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Abstract: Incorporating antioxidants into cosmetics is the mainstay for developing new products
to mitigate skin aging. However, identifying novel multifunctional antioxidant ingredients with
additional relevant properties that block the skin hallmarks of aging is a very striking strategy. Many
natural compounds, including xanthones, have demonstrated biologically notable properties. In
particular, 1,2-dihydroxy-9H-xanthen-9-one (1,2-DHX) has inhibitory activity against skin enzymes,
and metal-chelating and radical-scavenging activities. Therefore, 1,2-DHX is an attractive molecule
for cosmetic purposes. With this goal in mind, the anti-inflammatory, antioxidant, and anti-allergic
potentials of 1,2-DHX were investigated. 1,2-DHX demonstrated anti-inflammatory properties by
inhibiting the synthesis of specific pro-inflammatory mediators, including interleukin-6 (IL-6) and
prostaglandin E2 (PGE2), in human macrophages. This xanthone did not elicit sensitization reactions
and did inhibit allergic reactions triggered by a strong skin allergen, suggesting its potential as an
anti-allergic compound. 1,2-DHX also revealed mitochondrial antioxidant activity by mitigating
rotenone-induced oxidative stress in macrophages by up to 40%. Overall, 1,2-DHX displayed a
safety profile and noteworthy biological activities, highlighting its multifunctional profile as an active
cosmetic ingredient with anti-inflammatory, antioxidant, and anti-allergic properties.

Keywords: nature-inspired xanthone; anti-inflammatory; anti-allergic; antioxidant; multifunctional
ingredient

1. Introduction

The appearance of deep and coarse wrinkles, compromised skin integrity, and age
spots are clinical signs of skin aging [1]. These events mainly originate from external
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factors, including solar radiation, contact with allergens, pollutants, and tobacco smoke [2].
These elements collectively lead to an increase in reactive oxygen species (ROS) and reac-
tive nitrogen species (RNS) [3]. They are both involved in oxidative damage to skin cells
and in the pathophysiology of inflammation, resulting in the activation of the immune
system [4,5]. Among the events evoked by oxidative stress are the degradation of sev-
eral skin extracellular matrix proteins; the oxidation of lipids, carbohydrates, and nucleic
acids [6]; and the production of pro-inflammatory mediators, triggering inflammatory
cascade reactions [7]. Contact with allergens could also accelerate skin aging. The release
of danger signals evoked after contact with skin allergens drives intracellular signaling
pathways in antigen-presenting cells, enabling them to mature and prime naïve T lym-
phocytes [4]. Upon activation, these T cells transform into allergen-specific effector T cells,
which circulate throughout the body, triggering a severe inflammatory response in follow-
ing exposure. Incorporating antioxidants into cosmetic formulations is a key strategy for
developing anti-aging products, since it helps to delay and prevent skin aging. This makes
the discovery of innovative multifunctional antioxidant compounds highly relevant for
enhancing skin protection. Natural products, especially xanthones, have been reported for
their numerous biological activities [8]. Only two xanthones (α-mangostin and mangiferin)
have been identified with potential to be used in cosmetic products, due to their antioxi-
dant, anti-inflammatory, and anti-aging properties (Figure 1). Both xanthones are the main
compounds identified in the respective natural extracts (α-mangostin: Garcinia mangostana
extract; mangiferin: Mangifera indica extract) present in cosmetic products [9–11]. The presence
of hydroxyl groups in this scaffold is responsible for their powerful antioxidant activity.
It has already been reported that 1,2-dihydroxy-9H-xanthen-9-one (1,2-DHX) presents in-
hibitory activity against enzymes involved in the degradation of collagen (collagenase) and
elastin (elastase) fibers and hyaluronic acid (hyaluronidase) [12]. Additionally, 1,2-DHX
demonstrates metal-chelating effects [Fe(III) and Cu(II)] and DPPH radical-scavenging
activity. Furthermore, the stability demonstrated at skin pH, together with the absence
of phototoxicity in irradiated keratinocyte cells [12], reinforces its potential as a cosmetic
active ingredient. Considering all the studies previously reported highlighting 1,2-DHX as
a hit compound for cosmetic applications, the anti-inflammatory, anti-allergic, and mito-
chondrial antioxidant activities and skin sensitization potential were investigated, aiming
to disclose the in vitro effectiveness and safety profile of 1,2-DHX (Figure 1).
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Figure 1. Chemical structure of natural xanthones found in cosmetic products and 1,2-DHX.

2. Materials and Methods
2.1. Materials

The compound 1,2-dihydroxy-9H-xanthen-9-one (1,2-DHX) was synthetized accord-
ing to previously described procedures [13,14]. Briefly, the synthesis of 1,2-DHX started
with the reaction between the two starting materials, methyl 2-bromobenzoate and 3,4-
dimethoxyphenol, which gave methyl 2-(3,4-dimethoxyphenoxy)benzoate, which was
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subsequently hydrolyzed to 2-(3,4-dimethoxyphenoxy)benzoic acid. Then, this intermedi-
ate was cyclized into 1,2-dimethoxy-9H-xanthen-9-one. Finally, the methoxy groups were
deprotected, which gave 1,2-dihydroxy-9H-xanthen-9-one. Figure 2 illustrates the steps
followed to synthesize 1,2-DHX.
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For the biological assays, the materials and reagents used were obtained from different
companies: RPMI-1640 media and Quant-iT PicoGreen dsDNA Kit from Thermo Fisher
Scientific (Waltham, MA, USA); fetal bovine serum (FBS) from Gibco (Waltham, MA,
USA); AlamarBlue from Bio-Rad (Hercules, CA, USA); human interleukin-6 (IL-6) DuoSet
Enzyme-linked immunosorbent assay (ELISA) from R&D Systems (Minneapolis, MN, USA);
prostaglandin E2 (PGE2) ELISA Kit from Abcam (Cambridge, UK); ascorbic acid (AA),
dexamethasone (DEX), lipopolysaccharide (LPS; Escherichia coli O26:B6), rotenone (Rot), and
1-fluoro-2,4-dinitrobenzene (DNFB) from Sigma-Aldrich (Darmstadt, Germany); celecoxib
(CEL) from GmbH (Darmstadt, Germany); anti-CD86 (clone IT2.2) and anti-CD54 (clone
HA58) antibodies from Biolegend (San Diego, CA, USA); and MitoSOX™ Mitochondrial
Superoxide Indicators (MitoSOX Red Kit) from Invitrogen (Waltham, MA, USA).

2.2. Methods
2.2.1. Cell Culture

Healthy adult volunteers’ blood donation units were used to acquire human peripheral
blood mononuclear cells (PBMCs) through a collaborative agreement with the Portuguese
Institute of Blood and Transplantation (IPST; Instituto Português do Sangue e Transplan-
tação, Portugal). The collection of peripheral blood from healthy volunteers at Hospital of
Braga, Portugal, was approved on 14 December 2018 by the Ethics Subcommittee for Life
and Health Sciences (SECVS) of University of Minho, Portugal (No. 014/015). The prin-
ciples expressed in the Declaration of Helsinki were followed, and participants provided
their signed informed consent. Monocytes were isolated from human PBMCs according
to the previous procedure [15]. Briefly, Histopaque-1077 solution and blood were mixed
in a ratio of 1:1 and centrifuged at 400× g, for 30 min. Then, the PBMC ring was carefully
harvested and washed with PBS. CD14 microbeads were used to isolate the monocytes
from PBMCs through positive magnetic separation, in accordance with the manufacturer’s
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instructions. Isolated monocytes were resuspended in RPMI medium (cRPMI; RPMI-1640
medium containing 2 mM glutamine, 10% human serum, 1% penicillin/streptomycin,
and 1% HEPES) and seeded (1 × 106 cells/mL) in a multi-well plate (MW-24) for 7 days,
exposed to 20 ng/mL of recombinant human GM-CSF at 37 ◦C in a 5% CO2 saturated
atmosphere. The cell culture medium was substituted every 3 days. The morphology of
human primary monocyte-derived macrophages (hMDMs) was verified by visualization
with an inverted microscope (Axiovert 40; Zeiss, Oberkochen, Germany).

The human monocytic cell line THP-1 (ATCC® TIB-202TM; American Type Culture
Collection, Manassas, VA, USA) was cultivated in RPMI medium containing 25 mM (D)-
glucose, 10% inactivated FBS, 10 mM HEPES, 100 U/mL penicillin, 100 µg/mL strep-
tomycin, and 1 mM sodium pyruvate and kept at a cell density of 0.4 × 106 cells/mL.
According to ATCC® instructions, THP-1 cells were sub-cultured every 2 or 3 days and
kept in culture for a maximum of three months.

The mouse macrophage cell line RAW 264.7 (ATCC TIB-71; Manassas, VA, USA) was
cultivated in DMEM containing 10% inactivated FBS, 1% antibiotic solution, 1 mM sodium
pyruvate, and 1.5 g/L sodium bicarbonate. The cell culture of macrophages was mechani-
cally separated with a cell scraper, sub-cultured in a 1:10 proportion (1 mL of cellular sus-
pension to 10 mL of final volume of DMEM), and used after reaching 80–90% confluence.

2.2.2. Anti-Inflammatory Activity

A 50 mM stock solution of 1,2-DHX was prepared in DMSO and filtered by using a
0.22 µm sterile filter. Serial dilutions were made with cRPMI medium to obtain the final
concentrations of 5, 12.5, 25, 50, and 100 µM in the wells. The hMDMs were exposed
to 100 ng/mL of LPS in fresh cRPMI medium for 2 h. Afterwards, 1,2-DHX solutions
at different concentrations were added to the LPS-stimulated hMDMs and incubated for
24 h. After that, the culture medium was collected, homogenized, and stored at −80 ◦C
until analysis. Then, the metabolic activity of the cells and DNA content were determined.
Controls containing 0.2% DMSO were also tested. Non-stimulated and LPS-stimulated
hMDMs were used as negative and positive controls of the production of pro-inflammatory
mediators, respectively. Dexamethasone (10 µM) and celecoxib (10 µM) were dissolved
in ethanol and used as positive controls of the inhibition of the production of the pro-
inflammatory mediators.

• Metabolic activity

The metabolic activity of the non-stimulated or LPS-stimulated hMDMs was deter-
mined by using the alamarBlue assay, based on the manufacturer’s instructions. After
collecting the culture medium, the hMDM cells were gently washed with warm PBS. RPMI
medium containing 10% AlamarBlue was added to each well and left to incubate at 37 ◦C
for 3 h. At the end, the absorbance for each sample in triplicate was measured at 570 nm
and 600 nm with a microplate reader (Synergy HT; BioTek, Winooski, VT, USA). The results
were expressed in percentage in relation to the control.

• DNA quantification

DNA quantification was assessed by using the Quant-iT PicoGreen assay, according to
the manufacturer’s instructions. After the determination of metabolic activity, the hMDM
cells were washed with DPBS. Then, 1 mL of ultrapure water was added to each condition,
and the samples were frozen at −80 ◦C. For the analysis, samples were defrosted, collected
into an eppendorf, and sonicated for 15 min. The samples or standards at concentrations
between 0 and 2 µg/mL, in triplicate, were added to a 96-well plate, followed by PicoGreen
solution and Tris-EDTA (TE) buffer. The plate was incubated for 10 min protected from
light. Fluorescence was read with a microplate reader (excitation wavelength (EX) of
485 nm and emission wavelength (EM) of 528 nm). The DNA concentration in µg/mL was
extrapolated by the standard curve plotted from the fluorescence intensity versus the DNA
concentration. The results were expressed in relative DNA concentration of the control.
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• Pro-inflammatory mediator quantification

The amounts of PGE2 and IL-6 were determined through ELISA kits, following the
manufacturer’s instructions. The PGE2 and IL-6 concentrations in pg/mL were obtained
from a standard curve of the absorbance intensity versus the specific pro-inflammatory
mediator. The values obtained were normalized to the respective DNA concentration. The
results were presented in percentages relative to the positive control.

2.2.3. Sensitization Potential and Anti-Allergic Activity

The human monocyte THP-1 cell line was also employed as a dendritic cell (DC)
surrogate for the skin sensitizing hazard, following OECD guidelines. By adjusting OECD
test Guideline No. 442E [16], the THP-1 cell concentration was set to 0.5 × 106 cells/mL, and
they were incubated overnight at 37 ◦C in a 5% CO2 saturated atmosphere. On the following
day, cells were plated in a 12-well plate (1.5 mL/well), and 1.2-DHX was applied at the final
concentration of 100 µM. After pre-incubation (1 h at 37 ◦C) with the active compound, a
solution of DNFB, prepared in DMSO, was added (final concentration of 8 µM), and cells
were additionally incubated for another 24 h under the previously mentioned conditions.
Afterwards, cells were transferred to eppendorfs and centrifuged at 300× g for 5 min at 4 ◦C.
The supernatant was rejected, and the cell pellet was washed with PBS/1% FBS (2 × 1 mL)
and centrifuged at 300× g for 5 min at 4 ◦C. Then, cells were further resuspended in 1 mL
of PBS/1% FBS, and 200 µL was collected for two 1.5 mL eppendorfs equally divided for
unstained (UNST) and stained (CD5486) conditions. Each stained condition contained
3 µL of each antibody, anti-CD86 and anti-CD54, and was further incubated in the dark
for 30 min at 4 ◦C. Afterward, cells were washed with PBS/1% FBS and centrifuged at
300× g for 5 min at 4 ◦C. Then, the supernatant was discarded, and 100 µL of PBS/1%
FBS solution was added to the cell pellet and gently homogenized for subsequent analysis
through the flow cytometry technique (BD Accuri™ C6 cytometer (San Jose, CA, USA)).
Flow cytometry was used to examine the levels of the cellular membrane markers CD86
and CD54 by using acquisition channels FL1 and FL4, respectively. For control cells and
chemical-treated cells, the relative fluorescence intensity (RFI) of the membrane markers
CD86 and CD54 was calculated by utilizing the geometric mean fluorescence intensity
(MFI) and the following equation:

RFI =
MFI o f chemical treated stained cells − MFI o f chemical treated unstained cells

MFI o f control stained cells − MFI o f control unstained cells
× 100

The findings from a minimum of three independent experiments were presented as
percentages of the RFI values observed in relation to the control, which was set to 100%.
Samples were categorized as skin sensitizers if the RFI values for CD54 and CD86 exceeded
the thresholds outlined in the 442E OECD guideline, precisely 200% and 150%, respectively.

2.2.4. Mitochondrial Antioxidant Activity

Mitochondrial superoxide (O2
−) generation was determined by using MitoSOX fluo-

rescent probe according to the manufacturer’s instructions. Briefly, 0.6 × 106 cells/mL were
plated in a 12-well plate (1.2 mL/well) and incubated overnight at 37 ◦C. The next day, cells
were exposed to 1,2-DHX (100 µM) and ascorbic acid (antioxidant control)) (500 µM) and
pre-incubated for 1 h, using the conditions previously mentioned. Then, rotenone (final
concentration of 20 µM) was added and incubated for 5 h at 37 ◦C. After the incubation
period, the cells were carefully detached with a scrapper from each well, transferred to
2 mL eppendorfs, and centrifuged at 500× g for 3 min at room temperature. The cell
supernatant was collected and rejected, and the cell pellet was washed with HBSS solution
(2 × 1 mL) and centrifuged at 500× g for 3 min. Afterwards, the cell pellet was resuspended
in 400 µL of PBS solution, and 300 µL was collected for two 1.5 mL eppendorfs: 150 µL for
unstained and 150 µL for stained conditions. Stained cells were incubated with 100 µL of
freshly prepared MitoSOX working solution (final concentration of 2.5 µM) at 37 ◦C for
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15 min protected from light. Then, 400 µL of HBSS solution was added to the dilute stained
condition and was further centrifuged. Then, the stained conditions were washed with
HBSS solution (2 × 1 mL). Finally, the cell pellet was resuspended in 100 µL of PBS solution
and analyzed by flow cytometry (BD Accuri™ C6 cytometer (San Jose, CA, USA)).

2.2.5. Statistical Analysis

GraphPad Prism8 for Windows (GraphPad Software, San Diego, CA, USA; www.
graphpad.com; accessed on 5 December 2024) was utilized to conduct the statistical analy-
sis. The results were presented as means ± standard deviations (SDs) or means ± standard
errors of the means (SEMs), based on a minimum of three independent experiments, in
triplicates. Statistical comparisons were carried out by using one-way ANOVA, followed
by Sidak’s multiple comparisons test (anti-inflammatory activity and levels of IL-6 and
PGE2) and Tukey’s multiple comparisons test (sensitization potential, anti-allergic activity,
and mitochondrial antioxidant activity). The value of p < 0.05 was considered signifi-
cant, and the statistical levels considered were * p < 0.05; ** p < 0.01, *** p < 0.005, and
**** p < 0.001 relative to the respective control.

3. Results and Discussion
3.1. Anti-Inflammatory Activity

The metabolic activity and relative DNA content achieved for hMDMs that were
stimulated by LPS in the absence or presence of 1,2-DHX are shown in Figure 3. 1,2-DHX
did not affect hMDM metabolic activity (Figure 3A) or DNA content (Figure 3B) at the
concentrations tested.
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Figure 3. The metabolic activity (A) and relative DNA concentration (B) of non-stimulated (W/o
LPS) and LPS-stimulated hMDMs cultured or not in the presence of different concentrations (5, 12.5,
25, 50, and 100 µM) of 1,2-DHX and clinically used anti-inflammatory compounds (dexamethasone
(DEX) and celecoxib (CEL) at 10 µM). The dotted line represents the metabolic activity and the DNA
concentration of the positive control (LPS-stimulated hMDMs without treatment (CTL LPS)). The
results of three independent assays (n = 3) are expressed as means ± SDs (standard deviations).

The anti-inflammatory activity of 1,2-DHX was assessed by its ability to reduce
the pro-inflammatory PGE2 and IL-6 mediators, produced by LPS-stimulated hMDMs
(Figure 4). As expected, when the hMDMs were stimulated with LPS, we observed a signif-
icant increase in the levels of both PGE2 and IL-6 pro-inflammatory molecules. Celecoxib
significantly decreased (29.4 ± 9.1%) PGE2 production, and dexamethasone effectively
reduced IL-6 production (58.7 ± 5.1%). When LPS-stimulated hMDMs were treated with
the 1,2-DHX, a decrease in the PGE2 level (34.2 ± 9.5% at 100 µM) in the culture medium
was observed (Figure 4A). 1,2-DHX showed similar anti-inflammatory activity at all tested
concentrations, leading to similar or inferior levels of PGE2 if compared with celecoxib, a
clinically employed non-steroidal anti-inflammatory drug (NSAID). 1,2-DHX at 100 µM sig-
nificantly decreased IL-6 production (34.7 ± 3.7%) by LPS-stimulated hMDMs (Figure 4B).
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Figure 4. The PGE2 (A) and IL-6 (B) percentages of non-stimulated (W/o LPS) and LPS-stimulated
hMDMs cultured in the presence or in the absence of different concentrations of 1,2-DHX and
clinically used anti-inflammatory drugs (dexamethasone (DEX) and celecoxib (CEL) at 10 µM). The
dashed line indicates the highest amount of generated pro-inflammatory mediators in the positive
control (LPS-stimulated hMDMs without treatment (CTL LPS)). The results of three independent
assays (n = 3) are expressed as means ± SDs, and statistically significant differences are indicated by
* p < 0.05, ** p < 0.01, and **** p < 0.0001 in comparison with the respective positive control.

Cytocompatible concentrations severely reduced the PGE2 and IL-6 levels in LPS-
stimulated hMDMs (Figure 4), being the highest concentration the most effective. This
capacity is of utmost relevance, since PGE2 increases vasodilation, vascular leakage, hy-
peralgesia, and fever [17], and IL-6 promotes T-cell growth and activation, increases B-cell
development, and modulates the chemokines that activate neutrophils [18]. Therefore,
reducing the synthesis of these pro-inflammatory mediators ameliorates inflammation,
specifically skin inflammation, avoiding skin premature aging. Moreover, 1,2-DHX demon-
strated anti-inflammatory activity similar to or better than clinically used anti-inflammatory
drugs. Considering the results obtained herein at the maximum concentration of 1,2-DHX
used, the following biological activities explored for the compound were performed at
100 µM.

3.2. Sensitization Potential and Anti-Allergic Activity

The necessity for non-animal alternative studies has been recognized for the evaluation
of the toxicity of chemicals to human health overall. It has become especially demanding
for cosmetic active ingredients as a result of the European Union Commission’s regulation
banning the testing and marketing of products in which animal experiments have been
used. Following an alternative validated test, OECD guideline 442E [16], the up-regulation
of the co-stimulatory molecules CD54 and CD86 in THP-1 cells was used to evaluate the
potential of the molecules to allay skin sensitization and xanthone’s ability to mitigate skin
allergy by using the strong allergen DNFB (Figure 5).

At the non-cytotoxic concentration of 100 µM, 1,2-DHX revealed a promising safety
profile with RFI (%) values of 179.05 ± 29.45% and 90.85 ± 37.86%, with both values being
lower than the thresholds for CD54 of 200% and CD86 of 150%, respectively, already estab-
lished in the guidelines [16]; thus, a non-sensitizer label could be assigned to 1,2-DHX. As ex-
pected, the treatment with DNFB increased the levels of CD54 (RFI (%) = 621.34 ± 31.81%)
and CD86 (RFI (%) = 367.00 ± 35.92%). 1,2-DHX showed inhibitory activity towards
DNFB-induced cell maturation with RFI (%) values of 294.82 ± 34.00% for CD54 and
238.08 ± 35.92% for CD86. For the CD54 membrane cell marker, 1,2-DHX (294.82 ± 34.00%)
demonstrated a stronger inhibitory effect (around 50%) towards the DNFB-induced cell
maturation (621.34 ± 31.81%) than for the CD86 cell marker (238.08 ± 35.92%). The anti-
allergic action of 1,2-DHX allows us to hypothesize that this compound could eliminate
and prevent the harmful effects of other allergens that come into contact with the skin.
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Figure 5. The non-sensitization potential (compared with control) and anti-allergic activity of 1,2-DHX
towards the maturation of THP-1 cells induced by the strong allergen DNFB (compared with DNFB).
The relative fluorescence intensity (RFI) of CD54 and CD86 expression was determined. The results of
seven independent assays (n = 7) are expressed as means ± SEMs (standard errors of the means), and
statistically significant differences observed are indicated by ** p < 0.01 and **** p < 0.0001 compared
with the positive control (DNFB).

3.3. Mitochondrial Antioxidant Activity

Mitochondria are cellular organelles rich in oxidant species where the cellular oxidative
stress process can be initiated more easily, triggered by an external stimulus capable to
provoke an increase in oxidant species [19]. Oxidative stress activates other molecular
events, including inflammatory and allergic reactions. Considering that mitochondria
have been identified as a major source of ROS, mostly of superoxide anion (O2

•¯), the
mitochondrial antioxidant activity of 1,2-DHX was assessed in macrophage cells stimulated
by rotenone (Figure 6).
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Figure 6. The pro-oxidant potential (compared with control; 100%) and mitochondrial antioxidant
activity of 1,2-DHX (100 µM) under rotenone-induced oxidative stress in RAW264.7 cells (compared
with rotenone). The antioxidant control ascorbic acid (AA) was also tested. The relative fluorescence
intensity (RFI) of the fluorescent probe was measured. The results of eight independent assays (n = 8)
are expressed as means ± SEMs, and statistically significant differences observed are indicated by
* p < 0.05 and ** p < 0.01 compared with the positive control (Rot) at the tested concentrations.

Two control molecules, AA and rotenone, with antioxidant activity and potential
to induce oxidative stress, respectively, were used. 1,2-DHX (84.14 ± 5.07%) and AA
(83.97 ± 4.88%) did not demonstrate the ability to induce oxidative stress in macrophages,
with RFI (%) values inferior to the control (100%) (Figure 6). The antioxidant response of 1,2-
DHX was further investigated by using rotenone as a positive control. Rotenone triggered
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mitochondrial oxidative stress, increasing mitochondrial O2
• − production [20], reflected

by an increase in fluorescence. 1,2-DHX showed inhibitory effect on rotenone-induced
mitochondrial O2

•− production with RFI (%) values of 167.59 ± 5.41% and 134.57 ± 4.92%
compared with rotenone at 40 µM (207.55 ± 4.25%) and rotenone at 20 µM (110.18 ± 7.05%),
respectively (Figure 6). Mitochondrial O2•− is one of the most reactive species that con-
tribute to the oxidation of biomolecules, the acceleration of skin aging, the regulation of
apoptosis, and senescent events [21,22]. Thus, a reduction in O2•− production can help
to avoid cellular oxidative processes, preventing the acceleration of the aging of the skin.
Other antioxidant molecules are being used in cosmetic products with the purpose of
neutralizing ROS [23]; however, there is not specific information about their antioxidant
activity directed to the mitochondria. Ascorbic acid is one of the antioxidants used in
cosmetic products that has been already reported for its antioxidant activity, including
as an untargeted and mitochondria-targeted antioxidant [24]. With our results, it is also
possible to observe the effective inhibitory response of AA towards rotenone-induced
mitochondrial O2

•− production at different concentrations of rotenone used as a stimulus
(40 µM: 135.42 ± 3.08%; 20 µM: 110.18 ± 6.37%), corroborating the results already reported
in the literature [24]. The existence of a few mitochondria-targeted antioxidants in cosmetic
products, aligned with the results obtained for 1,2-DHX, highlights it as a potential active
cosmetic ingredient.

4. Conclusions

Skin is constantly exposed to external factors that contribute to the aging process, so
its protection and equilibrium maintenance are essential. Sources of new active ingredients
with multifunctional action are must-haves in the development of new cosmetic products,
specifically anti-aging formulations. Nature has been used as a valuable source in the
discovery of new active compounds with diverse daily cosmetic applications. 1,2-DHX
is a nature-inspired xanthone with promising anti-aging and antioxidant activities and a
physicochemical profile suitable for topical application. The evaluation of skin sensitization
potential and anti-inflammatory, anti-allergic, and mitochondrial antioxidant activities is
unveiled herein for the first time. Non-cytotoxic concentrations of 1,2-DHX demonstrated
the ability to reduce PGE2 and IL-6 pro-inflammatory mediator release. 1,2-DHX did
not elicit skin sensitization and inhibited DNFB-triggered allergic reactions, highlighting
its preventive potential for use after skin contact with allergens. Furthermore, 1,2-DHX
significantly reduced mitochondrial superoxide anion production. Based on these results,
the application of this ingredient could be diversified in cosmetic products that help to
fight skin inflammation, such as those activated by exposure to solar radiation and, in
this particular case, aftersun products. 1,2-DHX could also help to minimize the effects of
allergic contact dermatitis, due to its ability to mitigate allergen-induced skin sensitization.
By acting as an untargeted and mitochondria-targeted antioxidant ingredient, 1,2-DHX
could prevent premature skin aging by impeding the deregulation of the biological and
metabolic processes of the skin that depend on the equilibrium state of mitochondria.
Overall, 1,2-DHX can block relevant hallmarks of skin aging, namely, inflammaging and
oxidative stress, and is thus a promising anti-aging ingredient.
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