthenol-
containing topical products on the skin microbiome of a varied population with cosmetically dry
skin. The skin microbiome composition was assessed before and after product usage. No significant
changes in microbiome richness or diversity were found for the individual test products; however, a
meta-analysis of the combined dataset did show changes in microbiome composition as a function
of the subject’s sex, age, and body site. The work presented here demonstrates how the use of
carefully formulated topical products on skin, when used in a way that is representative of real-
life usage conditions, can respect the microbial diversity present on skin across a widely varied
study population.

Keywords: microbiome; topical products; skin health; dexpanthenol

1. Introduction

The skin microbiome, a diverse community of microorganisms including bacteria,
fungi, viruses, and mites, plays a crucial role in maintaining skin health by contributing
to the skin’s barrier function, modulating the immune response, and protecting against
pathogens [1,2]. Far from being a static and unchanging part of the skin, the microbiome
varies over time as a result of key life stages such as puberty and menopause [3]. It
is important that the use of topical skin care products does not negatively impact the
microbiome composition and respects the natural balance present at these different life
stages as microbiome dysbiosis is linked with a range of skin conditions such as xerosis,
atopic dermatitis, and psoriasis [4–8].

Dexpanthenol, also known as provitamin B5, is widely used in skin care products for its
moisturizing and healing properties. It is converted to pantothenic acid in the skin, which is
essential for cellular metabolism. Dexpanthenol-containing emollients have been previously
studied for their role in enhancing skin hydration, promoting barrier regeneration and
accelerating wound healing while also demonstrating an anti-inflammatory effect, yet the
impact on the skin microbiome was not assessed at that time [9–12].

To close this gap, four human studies were recently carried out to examine the skin
microbiome composition and the effects of using topical cosmetic products containing
dexpanthenol, along with ingredients such as niacinamide and lipids, which were included
with the aim of improving xerotic skin [13]. Three of these studies examined topical
moisturizing products, and one looked at products designed to cleanse the skin. While
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some preliminary results have been shared with an emphasis on the behavior of the wash
products [14], a meta-analysis has now been carried out on the results of the studies to
enable a deep dive into the microbiome of the study population and the effects of the
products on it. This article discusses the results of these studies and this meta-analysis
and how the skin microbiome varies with sex, age, and body location and the usage of a
range of topical cosmetic products, as well as the roles that these types of products have in
helping to protect the skin.

2. Materials and Methods

Four studies to examine the effects of topical moisturizing products on skin micro-
biome composition were conducted between January and June 2023 in Hamburg, Germany.
The studies were conducted in accordance with the Declaration of Helsinki and approved
by the Institutional Review Board of proderm GmbH (Hamburg, Germany) (IRB code
2022/028, 15 January 2023, IRB code 2022/029 15 January 2023, IRB code 2023/001 11
January 2023, IRB code 2023/002 11 January 2023). The subjects gave consent to take part
in writing in each of the four studies. They also consented that their (pseudo-anonymized)
data could be used for further scientific analyses. The key inclusion criteria were as follows:
female or male, between 18 to 65 years of age and having cosmetically dry skin (according
to Corneometer® CM825 (Courage & Khazaka, Cologne, Germany) values < 37 a.u. (arbi-
trary units) on one volar forearm at screening). The population demographics across the
four studies are given in Table 1.

Table 1. Test population demographics.

Variable Male Female

N % Mean (SD) N % Mean (SD)

Age (Range 22–65) 52.1 (12.4) 51.3 (13.1)

Fitzpatrick skin type
I 0 0 8 12.6
II 15 53.6 34 54.0
III 10 35.7 19 30.2
IV 2 7.1 1 1.6
V 1 3.6 1 1.6

Ethnicity
White 23 82.1 61 96.8
Black 3 10.7 2 3.2
Asian 2 7.2 0 0

Each study was based on microbiome samples collected from the participants to test
four different treatments (2 test products in a split design each vs. untreated). The product
identifying codes are given in Table 2. All products contained dexpanthenol and a range of
other ingredients, the compositions of which are listed in Supplementary Materials, Section
S1. Two sites were on the face, and two were on the volar forearm. Prior to the start of
the study the subjects were instructed not to apply any leave-on cosmetics (e.g., creams or
lotions) to the volar forearms within the last 3 days or bring the test area in contact with
water (e.g., no bathing and swimming, only careful bathing excluding the test area) within
the last 2 h. The products were applied once daily to each site for 28 days by the subjects
after being provided with training on how much product to apply and where. The subjects
were instructed to apply 0.5 g of the relevant test product to half their face and one volar
forearm once daily throughout the study. The subjects were instructed to not apply any
leave-on cosmetics (e.g., creams or lotions) other than the provided test products to the test
areas throughout the entire course of the study. The last application of the test products
was performed 24 ± 2 h prior to the scheduled visits. Only subjects who completed the
product usage as outlined in the protocol (the per protocol population) were included in
the data analysis.
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Table 2. Product codes and descriptions.

Product Code Product Name

DFCD Dexpanthenol repair complex (DRC) face cream day

DFCN DRC face cream night

DFC-SPF DRC face cream (SPF 25)

DFW Dexpanthenol face wash

DBL DRC body lotion (low lipid level)

DBH DRC body balm (high lipid level)

DHC DRC hand cream

DBW Dexpanthenol body wash

For microbiome assessment, the participants were swabbed at day 0 (D0) before
product usage commenced and day 29 (D29) after 4 weeks of regular product usage,
with comparisons made between treated and untreated samples per test area (face and
forearm) per time point (D0 and D29). DNA was extracted from the swab samples using the
NucleoSpin 96 Soil (Macherey-Nagel, Düren, Germany) kit. Bead beating was performed
on a Vortex-Genie 2 horizontally at 2700 rpm for 2 × 5 min. Negative controls (sterile water
treated as a sample and no-template PCR controls) were included per batch of samples
from the DNA extraction and throughout the laboratory process (including sequencing).
A ZymoBIOMICS Microbial Community DNA Standard (Zymo Research, Irvine, CA,
USA) was also included in the analysis as a positive (mock) control. Full details on the
microbiome assessment are given in Supplementary Materials, Section S2.

The microbiome alpha diversity was calculated as the number of entities detected
(“richness”) or as the Shannon index based on natural logarithm. The Shannon diversity
index accounted for both the number of different species and abundance evenness of the
species. To reduce bias from differences in sequencing depth, alpha diversity analyses
were based on values calculated from rarefied abundance data (rarefied to a sequencing
depth of 4620 reads). A sequencing depth-adjusted richness measure was also calculated
as rarefaction may not remove all the sequencing depth-related bias. The paired Wilcoxon
signed rank test was used as the statistical test used to detect significant differences in
alpha diversity measures between groups.

The beta diversity was calculated as weighted UniFrac distances and Bray–Curtis
dissimilarity for the visualization of samples and air swabs. To enable visual interpretation
of distances between the samples in a two-dimensional plot, the samples could be projected
onto the first two dimensions of a principal co-ordinates analysis (PCoA) of the distances.
Each point of the PCoA plot represented a sample. The longer the distance between two
samples, the farther apart were the corresponding sample points in the PCoA plot, i.e.,
points near each other represented samples with similar microbiome compositions. Ellipses
were added to the PCoA plots that were centered on the group centroids and covered one
standard deviation of the mean of the centroid position, i.e., the ellipses indicated how
certain the positions of the group centroids were.

When comparing the beta diversity, a PERMANOVA test was performed using the
adonis2 function from the vegan R package with 1000 permutations. While PCoA plots
reduced the beta diversity information into two dimensions, PERMANOVA significance
tests directly regressed the complete beta diversity information (i.e., the distances) to the
groups to be compared.

The meta-analysis merged data from the cosmetic studies focusing on the merged
datasets for the phylum and species of the bacteria present. Data were merged using the
PANDAS library (Python version 3.10.12). Exploratory analyses were conducted using R
libraries (SparkR, sparklyr, dyplr, tidyr, ggplot2, ggpubr, and vegan) (R version 4.3.1). To
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assess for pre- and post-treatment changes in the microbiome, Wilcoxon signed rank tests
were used (R library stats).

3. Results

Alpha Diversity: Changes in the Shannon diversity index for the individual test
products are given in Table 3. No significant differences were found for any of the products
between baseline and post-treatment.

Table 3. Individual product data for median Shannon diversity index (with Q1 and Q3, the 1st and 3rd
quartile) at baseline (D0) and post-treatment (D29). NS—not significant at the 95% confidence level.

Product Body Site D0 (Shannon Index) D29 (Shannon Index) Difference

DFCD Face 1.297 (1.120, 1.598) 1.263 (1.083, 1.559) −0.034 (NS)

DFCN Face 2.352 (1.525, 2.224) 2.149 (1.529, 2.135) −0.203 (NS)

DFC-SPF Face 1.601 (1.293, 1.792) 1.658 (1.326, 1.872) +0.057 (NS)

DFW Face 1.831 (1.476, 2.027) 1.741 (1.287, 1.902) −0.090 (NS)

DBL Forearm 2.808 (2.250, 2.637) 2.900 (2.439, 2.864) +0.092 (NS)

DBH Forearm 2.738 (2.442, 2.714) 3.130 (2.853, 2.986) +0.392 (NS)

DHC Forearm 2.444 (2.194, 2.551) 2.940 (2.449, 2.846) +0.496 (NS)

DBW Forearm 2.735 (2.544, 2.859) 2.894 (2.495, 2.784) +0.159 (NS)

Beta diversity: Beta diversity analysis showed no differences between D0 and D29 or
between the products and the relevant untreated comparisons at the 95% confidence level.

Abundance: Paired Wilcoxon signed rank tests were used to compare abundances
at the level of individual ASVs, species, genera, families, orders, and phyla to test for
differences in abundance between treatment time points along with whether the levels
increased or decreased (Table 4).

Table 4. Taxonomic microbiome changes after 4 weeks of product usage on the face and forearm.
NSD—no significant differences (at the 95% confidence level); ASV—amplicon sequence variant.

Product Body Site Taxonomic Changes (D29 vs. D0) Category p Value

DFCD Face NSD - -

DFCN Face NSD - -

DFC-SPF Face NSD - -

WPF Face
Corynebacterium tuberculostearicum ↓ Species 0.003

Frankia nodulisporulans ↑ Species 0.002

DBL Forearm

ASV_0009—Xanthomonas campestris ↑ ASV <0.001
Xanthomonas campestris ↑ Species <0.001

Veillonella ↑ Genus <0.001
Xanthomonas ↑ Genus <0.001
Veillonellaceae ↑ Family <0.001

Xanthomonadaceae ↑ Family <0.001
Firmicutes_C ↑ Phylum <0.001

DBH Forearm Haemophilus_D parainfluenzae ↑ Species 0.001

DHC Forearm
Epilithonimonas ↑ Genus 0.010

Rothia ↑ Genus 0.007
Xanthomonas ↑ Genus 0.008

WPB Forearm NSD - -

Meta-Analysis: Following the assessment of data from the individual products, a
meta-analysis was carried out to determine the effects of topical moisturizer usage on the
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overall study population, as well as to further understand the impacts of age, sex, and body
site on microbiome composition. Microbial composition for the entire study population,
including the top three phyla, at the beginning of the study and after product usage on the
face and forearm is shown in Figure 1. Once-daily product usage for 4 weeks did not result
in any significant changes to the gross overall microbial population composition.
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Figure 1. Baseline (D0) and post-product usage (D29) average relative abundance of the top three phyla
(Actinobacteriota, Firmicutes, and Proteobacteria) and other species by body site (face and forearm).

Microbiome “richness” scores and the Shannon diversity index at baseline (D0) as a
function of age group, sex, and body site (face and forearm) are shown in Figure 2. Variation
in the richness of the face microbiome by age group was observed but with no clear trend;
however, richness was greatest in the oldest age group (60+ years). A non-parametric
Kruskal–Wallis test indicated that there were significant differences in both the “richness”
(p = 0.001) and the Shannon diversity index (p < 0.001) of the face by age and sex. There
were no significant differences in the “richness” (p = 0.063) of the forearm by age and sex;
however, there was a significant difference in Shannon diversity index on the forearm
(p < 0.001).

Wilcoxon–Mann–Whitney U tests were used to compare the richness of the treated
versus untreated groups after product usage (D29). Separate analyses were run for the
face and forearm. The results for the face showed no mean difference in the “richness”
(p = 0.545) or Shannon index (p = 0.661). The forearm results also showed no difference in
the “richness” (p = 0.240) or Shannon index (p = 0.193).

Using a meta-analysis, the effects of age and sex on microbiome diversity were ex-
amined. The relative abundance of the main microbial phyla on the forearm and face as a
function of subject age is given in Figure 3.
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Figure 3. Relative abundance of the top three phyla (Actinobacteriota, Firmicutes, and Proteobacteria)
for (a) the face and (b) the forearm, at baseline (D0) and post-treatment (D29), split by age group.

The relative abundance of the main microbial phyla on the forearm and the face as a
function of subject sex is given in Figure 4.

Individual Wilcoxon-signed rank tests were used to compare the pre- and post-
treatment counts and relative abundance for the face and forearm for the three phyla.
There was no significant difference in the pre- and post-treatment for the treatment groups
for Actinobacteriota and Firmicutes (both counts and relative abundance, face and forearm,
p > 0.05). There were significant differences in the pre- and post-treatment groups for
Proteobacteria facial relative abundances (p = 0.045) and forearm counts (p = 0.015) between
the pre- and post-treatment groups.

Adverse events: A total of 34 adverse events (AEs) were reported across the four
studies. Of the reported AEs, 17 were attributed to the product usage, and 17 occurred in
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the untreated groups. All product-related AEs were minor, and all AEs were monitored
until resolved.
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4. Discussion

The stratum corneum hosts a diverse ecosystem, with different microbial species
colonizing various body sites [2,15–19]. These microbial communities have been shown to
actively contribute to skin homeostasis and health [1], and microbiome dysbiosis has been
linked with a variety of skin disorders, such as atopic dermatitis, psoriasis, and acne [2,20].
In addition to substances such as sebum, which are produced by the body, the skin is also
exposed to a wide variety of external chemical agents including topical products and even
pollution, all of which can be expected to have an impact on its properties and therefore
the microbiome that is present [21–23]. It is therefore important to understand microbial
population variations and the impacts of topical products. In this study, topical product
usage had a relatively minor impact on the skin microbiome composition after 4 weeks
of use. While no significant changes in overall diversity were found, some changes at
the species/genus/phylum levels were observed, including for untreated sites (Table 4).
Ingredients like xanthan gum, commonly used in topical products [24–26], may benefit dry
skin as previously reported [4]. Xanthan gum was present in a number of the products
tested here, and the level present on the skin was found to have increased after usage of
products DBL and DHC. This has potential skin benefits when used on dry skin as the
Xanthomonas genus has a specific enzymatic system for hydrolyzing keratin [26]. This
emphasizes the need to fully understand the composition of the products being used on
skin when interpreting microbiome assessments.

How do the results presented here compare with previous studies on the effects of top-
ical products on the skin microbiome? Numerous studies have examined cosmetic effects,
including those involving pre-, pro-, or post-biotic ingredients, with claims of enhancing
or preserving bacterial diversity [27–30]. Makeup usage has been reported to increase
microbiome diversity more than moisturizers and cleansers [31]. While many studies assert
improvements in microbiome structure and composition, it is crucial to consider the influ-
ence of the study design. For example, some studies applied products twice daily [32–35],
while others combined them with the participants’ existing routines [36]. Conversely, some
research indicates no significant impact on diversity [37], and certain product ingredients
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may even harm microbiome diversity [38], highlighting the need for caution in product
development. Although research regarding what constitutes “microbiome-friendly” topical
products is still in its infancy, it is logical for such products to avoid drastically impacting an
already healthy skin microbiome [39]. Additionally, ensuring that study designs accurately
reflect real-life product usage is essential to avoid skewed results.

Skin microbiome composition and diversity, while typically stable in the short term,
can vary significantly with age, sex, and life events such as puberty, pregnancy, and
menopause [16,40–43]. In our data, variations in the richness of the facial microbiome
by age group were observed, with the oldest age group (60+ years) showing the greatest
richness. Significant differences in both “richness” (p = 0.001) and Shannon diversity index
(p < 0.001) of the face were noted by age and sex. Although no significant differences in
“richness” (p = 0.063) of the forearm by age and sex were found, a significant difference in
Shannon diversity index was observed on the forearm (p < 0.001). Generally, microbiome
diversity is reported to increase with age, which aligns with our findings [44–46]. While
skin microbial composition in healthy subjects is typically stable during adulthood [40,45],
physiological changes associated with aging—such as variations in sebum secretion and im-
mune function, as well as decreased sweat production—may impact the skin microbiome of
older individuals. Notably, significant modifications in the structure and composition of the
skin microbiome have been observed with increased age [47], particularly in females [48].
The skin’s ability to retain moisture and its sebum production capabilities are influenced by
both aging and sex [49]. Male skin microbiome composition varies dramatically across the
first 25 years of life, with an increase in diversity being seen with increasing age [50]. An
increase in skin alpha diversity has been reported for post-menopausal females following a
decrease in sebaceous gland activity and the subsequent reduction in skin sebum levels [48].

It is often assumed by the consumer that increased microbial diversity on skin is
better; this notion requires further exploration. Existing research suggests that drier skin
sites tend to be more diverse than those with moist or sebaceous skin [51]. At other
sites the question of diversity is further complicated. For example, a healthy vaginal
microbiome typically has low microbiome diversity, while a healthy gut microbiome has
high diversity [52,53]. The potential for cross talk between these different microbiomes
should also be considered [54,55]. Given the variability of the microbiome across the body
and during life, rather than simply aiming for increased diversity with the use of topical
moisturizing products, there is a growing emphasis on creating products that respect the
microbiome present on the skin, especially on skin that is classified as “healthy” as opposed
to being in a disease state, as the composition of skin flora is reflective of the changes
occurring in the body with age [27,39,56,57].

Specific bacterial species have been linked with a range of skin conditions such as
xerosis, atopic dermatitis (AD), and psoriasis [4–8]. However, it is not always clear whether
these relationships are causal or correlative [58]. Average bacterial counts of the three most
prevalent species (Staphylococcus epidermidis, Staphylococcus aureus, Cutibacterium acnes, and
others) at baseline (D0) for both females and males, grouped by body site, are shown in
Table 5.

Although the overall levels of S. aureus are relatively low compared with other bacterial
species, females appear to have more of it present than males. Elevated S. aureus levels
are a potential issue for skin as this can result in increased α-toxin and proteases that can
damage the skin barrier and lead to inflammation [59]. S. aureus in particular has been
widely reported to be elevated in subjects with AD but also to be an initial colonizer of
dry skin regions [5,60–63] and is a strong driver of the “itch–scratch cycle” by its ability to
directly activate pruriceptor sensory neurons to drive itch [64]. The available study data
of differences in skin hydration between males and females widely vary [65]. However,
despite strong clinical or objective data on the subject, females do report experiencing dry
skin more frequently than males [66]. Elevated baseline levels of S. aureus may indicate a
higher propensity of females to develop issues with dry, sensitive skin, which would be in
line with existing data on sex-related differences in skin sensitivity [67,68]. This emphasizes
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the important ongoing need to adequately hydrate and moisturize the skin, especially
for females.

Table 5. Average bacterial counts of the three most prevalent species (S. epidermidis, S. aureus, C.
acnes, and others) for females and males, grouped by body site. All subjects at D0 are included.
SD—standard deviation; CI—confidence interval; N—number of subjects.

Species Body Site Sex Average Count (SD) Lower CI Upper CI N

S. epidermidis

Face Female 4250.56 (5083.19) 3352.22 5148.90 62

Male 7150.76 (9486.93) 4643.50 9658.03 28

Forearm Female 1607.17 (2122.55) 1232.06 1982.28 63

Male 2441.20 (2658.55) 1744.85 3137.54 28

S. aureus

Face Female 87.57 (317.14) 14.31 160.83 36

Male 9.38 (38.85) −6.81 25.57 11

Forearm Female 91.43 (370.03) 4.12 178.75 36

Male 0.00 (0.00) 0.00 0.00 11

C. acnes

Face Female 21,448.19 (18,560.41) 18,168.06 24,728.32 62

Male 31,771.31 (19,974.18) 26,492.41 37,050.21 28

Forearm Female 6461.51 (9054.49) 4861.34 8061.69 63

Male 8494.68 (9603.19) 5979.45 11,009.91 28

Other

Face Female 32.28 (391.06) 29.51 35.06 62

Male 36.86 (535.64) 31.08 42.63 28

Forearm Female 39.48 (440.08) 36.34 42.62 63

Male 46.26 (480.83) 41.13 51.39 28

5. Future Opportunities

Future research should focus on elucidating the complexities of the skin microbiome
and its interaction with topical products. Investigating the specific mechanisms by which
various ingredients influence microbial diversity and composition will be essential. Ad-
ditionally, longitudinal studies that monitor changes in the skin microbiome over time,
particularly in response to different life stages and environmental factors, could provide
valuable insights.

Understanding the implications of microbial diversity in relation to skin health will be
crucial. This includes determining whether increased diversity is genuinely beneficial or if it
varies based on the specific context of skin conditions. More targeted studies should explore
the relationship between specific bacterial species and skin disorders, aiming to clarify
the causative factors involved. Furthermore, the development of “microbiome-friendly”
products should be prioritized, ensuring they do not disrupt the natural balance of the
skin microbiome, especially on healthy skin. Research should also assess the real-world
application of these products, considering consumer usage patterns and preferences.

Finally, interdisciplinary approaches that integrate dermatology, microbiology, and
consumer science may yield comprehensive strategies for enhancing skin health while
respecting the delicate balance of the microbiome. As we advance our understanding
of the skin microbiome, it will be essential to communicate findings effectively to both
the scientific community and consumers, fostering informed decisions regarding skin
care products.

6. Limitations

It is important to discuss the limitations of retrospective analysis. There was a sample
size discrepancy between sexes, with a reduced representation of males (n = 28) compared
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with females (n = 63). Additionally, there was an uneven distribution of subjects across
various age groups, and the overall base size was low. Although attempts were made to
address this imbalance through age stratification, it resulted in the creation of relatively
small groups with unequal age ranges, deviating from standard age stratification. Further
work is required to focus on specific age groups to further explore the initial results pre-
sented here. These clinical studies and the retrospective analysis solely focus on assessing
the evolution of the skin microbiome, without considering other skin biomarkers such
as hydration levels and housing habits (urban vs. rural), which have been reported to
impact microbial diversity [69,70]. The study population was predominantly Caucasian
(described as White in Table 1), so it was not possible to examine the effects of ethnicity
on microbiome composition. Among the genetic factors that shape the skin microbiome,
ethnicity appears to be a secondary, although not insignificant, one [71]. The microbiome
is assumed here to be bacterial in nature; however, bacteria form only part of the living
ecosystem present on the stratum corneum. For example, fungi can also be considered
as part of the overall microbiome of the skin, and they can have a dramatic impact on its
health and function [72–75]. Incorporating multiple skin biomarkers could lead to a more
comprehensive understanding of the dynamics of the skin microbiome. In addition to
parameters such as bacterial diversity, more research is required to assess the metabolite
pathways at the molecular level and its impact on the microbiome. Given their potential to
act as a food source for bacteria, the interaction of ingredients in the topical formulation
with the microbiome will be the subject of future work.

Finally, while the sample size was sufficient for detecting significant changes, a larger
cohort would enhance the generalizability of the findings. The study was conducted within
a European population, and results may not be applicable to other geographic regions with
differing climates and lifestyles

7. Conclusions

Microbiome composition is important to skin health, form, and function. However,
the skin is a complex structure and subject to changes as a function of age, sex, and
body site and the use of topical products. It is therefore important to understand how
these intrinsic and extrinsic factors impact microbiome composition. Four studies were
carried out to determine the effects of long-term (4-week) use of different dexpanthenol-
containing topical skin care products on the skin microbiome of a varied population with
cosmetically dry skin. The skin microbiome composition was assessed before and after
product usage. No significant changes in microbiome richness or diversity were found
for the individual test products; however, a meta-analysis of the combined dataset did
show changes in microbiome composition as a function of subject’s sex, age, and body site.
While low microbial diversity is linked with certain skin conditions such as acne vulgaris,
it is not sufficient to state that increased diversity is representative of better quality skin.
It is important to demonstrate that the use of carefully formulated topical products on
skin, when used in a way that is representative of real-life usage conditions, can respect
the microbial diversity present on skin across a widely varied study population without
significantly impacting the natural diversity that is present.

Supplementary Materials: The following supporting information can be downloaded at
https://www.mdpi.com/article/10.3390/cosmetics11060213/s1, Section S1: Test product ingredients.
Section S2: Microbiome assessment.
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