Green Synthesis Optimization of Glucose Palm Oleate and Its Potential Use as Natural Surfactant in Cosmetic Emulsion
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Carica papaya Lipase (CPL)
2.3. Determination of Moisture Content
2.4. Determination of Palm Olein Fatty Acids Composition
2.5. Green Synthesis of Glucose Palm Oleate Catalyzed by CPL
2.6. Optimization of Glucose Palm Oleate Green Synthesis
2.7. Analyses of Glucose Palm Oleate
2.7.1. UPLC Analysis
2.7.2. FTIR Analysis
2.7.3. Thin Layer Chromatography (TLC)
2.8. Determination of Glucose Palm Oleate Properties
2.8.1. Determination of Hydrophilic-Lipophilic Balance Value (HLB)
2.8.2. Microscopic Observation of Emulsion
2.8.3. Surface Tension Analysis
2.9. Statistical Analysis
3. Results and Discussion
3.1. Fatty Acid Compositions of Palm Olein
3.2. Moisture Content of CPL, Glucose and Palm Olein
3.3. Optimization of Reaction Condition for the Green Synthesis of Glucose Palm Oleate
3.4. UPLC Analysis of Glucose Palm Oleate
3.5. FTIR Analysis of Glucose Palm Oleate
3.6. Thin Layer Chromatography (TLC) of Glucose Palm Oleate
3.7. Determination of Hydrophilic-Lipophilic Balance Value (HLB)
3.8. Microscopic Observation of Emulsions
3.9. Surface Tension
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sangiorgio, S.; Pargoletti, E.; Rabuffetti, M.; Robescu, M.S.; Semproli, R.; Ubiali, D.; Cappelletti, G.; Speranza, G. Emulsifying properties of sugar-based surfactants prepared by chemoenzymatic synthesis. Colloid Interface Sci. Commun. 2022, 48, 100630. [Google Scholar] [CrossRef]
- Nieto, S.; Villa, R.; Donaire, A.; Lozano, P. Ultrasound-assisted enzymatic synthesis of xylitol fatty acid esters in solvent-free conditions. Ultrason. Sonochem. 2021, 75, 105606. [Google Scholar] [CrossRef]
- Choi, J.; Nidetzky, B. Ionic liquid as dual-function catalyst and solvent for efficient synthesis of sucrose fatty acid esters. Mol. Catal. 2022, 526, 112371. [Google Scholar] [CrossRef]
- Chavez-Flores, L.; Beltran, H.I.; Arrieta-Baez, D.; Reyes-Duarte, D. Regioselective synthesis of lactulose esters by Candida antarctica and Thermomyces lanuginosus lipases. Catalysts 2017, 7, 263. [Google Scholar] [CrossRef] [Green Version]
- Dong, Z.; Jiang, M.Y.; Shi, J.; Zheng, M.M.; Huang, F.H. Preparation of immobilized lipase based on hollow mesoporous silica sphere and its application in ester synthesis. Molecules 2019, 24, 395. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- El Moussaoui, A.; Nijs, M.; Paul, C.; Wintjens, R.; Vincentelli, J.; Azarkan, M.; Looze, Y. Revisiting the enzymes stored in the laticifers of Carica papaya in the context of their possible participation in the plant defence mechanism. Cell. Mol. Life Sci. 2001, 58, 556–570. [Google Scholar] [CrossRef]
- Abdelkafi, S.; Barouh, N.; Fouquet, B.; Fendri, I.; Pina, M.; Scheirlinckx, F.; Villeneuve, P.; Carriere, F. Carica papaya lipase: A naturally immobilized enzyme with interesting biochemical properties. Plant Foods Hum. Nutr. 2011, 66, 34–40. [Google Scholar] [CrossRef]
- Pinyaphong, P.; Sriburi, P.; Phutrakul, S. Synthesis of Monoacrylglycerol from Glycerolysis of crude Glycerol with Coconut Oil Catalyzed by Carica Papaya Lipase. World Acad. Sci. Eng. Technol. Int. J. Chem. Mol. Nucl. Mater. Metall. Eng. 2012, 6, 938–943. [Google Scholar]
- Gandhi, N.N.; Mukherjee, K.D. Specificity of Papaya Lipase in Esterification with Respect to the Chemical Structure of Substrates. J. Agric. Food 2000, 48, 566–570. [Google Scholar] [CrossRef]
- Pinyaphong, P.; Phutrakul, S. Modification of Palm Oil Structure to Cocoa Butter Equivalent by Carica papaya Lipase Catalyzed Interesterification. World Acad. Sci. Eng. Technol. Int. J. Chem. Mol. Nucl. Mater. Metall. Eng. 2009, 3, 309–313. [Google Scholar]
- Pinyaphong, P.; Phutrakul, S. Synthesis of Cocoa Butter Equivalent from Palm Oil by Carica papaya Lipase-Catalyzed Interesterification. Chiang Mai J. Sci. 2009, 36, 359–368. [Google Scholar]
- Pinyaphong, P.; Sriburi, P.; Phutrakul, S. Biodiesel Fuel Production by Methanolysis of Fish Oil Derived from the Discarded Parts of Fish Catalyzed by Carica papaya Lipase. World Acad. Sci. Eng. Technol. Int. J. Chem. Mol. Nucl. Mater. Metall. Eng. 2011, 5, 322–328. [Google Scholar]
- Hanno, I.; Centini, M.; Anselmi, C.; Bibiani, C. Green cosmetic surfactant from rice: Characterization and application. Cosmetics 2015, 2, 322–341. [Google Scholar] [CrossRef]
- Zhao, K.-H.; Cai, Y.Z.; Lin, X.S.; Xiong, J.; Halling, P.J.; Yang, Z. Enzymatic synthesis of glucose-based fatty acid esters in bisolvent systems containing ionic liquids or deep eutectic solvents. Molecules 2016, 21, 1294. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Findrik, Z.; Megyeri, G.; Gubicza, L.; Belafi-Bako, K.; Nemestothy, N.; Sudar, M. Lipase catalyzed synthesis of glucose palmitate in ionic liquid. J. Clean. Prod. 2015, 112, 1106–1111. [Google Scholar] [CrossRef]
- Sabeder, S.; Habulin, M.; Knez, Z. Lipase-catalyzed synthesis of fatty acid fructose esters. J. Food Eng. 2006, 77, 880–886. [Google Scholar] [CrossRef]
- Adnani, A.; Basri, M.; Chaibakhsh, N.; Ahangar, H.A.; Salleh, A.B.; Abdul Rahman, R.N.Z.R.; Abdul Rahman, M.B. Chemometric analysis of lipase-catalyzed synthesis of xylitol esters in a solvent-free system. Carbohydr. Res. 2011, 345, 472–479. [Google Scholar] [CrossRef]
- Chaiwut, P.; Nitsawang, S.; Shank, L.; Kanasawud, P. A Comparative Study on Properties and Proteolytic Components of Papaya Peel and Latex Proteases. Chiang Mai J. Sci. 2007, 34, 109–118. [Google Scholar]
- Kanwar, S.S.; Kaushal, R.K.; Jawed, A.J.; Gupta, R.; Chimni, S. Methods for inhibition of residual lipase activity in colorimetric assay: A comparative study. Indian J. Biochem. Biophys. 2005, 42, 233–237. [Google Scholar]
- Pintathong, P.; Chaiwut, P.; Thitipramote, N.; Thitilertdecha, N.; Nantitanont, W.; Sangthong, S.; Tiensri, N. Simultaneous extraction of oil and protein from perilla seed by three-phase partitioning and their application in serum. J. Appl. Sci. 2018, 17, 73–84. [Google Scholar] [CrossRef]
- Deng, P.; Pedersen, L.H.; Duus, J.; Zimmermann, W. Lipase-catalysed synthesis of glucose fatty acid esters in tert-butanol. Biotechnol. Lett. 1999, 21, 275–280. [Google Scholar]
- Hong, I.K.; Kim, S.I.; Lee, S.B. Effects of HLB value on oil-in-water emulsions: Droplet size, rheological behavior, zeta-potential, and creaming index. J. Ind. Eng. Chem. 2018, 67, 123–131. [Google Scholar] [CrossRef]
- Gesterio, E.; Guijarro, L.; Sanchez-Muniz, F.J.; Vidal-Carou, M.D.C.; Troncoso, A.; Venanci, L.; Jimeno, V.; Quilez, J.; Anadon, A.; Gonzalez-Gross, M. Palm oil on the edge. Nutrients 2019, 11, 2008. [Google Scholar] [CrossRef] [Green Version]
- Foresti, M.L.; Pedernera, M.; Bucal, V.; Ferreira, M.L. Multiple effects of water on solvent-free enzymatic esterifications. Enzym. Microb. Technol. 2007, 41, 62–70. [Google Scholar] [CrossRef]
- Chen, C. Relationship between water activity and moisture content in floral honey. Foods 2019, 8, 30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Turon, F.; Caro, Y.; Villeneuve, P.; Pina, M.; Graille, J. Effect of water content and temperature on Carica papaya lipase-catalyzed esterification and transesterification reactions. Oléagineux Corps Gras Lipides 2003, 10, 400–404. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, P.C.; Nguyen, M.T.T.; Kim, J.H.; Hong, S.T.; Kim, H.L.; Park, J.T. A novel maltoheptaose-based sugar ester having excellent emulsifying properties and optimization of its lipase-catalyzed synthesis. Food Chem. 2021, 352, 129358. [Google Scholar] [CrossRef] [PubMed]
- Zoumpanioti, M.; Parmaklis, P.; de María, P.D.; Stamatis, H.; Sinisterra, J.V.; Xenakis, A. Esterification reactions catalyzed by lipases immobilized in organogels: Effect of temperature and substrate diffusion. Biotechnol. Lett. 2008, 30, 1627–1631. [Google Scholar] [CrossRef]
- Rohman, A.; Man, Y.B.C.; Ismail, A.; Hashim, P. Application of FTIR Spectroscopy for the Determination of Virgin Coconut Oil in Binary Mixtures with Olive Oil and Palm Oil. J. Am. Oil Chem. Soc. 2010, 87, 601–606. [Google Scholar] [CrossRef]
- Rabelo, S.N.; Ferraz, V.P.; Oliveira, L.S.; Franca, A.S. FTIR Analysis for Quantification of Fatty Acid Methyl Esters in Biodiesel Produced by Microwave-Assisted Transesterification. Int. J. Environ. Sci. Dev. 2015, 6, 964–969. [Google Scholar] [CrossRef] [Green Version]
- Ibrahim, M.; Alaam, M.; El-Haes, H.; Jalbout, A.F.; Leon, A.D. Analysis of the structure and vibrational spectra of glucose and fructose. Eclet. Quím. São Paulo 2006, 31, 15–21. [Google Scholar] [CrossRef]
- El-Baz, H.A.; Elazzazy, A.M.; Saleh, T.S.; Dourou, M.; Mahyoub, J.A.; Baeshen, M.N.; Madian, H.R.; Aggelis, G. Enzymatic synthesis of glucose fatty acid esters using SCOs as acyl group-donors and their biological activities. Appl. Sci. 2021, 11, 2700. [Google Scholar] [CrossRef]
- Liang, J.; Zeng, W.; Yao, P.; Wei, Y. Lipase-catalyzed regioselective synthesis of palmitolyglucose ester in ionic liquids. Adv. Biol. Chem. 2012, 2, 226–232. [Google Scholar] [CrossRef] [Green Version]
- Inprakhon, P.; Wongthongdee, N.; Amornsakchai, T.; Pongtharankul, T.; Sunintaboon, P.; Wiemann, L.O.; Durand, A.; Sieber, V. Lipase-catalyzed synthesis of sucrose monoester: Increased productivity by combining enzyme pretreatment and non-aqueous biphasic medium. J. Biotechnol. 2017, 259, 182–190. [Google Scholar] [CrossRef]
- Royer, M.; Nollet, M.N.; Catte, M.; Collinet, M.; Pierlot, C. Towards a new universal way to describe the required hydrophilic lipophilic balance of oils using the phase inversion temperature of C10E4/n-octane/water emulsions. Colloids Surf. A Physicochem. Eng. Asp. 2018, 536, 165–171. [Google Scholar] [CrossRef]
- Kruglyakov, P.M. Hydrophile-Lipophile Balance of Surfactants and Solid Particles: Physicochemical Aspects and Applications; ELSEVIER SCIENCE B.V.: Amsterdam, The Netherlands, 2000; pp. 146–259. [Google Scholar]
- Griffin, W.C. Classification of Surface-Active Agents by HLB. J. Soc. Cosmet. Chem. 1949, 1, 311–326. [Google Scholar]
- Song, M.G.; Cho, S.H.; Kim, J.Y.; Kim, J.D. Novel Evaluation Method for the Water-in-Oil (W/O) Emulsion Stability by Turbidity Ratio Measurements. Korean J. Chem. Eng. 2002, 19, 425–430. [Google Scholar] [CrossRef]
- Enayati, M.; Gong, Y.; Goddard, J.M.; Abbaspourrad, A. Synthesis and characterization of lactose fatty acid ester biosurfactants using free and immobilized lipase in organic solvents. Food Chem. 2018, 266, 508–513. [Google Scholar] [CrossRef]
- Söderberg, I.; Drummond, C.J.; Furlong, D.N.; Godkin, S.; Matthews, B. Non-ionic sugar-based surfactants: Self assembly and air/water interfacial activity. Colloids Surf. A Physicochem. Eng. Asp. 1995, 102, 91–97. [Google Scholar] [CrossRef]
- Allen, D.K.; Tao, B.Y. Synthesis and Characterization of Maltose Fatty Acid Monoesters as Biosurfactants. J. Surfactants Deterg. 2002, 5, 245–255. [Google Scholar] [CrossRef]
- Kempen, S.E.H.J.V.; Boeriu, C.G.; Schols, H.A.; Waard, P.D.; Linden, E.V.D.; Sagis, L.M.C. Novel surface-active oligofructose fatty acid mono-esters by enzymatic esterification. Food Chem. 2013, 138, 1884–1891. [Google Scholar] [CrossRef] [PubMed]
Run | A: CPL Activity (Unit) | B: Temp. (°C) | C: Time (h) |
---|---|---|---|
1 | 2400 | 45 | 48 |
2 | 1200 | 40 | 48 |
3 | 3600 | 40 | 48 |
4 | 3600 | 45 | 60 |
5 | 1200 | 45 | 36 |
6 | 2400 | 40 | 36 |
7 | 2400 | 45 | 48 |
8 | 2400 | 45 | 48 |
9 | 1200 | 45 | 60 |
10 | 1200 | 50 | 48 |
11 | 2400 | 50 | 36 |
12 | 2400 | 40 | 60 |
13 | 3600 | 45 | 36 |
14 | 3600 | 50 | 48 |
15 | 2400 | 45 | 48 |
16 | 2400 | 50 | 60 |
17 | 2400 | 45 | 48 |
Factor | Independent Variables | Code Level | ||
---|---|---|---|---|
−1 | 0 | +1 | ||
A | CPL activity (Units) | 1200 | 2400 | 3600 |
B | Temperature (°C) | 40 | 45 | 50 |
C | Time (h) | 36 | 48 | 60 |
Fatty Acids | % w/w |
---|---|
Lauric acid (12:0) | 0.74 ± 0.07 |
Myristic acid (14:0) | 2.20 ± 0.29 |
Pentadecylic acid (15:0) | 0.11 ± 0.01 |
Palmitoleic acid (16:1) | 0.47 ± 0.10 |
Palmitic acid (16:0) | 37.22 ± 0.48 |
Margaric acid (17:0) | 0.22 ± 0.05 |
Oleic acid (18:1) | 51.77 ± 0.67 |
Stearic acid (18:0) | 6.01 ± 0.61 |
Linoleic acid (18:2) | 0.55 ± 0.17 |
Arachidic acid (20:0) | 0.67 ± 0.21 |
Saturated fatty acids (SFAs) | 47.17 ± 0.57 |
Monounsaturated fatty acids (MUFAs) | 52.24 ± 0.67 |
Polyunsaturated fatty acids (PUFAs) | 0.55 ± 0.17 |
Reactants | CPL | Glucose | Palm Olein |
---|---|---|---|
Moisture content (% w/w) | 5.98 ± 0.18 | 1.80 ± 0.01 | 0.58 ± 0.01 |
Run | CPL Amount (Unit) | Temp. (°C) | Time (h) | Glucose Palm Oleate | |
---|---|---|---|---|---|
mmol/g | % Conversion | ||||
1 | 2400 | 45 | 48 | 0.2756 ± 0.0010 | 61.73 ± 0.22 |
2 | 1200 | 40 | 48 | 0.2038 ± 0.0003 | 45.65 ± 0.07 |
3 | 3600 | 40 | 48 | 0.2622 ± 0.0007 | 58.73 ± 0.16 |
4 | 3600 | 45 | 60 | 0.2261 ± 0.0007 | 50.65 ± 0.16 |
5 | 1200 | 45 | 36 | 0.2119 ± 0.0005 | 47.47 ± 0.11 |
6 | 2400 | 40 | 36 | 0.2037 ± 0.0011 | 45.63 ± 0.25 |
7 | 2400 | 45 | 48 | 0.2888 ± 0.0013 | 64.69 ± 0.29 |
8 | 2400 | 45 | 48 | 0.2714 ± 0.0014 | 60.79 ± 0.31 |
9 | 1200 | 45 | 60 | 0.2072 ± 0.0006 | 46.41 ± 0.13 |
10 | 1200 | 50 | 48 | 0.3504 ± 0.0019 | 78.49 ± 0.43 |
11 | 2400 | 50 | 36 | 0.3118 ± 0.0011 | 69.84 ± 0.25 |
12 | 2400 | 40 | 60 | 0.2073 ± 0.0007 | 46.44 ± 0.16 |
13 | 3600 | 45 | 36 | 0.2557 ± 0.0006 | 57.28 ± 0.13 |
14 | 3600 | 50 | 48 | 0.2270 ± 0.0005 | 50.85 ± 0.11 |
15 | 2400 | 45 | 48 | 0.2801 ± 0.0008 | 62.74 ± 0.18 |
16 | 2400 | 50 | 60 | 0.2498 ± 0.0002 | 55.96 ± 0.04 |
17 | 2400 | 45 | 48 | 0.2729 ± 0.0008 | 61.13 ± 0.18 |
Source | Sum of Squares | Df a | Mean Square | F-Value | p-Value b |
---|---|---|---|---|---|
Model | 0.0259 | 9 | 0.0029 | 8.07 | 0.0039 |
A: CPL amount (Unit) | 6.61 × 10−7 | 1 | 6.61 × 10−7 | 0.0019 | 0.9669 |
B: Temperature (°C) | 0.0086 | 1 | 0.0086 | 24.03 | 0.0017 |
C: Time (h) | 0.0011 | 1 | 0.0011 | 3.01 | 0.1264 |
AB | 0.0083 | 1 | 0.0083 | 23.14 | 0.0019 |
AC | 0.0002 | 1 | 0.0002 | 0.4341 | 0.5310 |
BC | 0.0011 | 1 | 0.0011 | 3.01 | 0.1262 |
A2 | 0.0013 | 1 | 0.0013 | 3.58 | 0.1005 |
B2 | 1.08 × 10−6 | 1 | 1.08 × 10−6 | 0.003 | 0.9576 |
C2 | 0.0052 | 1 | 0.0052 | 14.54 | 0.0066 |
Residual | 0.0025 | 7 | 0.0004 | - | - |
Lack of fit | 0.0023 | 3 | 0.0008 | 15.66 | 0.0112 |
Pure error | 0.0002 | 4 | 0 | - | - |
Cor Total | 0.0284 | 16 | - | - | - |
Required HLB of Emulsion | % CI |
---|---|
1.0 | 68.95 ± 0.35 |
2.0 | 53.16 ± 0.06 |
3.0 | 55.19 ± 1.54 |
4.0 | 48.18 ± 1.20 |
5.0 | 47.85 ± 1.86 |
6.0 | 37.46 ± 1.69 |
7.0 | 44.62 ± 1.13 |
8.0 | 56.09 ± 1.04 |
9.0 | 64.78 ± 1.67 |
10.0 | 65.27 ± 1.54 |
11.0 | 70.29 ± 1.71 |
12.0 | 72.45 ± 2.56 |
13.0 | 74.91 ± 1.54 |
14.0 | 79.71 ± 0.00 |
Required HLB of Emulsion | % CI |
---|---|
5.0 | 42.72 ± 2.66 |
5.2 | 44.72 ± 1.27 |
5.4 | 44.72 ± 0.76 |
5.6 | 40.09 ± 1.20 |
5.8 | 41.55 ± 2.21 |
6.0 | 39.93 ± 0.89 |
6.2 | 35.40 ± 3.21 |
6.4 | 43.33 ± 0.22 |
6.6 | 45.37 ± 2.15 |
6.8 | 58.56 ± 5.27 |
7.0 | 55.71 ± 1.08 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chaiwut, P.; Jirarat, A.; Tiensri, N.; Sangthong, S.; Pintathong, P. Green Synthesis Optimization of Glucose Palm Oleate and Its Potential Use as Natural Surfactant in Cosmetic Emulsion. Cosmetics 2022, 9, 76. https://doi.org/10.3390/cosmetics9040076
Chaiwut P, Jirarat A, Tiensri N, Sangthong S, Pintathong P. Green Synthesis Optimization of Glucose Palm Oleate and Its Potential Use as Natural Surfactant in Cosmetic Emulsion. Cosmetics. 2022; 9(4):76. https://doi.org/10.3390/cosmetics9040076
Chicago/Turabian StyleChaiwut, Phanuphong, Areeya Jirarat, Ninnapat Tiensri, Sarita Sangthong, and Punyawatt Pintathong. 2022. "Green Synthesis Optimization of Glucose Palm Oleate and Its Potential Use as Natural Surfactant in Cosmetic Emulsion" Cosmetics 9, no. 4: 76. https://doi.org/10.3390/cosmetics9040076
APA StyleChaiwut, P., Jirarat, A., Tiensri, N., Sangthong, S., & Pintathong, P. (2022). Green Synthesis Optimization of Glucose Palm Oleate and Its Potential Use as Natural Surfactant in Cosmetic Emulsion. Cosmetics, 9(4), 76. https://doi.org/10.3390/cosmetics9040076