Integrated Testing Strategies for Skin Sensitization Hazard and Potency Assessment—State of the Art and Challenges
Abstract
:1. Introduction
2. ITS Approaches State of the Art
Sequential Strategies
3. Making Decisions with ITS
4. Challenges to Practical Applications of ITS
Conflicts of Interest
References
- European Union. Regulation (EC) No 1223/2009 of the European Parliament and of the Council of 30 November 2009 on Cosmetic Products. Available online: http://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX%3A32009R1223 (accessed on 15 April 2016).
- Federal Ban Sought for Animal Testing on Cosmetics. Available online: http://www.usatoday.com/story/news/politics/2014/11/15/federal-ban-animal-testing-cosmetics/19090873/ (accessed on 15 April 2016).
- Kimber, I.; Basketter, D.A.; Gerberick, G.F.; Ryan, C.A.; Dearman, R.J. Chemical allergy: Translating biology into hazard characterization. Toxicol. Sci. 2011, 120, S238–S268. [Google Scholar] [CrossRef] [PubMed]
- Mehling, A.; Eriksson, T.; Eltze, T.; Kolle, S.; Ramirez, T.; Teubner, W.; van Ravenzwaay, B.; Landsiedel, R. Non-animal test methods for predicting skin sensitization potentials. Arch. Toxicol. 2012, 86, 1273–1295. [Google Scholar] [CrossRef] [PubMed]
- Reisinger, K.; Hoffmann, S.; Alepee, N.; Ashikaga, T.; Barroso, J.; Elcombe, C.; Gellatly, N.; Galbiati, V.; Gibbs, S.; Groux, H.; et al. Systematic evaluation of non-animal test methods for skin sensitisation safety assessment. Toxicol. in Vitro 2015, 29, 259–270. [Google Scholar] [CrossRef] [PubMed]
- OECD. Adverse Outcome Pathways, Molecular Screening and Toxicogenomics. Available online: http://www.oecd.org/chemicalsafety/testing/adverse-outcome-pathways-molecular-screening-and-toxicogenomics.htm (acccessed on 22 July 2015).
- Villeneuve, D.L.; Crump, D.; Garcia-Reyero, N.; Hecker, M.; Hutchinson, T.H.; LaLone, C.A.; Landesmann, B.; Lettieri, T.; Munn, S.; Nepelska, M.; et al. Adverse outcome pathway (AOP) development I: Strategies and principles. Toxicol. Sci. 2014, 142, 312–320. [Google Scholar] [CrossRef] [PubMed]
- Villeneuve, D.L.; Crump, D.; Garcia-Reyero, N.; Hecker, M.; Hutchinson, T.H.; LaLone, C.A.; Landesmann, B.; Lettieri, T.; Munn, S.; Nepelska, M.; et al. Adverse outcome pathway development II: Best practices. Toxicol. Sci. 2014, 142, 321–330. [Google Scholar] [CrossRef] [PubMed]
- OECD. OECD Series on Testing and Assessment No. 168. The Adverse Outcome Pathway for Skin Sensitisation Initiated by Covalent Binding to Proteins. Part 1: Scientific Assessment; OECD Publishing: Paris, France, 2012. [Google Scholar]
- Jowsey, I.R.; Basketter, D.A.; Westmoreland, C.; Kimber, I. A future approach to measuring relative skin sensitising potency: A proposal. J. Appl. Toxicol. 2006, 26, 341–350. [Google Scholar] [CrossRef] [PubMed]
- Basketter, D.A.; Kimber, I. Updating the skin sensitization in vitro data assessment paradigm in 2009. J. Appl. Toxicol. 2009, 29, 545–550. [Google Scholar] [CrossRef] [PubMed]
- Stephens, M.L.; Andersen, M.; Becker, R.A.; Betts, K.; Boekelheide, K.; Carney, E.; Chapin, R.; Devlin, D.; Fitzpatrick, S.; Fowle, J.R., 3rd; et al. Evidence-based toxicology for the 21st century: Opportunities and challenges. ALTEX 2013, 30, 74–103. [Google Scholar] [CrossRef] [PubMed]
- UN. Globally Harmonised Sysem of Classification and Labelling of Chemicals (GHS), 5th ed.; United Nations: New York, NY, USA, 2013. [Google Scholar]
- Gerberick, G.F.; Ryan, C.A.; Kern, P.S.; Schlatter, H.; Dearman, R.J.; Kimber, I.; Patlewicz, G.Y.; Basketter, D.A. Compilation of historical local lymph node data for evaluation of skin sensitization alternative methods. Dermatitis 2005, 16, 157–202. [Google Scholar] [PubMed]
- Adler, S.; Basketter, D.; Creton, S.; Pelkonen, O.; van Benthem, J.; Zuang, V.; Andersen, K.E.; Angers-Loustau, A.; Aptula, A.; Bal-Price, A.; et al. Alternative (non-animal) methods for cosmetics testing: Current status and future prospects—2010. Arch. Toxicol. 2011, 85, 367–485. [Google Scholar] [CrossRef] [PubMed]
- Basketter, D.A.; Clewell, H.; Kimber, I.; Rossi, A.; Blaauboer, B.; Burrier, R.; Daneshian, M.; Eskes, C.; Goldberg, A.; Hasiwa, N.; et al. A roadmap for the development of alternative (non-animal) methods for systemic toxicity testing. ALTEX 2012, 29, 3–89. [Google Scholar] [CrossRef] [PubMed]
- Roberts, D.W.; Patlewicz, G.Y. Updating the skin sensitization in vitro data assessment paradigm in 2009—A chemistry and QSAR perspective. J. Appl. Toxicol. 2010, 30, 286–288. [Google Scholar] [PubMed]
- Hoffmann, S. LLNA variability: An essential ingredient for a comprehensive assessment of non-animal skin sensitization test methods and strategies. ALTEX 2015, 32, 379–383. [Google Scholar] [CrossRef] [PubMed]
- Nukada, Y.; Ashikaga, T.; Miyazawa, M.; Hirota, M.; Sakaguchi, H.; Sasa, H.; Nishiyama, N. Prediction of skin sensitization potency of chemicals by human cell line activation test (h-CLAT) and an attempt at classifying skin sensitization potency. Toxicol. in Vitro 2012, 26, 1150–1160. [Google Scholar] [CrossRef] [PubMed]
- Tsujita-Inoue, K.; Atobe, T.; Hirota, M.; Ashikaga, T.; Kouzuki, H. In silico risk assessment for skin sensitization using artificial neural network analysis. J. Toxicol. Sci. 2015, 40, 193–209. [Google Scholar] [CrossRef] [PubMed]
- Tsujita-Inoue, K.; Hirota, M.; Ashikaga, T.; Atobe, T.; Kouzuki, H.; Aiba, S. Skin sensitization risk assessment model using artificial neural network analysis of data from multiple in vitro assays. Toxicol. in Vitro 2014, 28, 626–639. [Google Scholar] [CrossRef] [PubMed]
- Natsch, A.; Emter, R.; Ellis, G. Filling the concept with data: Integrating data from different in vitro and in silico assays on skin sensitizers to explore the battery approach for animal-free skin sensitization testing. Toxicol. Sci. 2009, 107, 106–121. [Google Scholar] [CrossRef] [PubMed]
- Natsch, A.; Emter, R.; Gfeller, H.; Haupt, T.; Ellis, G. Predicting skin sensitizer potency based on in vitro data from keratinosens and kinetic peptide binding: Global versus domain-based assessment. Toxicol. Sci. 2015, 143, 319–332. [Google Scholar] [CrossRef] [PubMed]
- Roberts, D.W.; Patlewicz, G.Y. Integrated testing and assessment approaches for skin sensitization: A commentary. J. Appl. Toxicol. 2014, 4, 436–400. [Google Scholar] [CrossRef] [PubMed]
- Jaworska, J.; Harol, A.; Kern, P.S.; Frank Gerberick, G. Integrating non-animal test information into an adaptive testing strategy—Skin sensitization proof of concept case. ALTEX 2011, 28, 211–225. [Google Scholar] [CrossRef] [PubMed]
- Jaworska, J.; Dancik, Y.; Kern, P.; Gerberick, F.; Natsch, A. Bayesian integrated testing strategy to assess skin sensitization potency: From theory to practice. J. Appl. Toxicol. 2013, 33, 1353–1364. [Google Scholar] [CrossRef] [PubMed]
- Luechtefeld, T.; Maertens, A.; McKim, J.M.; Hartung, T.; Kleensang, A.; Sa-Rocha, V. Probabilistic hazard assessment for skin sensitization potency by dose-response modeling using feature elimination instead of quantitative structure-activity relationships. J. Appl. Toxicol. 2015, 35, 1361–1371. [Google Scholar] [CrossRef] [PubMed]
- Jaworska, J.; Natsch, A.; Ryan, C.; Strickland, J.; Ashikaga, T.; Miyazawa, M. Bayesian integrated testing strategy (ITS) for skin sensitization potency assessment: A decision support system for quantitative weight of evidence and adaptive testing strategy. Arch. Toxicol. 2015, 12, 2355–2383. [Google Scholar] [CrossRef] [PubMed]
- Bauch, C.; Kolle, S.N.; Ramirez, T.; Eltze, T.; Fabian, E.; Mehling, A.; Teubner, W.; van Ravenzwaay, B.; Landsiedel, R. Putting the parts together: Combining in vitro methods to test for skin sensitizing potentials. Regul. Toxicol. Pharmacol. 2012, 63, 489–504. [Google Scholar] [CrossRef] [PubMed]
- McKim, J.M., Jr.; Keller, D.J., 3rd; Gorski, J.R. A new in vitro method for identifying chemical sensitizers combining peptide binding with ARE/EpRE-mediated gene expression in human skin cells. Cutan. Ocul. Toxicol. 2010, 29, 171–192. [Google Scholar] [CrossRef] [PubMed]
- Strickland, J.; Zang, Q.; Kleinstreuer, N.; Paris, M.; Lehmann, D.M.; Choksi, N.; Matheson, J.; Jacobs, A.; Lowit, A.; Allen, D.; Casey, W. Integrated decision strategies for skin sensitization hazard. J. Appl. Toxicol. 2016. [Google Scholar] [CrossRef] [PubMed]
- Patlewicz, G.; Kuseva, C.; Kesova, A.; Popova, I.; Zhechev, T.; Pavlov, T.; Roberts, D.W.; Mekenyan, O. Towards AOP application—Implementation of an integrated approach to testing and assessment (IATA) into a pipeline tool for skin sensitization. Regul. Toxicol. Pharmacol. 2014, 69, 529–545. [Google Scholar] [CrossRef] [PubMed]
- Maxwell, G.; Mackay, C. Application of a systems biology approach to skin allergy risk assessment. Altern. Lab. Anim. 2008, 36, 521–556. [Google Scholar] [PubMed]
- Jaworska, J.; Gabbert, S.; Aldenberg, T. Towards optimization of chemical testing under REACH: A bayesian network approach to integrated testing strategies. Regul. Toxicol. Pharmacol. 2010, 57, 157–167. [Google Scholar] [CrossRef] [PubMed]
- Nukada, Y.; Miyazawa, M.; Kazutoshi, S.; Sakaguchi, H.; Nishiyama, N. Data integration of non-animal tests for the development of a test battery to predict the skin sensitizing potential and potency of chemicals. Toxicol. in Vitro 2013, 27, 609–618. [Google Scholar] [CrossRef] [PubMed]
- Van der Veen, J.W.; Rorije, E.; Emter, R.; Natsch, A.; van Loveren, H.; Ezendam, J. Evaluating the performance of integrated approaches for hazard identification of skin sensitizing chemicals. Regul. Toxicol. Pharmacol. 2014, 69, 371–379. [Google Scholar] [CrossRef] [PubMed]
- Dimitrov, S.D.; Low, L.K.; Patlewicz, G.Y.; Kern, P.S.; Dimitrova, G.D.; Comber, M.H.; Phillips, R.D. Skin sensitization: Modeling based on skin metabolism simulation and formation of protein conjugates. Int. J. Toxicol. 2005, 24, 189–204. [Google Scholar] [CrossRef] [PubMed]
- De Wever, B.; Fuchs, H.W.; Gaca, M.; Krul, C.; Mikulowski, S.; Poth, A.; Roggen, E.L.; Vilà, M.R. Implementation challenges for designing integrated in vitro testing strategies (ITS) aiming at reducing and replacing animal experimentation. Toxicol. in Vitro 2012, 26, 526–534. [Google Scholar] [CrossRef] [PubMed]
- Pirone, J.R.; Smith, M.; Kleinstreuer, N.C.; Burns, T.A.; Strickland, J.; Dancik, Y.; Morris, R.; Rinckel, L.A.; Casey, W.; Jaworska, J.S. Open source software implementation of an integrated testing strategy for skin sensitization potency based on a Bayesian network. ALTEX 2014, 31, 336–340. [Google Scholar] [CrossRef] [PubMed]
- National Toxicology Program (NTP) Integrated Testing Strategies. Available online: http://ntp.niehs.nih.gov/pubhealth/evalatm/integrated-testing-strategies/index.html (accessed on 18 March 2016).
© 2016 by the author; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jaworska, J. Integrated Testing Strategies for Skin Sensitization Hazard and Potency Assessment—State of the Art and Challenges. Cosmetics 2016, 3, 16. https://doi.org/10.3390/cosmetics3020016
Jaworska J. Integrated Testing Strategies for Skin Sensitization Hazard and Potency Assessment—State of the Art and Challenges. Cosmetics. 2016; 3(2):16. https://doi.org/10.3390/cosmetics3020016
Chicago/Turabian StyleJaworska, Joanna. 2016. "Integrated Testing Strategies for Skin Sensitization Hazard and Potency Assessment—State of the Art and Challenges" Cosmetics 3, no. 2: 16. https://doi.org/10.3390/cosmetics3020016
APA StyleJaworska, J. (2016). Integrated Testing Strategies for Skin Sensitization Hazard and Potency Assessment—State of the Art and Challenges. Cosmetics, 3(2), 16. https://doi.org/10.3390/cosmetics3020016